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Statement of the problem

Fluids exhibit a very wide range of behaviors.

Navier-Stokes and Euler equations are believed to be good can-

didates for the description of fluids.

However, their analytical and numerical investigation has proved

to be a very challenging problem.

Analytical studies are hampered by the lack of understanding of

the geometrical properties of the flow.

Direct numerical simulation is beyond present capabilities due

to the very large range of active scales (for flows of practical

interest).
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What can one do?

1) Dimensional reduction (e.g. LES, RNG, α-model, Spectral

vanishing viscosity, Mori-Zwanzig).

2) Construct algorithms that focus on specific aspects of the

problem. E.g. construct algorithm that focuses on the point

with largest vorticity (joint work with A.J. Chorin and J.B. Bell,

LBL).
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Properties of the Mori-Zwanzig reduced models

for the Euler equations

1) The models come directly from the equations. They do not

involve terms added by hand.

2) They are incompressible by construction.

3) The different terms appearing can be computed efficiently

(in the case of periodic boundary conditions) by the use of FFT

on appropriate arrays. Thus, incorporation in existing codes is

straightforward.

4) The terms that effect the drain of energy to the unresolved

modes are adaptive and kick in only when there is significant

transfer of energy.
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Outline

1) The Euler equations and the problem of underresolved com-

putations

2) The Mori-Zwanzig formalism (Zwanzig 1961, Mori 1965, Chorin,

Hald & Kupferman 2000)

3) The t-model (analysis and numerical results for the Taylor-

Green vortex)

4) Current and future work

4



The Euler equations and the problem of

underresolved computations

vt + v · ∇v = −∇p, ∇ · v = 0, (1)

where v(x, t) = (v1(x1, x2, x3, t), v2(x1, x2, x3, t), v3(x1, x2, x3, t)) is

the velocity, p is the pressure and ∇ = ( ∂
∂x1

, ∂
∂x2

, ∂
∂x3

).

Solve in the periodic box [0,2π] × [0,2π] × [0,2π].

The system in (1) is supplemented with the initial condition

v(x,0) = v0(x) which is also periodic and incompressible and

x = (x1, x2, x3).

5



Expand in Fourier series keeping M modes in each direction,

vM(x, t) =
∑

k∈F∪G

uk(t)e
ikx,

where F ∪ G = [−M
2 , M

2 − 1] × [−M
2 , M

2 − 1] × [−M
2 , M

2 − 1]. Also

k = (k1, k2, k3) and uk(t) = (u1
k(t), u

2
k(t), u

3
k(t)).

The equation of motion for the Fourier mode uk becomes

duk

dt
= −i

∑

p+q=k
p,q∈F∪G

k · upAkuq, (2)

where Ak = I − kkT

|k|2
is the incompressibility projection matrix and

I is the 3 × 3 identity matrix.
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The system (2) is supplemented by the initial condition u0 =

{uk(0)} = {u0k}, k ∈ F ∪G, where u0k are the Fourier coefficients

of the initial condition v0(x).

Even if we start from a very smooth initial condition and M

is of the order of 103 in each direction (the state of the art

in massively parallel computers), the solution of the system of

ordinary differential equations (2) can create significant activity

in the highest modes of our allowed resolution.

Construct reduced model for the modes in F = [−N
2 , N

2 − 1] ×

[−N
2 , N

2 − 1] × [−N
2 , N

2 − 1], where N < M.
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The Mori-Zwanzig formalism

Suppose we are given an M-dimensional system of ordinary dif-

ferential equations

du(t)

dt
= R(u(t)) (3)

with initial condition u(0) = u0.

Transform into the linear partial differential equation

ρt = Lρ, ρ(u0,0) = g(u0) (4)

where L =
∑M

i=1 Ri(u0)
∂

∂u0i
and the solution of (4) is given by

ρ(u0, t) = g(ρ(u0, t)). Consider the following initial condition for

the PDE

g(u0) = u0k ⇒ ρ(u0, t) = uk(u0, t)
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Rewrite (4) as

∂

∂t
etLu0k = LetLu0k

Suppose that the vector of initial conditions can be divided as

u0 = (û0, ũ0), where û0 is the N-dimensional vector of the re-

solved variables and ũ0 is the (M −N)-dimensional vector of the

unresolved variables.

Let P be an orthogonal projection on the space of functions

of û0 and Q = I − P. For a function h(u0) of all the variables,

the projection operator we will use is defined by P(h(û0, ũ0)) =

h(û0,0), i.e. it replaces the value of the unresolved variables

ũ0 in any function h(u0) by zero. Similarly, the initial condition

u0 = (û0, ũ0) is replaced by (û0,0).
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1) No joint density on u0 used in the definition of P. Very expen-

sive (if not impossible) to calculate a joint density analytically or

experimentally.

2) Natural choice since the Euler equations can create significant

activity in high wavenumbers even when we start with a very

smooth initial condition (a few Fourier modes in each direction).

The equation (4) can be rewritten as

∂

∂t
etLu0k = etLPLu0k + etQLQLu0k +

∫ t

0
e(t−s)LPLesQLQLu0kds,

(5)

for k = 1, . . . , N . We have used Dyson’s formula (Duhamel’s

principle)

etL = etQL +

∫ t

0
e(t−s)LPLesQLds. (6)
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If we write

etQLQLu0k = wk,

wk(u0, t) satisfies the equation






∂
∂twk(u0, t) = QLwk(u0, t)

wk(u0,0) = QLu0k = Rk(u0) − (PRk)(û0).
(7)

If we project (7) we get

P
∂

∂t
wk(u0, t) = PQLwk(u0, t) = 0,

since PQ = 0. Also for the initial condition

Pwk(u0,0) = PQLu0k = 0

by the same argument. Thus, the solution of (7) is at all times

orthogonal to the range of P. We call (7) the orthogonal dynam-

ics equation.

11



Since the solutions of the orthogonal dynamics equation remain

orthogonal to the range of P , we can project the Mori-Zwanzig

equation (5) and find

∂

∂t
PetLu0k = PetLPLu0k + P

∫ t

0
e(t−s)LPLesQLQLu0kds. (8)

Use (8) as the starting point of approximations for the evolution

of the quantity PetLu0k for k = 1, . . . , N (note that the equation

(8) involves the orthogonal dynamics operator etQL).

Construct reduced models based on physical and numerical ob-

servations.

These models come directly from the original equations and the

terms appearing in them are not introduced by hand.
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The t-model

We set

Rk(u) = −i
∑

p+q=k
p,q∈F∪G

k · upAkuq

and we have

duk(t)

dt
= Rk(u(t)) (9)

for k ∈ F∪G. In the above, uk(t) = etLu0k and L =
∑

k∈F∪G Rk(u0).

The system (9) is supplemented by the initial condition u0 =

(û0, ũ0) = (û0,0).
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Expand the memory integrand e(t−s)LPLesQL around s = 0 and

retain only the zeroth order term.

∂

∂t
PetLu0k = PetLR̂k(û0) + tPetLZ0

k (û0),

where

Z0
k (û0) = PLQLu0k =

−i

(

∑

p+q=k
p∈G, q∈F

k · R̂p(û0)Aku0q +
∑

p+q=k
p∈F, q∈G

k · u0pAkR̂q(û0)

)

and

R̂k(û0) = Rk(û0,0) = −i
∑

p+q=k
p,q∈F

k · u0pAku0q.
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The equations are not closed in the quantities PetLu0k. Commute

projection with nonlinear functions and obtain a closed system.

This is not the usual mean-field approximation because we ac-

count for the fluctuations by keeping the memory term.

∂

∂t
PetLu0k = R̂k(PetLû0) + tZ0

k (PetLû0)

How accurate is such an approximation?
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∫ t

0
e(t−s)LPLesQLQLu0kds − tetLPLQLu0k =

∫ t

0
[e(t−s)LPLesQL − etLPL]QLu0kds.

Adding and subtracting equal quantities we find

e(t−s)LPLesQL = etLPL + etL[e−sLPLesQL − PL],

and a Taylor series around s = 0 gives

e−sLPLesQL −PL = (I − sL+ . . .)PL(I + sQL+ . . .)−PL = O(s).

This implies
∫ t

0
e(t−s)LPLesQLQLu0kds = tetLPLQLu0k + O(t2).
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If we retain only the leading term, we do not keep any information

about the time evolution of the integrand, which in turn means

no information about the coupling of the resolved components

to the evolution of the orthogonal dynamics.

Such an approximation is expected to be appropriate in cases

where the memory term integrand is slowly decaying, so that in-

formation about its initial value is sufficient to make predictions.

In essence, we approximate the response of the unresolved modes

to the ”field” of the resolved modes by a constant (analogous

to the zero order sum rule).
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Remarks about the t-model for the Euler

equations

1) Motivation: Turbulent flow develops vortical structures that

exhibit long temporal correlations (e.g. Alder and Wainwright

1967,1970). Temporal correlations appear as memory integrands

in the Mori-Zwanzig formalism, thus, a very long memory approx-

imation is natural.

2) Such a modeling approach is different from the usual modeling

approximation of very short or no memory at all.
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Theorems (due to O.H. Hald)

1) If the solution of the full system is smooth, the solution of the

t-model converges to this solution in the limit of infinite number

of modes.

2) For the evolution of the energy of the resolved components

E = 1
2

∑

k∈F
|PetLu0k|

2 we have

dE

dt
= −t

∑

p∈G

|R̂p(PetLû0)|
2

3) The above result can be generalized to the t-model of any

system of ODEs that conserves the L2 norm of the solution.
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Numerical results of the t-model for the

Taylor-Green vortex

v1(x,0) = sin(x1) cos(x2) cos(x3),

v2(x,0) = − cos(x1) sin(x2) cos(x3),

v3(x,0) = 0

All the expressions in the RHS can be computed using FFTs of

appropriate arrays.

The pseudospectral calculations for the t-model term are dealiased

by construction.

Runge-Kutta-Fehlberg method with tolerance set to 10−15.
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Energy evolution for the t-model for different resolutions.
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(a) Evolution of dissipation and (b) energy decay rate for the

t-model for different resolutions.
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Current and future work

1) Reduced model constructed directly from the Euler equations

without the introduction of terms by hand

2) Construct a collection of models based on the Taylor expan-

sion of the orthogonal dynamics operator etQL, not of the whole

memory integrand as in the t-model

3) Use terms in the Taylor expansion to construct more elaborate

approximations e.g. Padé approximants

4) Parallel implementation
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More details can be found in the papers:

Chorin, Hald, Shvets, S. ”Long memory Mori-Zwanzig models

for the Euler equations”, preprint UCB (2006)

Chorin, S. ”Problem reduction, renormalization and memory”

Comm. App. Math. Comp. Sci. 1 (2005) 1-27

S. ”Higher order Mori-Zwanzig models for the Euler equations”

(2006) math.NA/0607108 (submitted to Multi. Mod. Sim.)

The papers can be downloaded at http://math.lbl.gov/∼stinis/
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Models based on the Taylor expansion of the

orthogonal dynamics operator. Part I: Zeroth,

first and second order models

Proceed by expanding the orthogonal dynamics operator around

s = 0. Depending on how many terms we keep (1,2,3, . . .), we

obtain zeroth, first, second, .... order approximations respec-

tively,

esQL = I + sQL +
s2

2
QLQL + O(s3), (10)

PLesQL = PL + sPLQL +
s2

2
PLQLQL + O(s3). (11)

Every term in the expansion has one more factor of QL than the

previous term.
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Zeroth order model (Cubic in û0)

∂

∂t
PetLu0k = PetLR̂k(û0) + P

∫ t

0
e(t−s)LZ0

k (û0)ds, ,

where

Z0
k (û0) = PLQLu0k =

−i

(

∑

p+q=k
p∈G, q∈F

k · R̂p(û0)Aku0q +
∑

p+q=k
p∈F, q∈G

k · u0pAkR̂q(û0)

)

and

R̂k(û0) = Rk(û0,0) = −i
∑

p+q=k
p,q∈F

k · u0pAku0q.
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First order model (Quartic in û0)

∂

∂t
PetLu0k = R̂k(PetLû0) +

∫ t

0
Z0

k (Pe(t−s)Lû0)ds

+

∫ t

0
sZ1

k (Pe(t−s)Lû0)ds,

where

Z1
k (û0) = PLQLQLu0k =

−i

(

∑

p+q=k
p∈F∪G, q∈G

k · R̂p(û0)AkR̂q(û0) +
∑

p+q=k
p∈G, q∈F∪G

k · R̂p(û0)AkR̂q(û0)+

∑

p+q=k
p∈G, q∈F

k · Z0
p (û0)Aku0q +

∑

p+q=k
p∈F, q∈G

k · u0pAkZ0
q (û0)

)
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Second order model (Quintic in û0)

∂

∂t
PetLu0k = R̂k(PetLû0) +

∫ t

0
Z0

k (Pe(t−s)Lû0)ds

+

∫ t

0
sZ1

k (Pe(t−s)Lû0)ds +

∫ t

0

s2

2
Z2

k (Pe(t−s)Lû0)ds,
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Z2
k (û0) = PLQLQLQLu0k =

−i

(

∑

p+q=k
p∈F∪G, q∈G

k · Z0
p (û0)AkR̂q(û0) +

∑

p+q=k
p∈G, q∈F∪G

k · R̂p(û0)AkZ0
q (û0)+

∑

p+q=k
p∈F∪G, q∈G

k · Bp(û0)AkR̂q(û0) +
∑

p+q=k
p∈G, q∈F∪G

k · R̂p(û0)AkBq(û0)+

∑

p+q=k
p∈G, q∈F

k · Z0
p (û0)AkR̂q(û0) +

∑

p+q=k
p∈F, q∈G

k · R̂p(û0)AkZ0
q (û0)+

∑

p+q=k
p∈F∪G, q∈G

k · Z0
p (û0)AkR̂q(û0) +

∑

p+q=k
p∈G, q∈F∪G

k · R̂p(û0)AkZ0
q (û0)+

∑

p+q=k
p∈G, q∈F∪G

k · Z0
p (û0)AkR̂q(û0) +

∑

p+q=k
p∈F∪G, q∈G

k · R̂p(û0)AkZ0
q (û0)+

∑

p+q=k
p∈G, q∈F

k · Z1
p (û0)Aku0q +

∑

p+q=k
p∈F, q∈G

k · u0pAkZ1
q (û0)

)



where

Bk(û0) = −i
∑

p+q=k
p,q∈F

k · R̂p(û0)Aku0q.

1) All models are incompressible by construction due to the in-

compressibility projection operator Ak.

2) All models of order 1 and up involve convolution type integrals.

These can be transformed into sums of ordinary integrals by a

simple change of variables s′ = t − s. Ordinary integrals can be

evaluated very efficiently by adding at each step the contribution

to the integral from this step.
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Models based on the Taylor expansion of the

orthogonal dynamics operator. Part II: Higher

order models

1) The form of the nonlinearity,

2)The specific form of the projection,

3)The general property of any projection PQ = P(I − P) = 0.

The nth order term involves powers of n+3 in the Fourier modes.

It involves expressions of the form
∑

p+q=k
p∈Λ, q∈Θ

k · HpAkCq, where Hp

is of order m and Cq is of order l with n + 3 = m + l.
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The nth order term has the form Zn(û0) = PL(QL)nQLu0k, i.e.

n applications of the operator QL and then application of the

operator PL.

We have PL(QL)nQLu0k = PLQL(QL)n−1QLu0k.

The part (QL)n−1QLu0k is common with the n − 1st term ex-

pression Zn−1(û0) = PL(QL)n−1QLu0k.

When we act on (QL)n−1QLu0k with the extra factor QL =

L−PL, we get QL(QL)n−1QLu0k = L(QL)n−1QLu0k−Zn−1(û0).
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The expression for QL(QL)n−1QLu0k contains 3 types of terms:

i) Terms that could not appear in Zn−1 because of the special

property of the projection which sets to zero expressions linear

in u0k for k ∈ G.

ii) Terms that could not appear in Zn−1 due to the general

property of any projection that PQ = 0.

iii) Terms of the form h(u0) − (Ph)(û0), where (Ph)(û0) is any

expression appearing in the term Zn−1.

We can assemble the expressions appearing in QL(QL)n−1QLu0k

into three groups according to i),ii) and iii). Then we can apply

the operator PL once and we are done.
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1) Write down the expression (QL)n−1QLu0k.

2) Apply the operator QL and assemble the terms in the ex-

pression QL(QL)n−1QLu0k in 3 groups: i) Terms that could not

appear in Zn−1 because of the special property of the projec-

tion which sets to zero expressions linear in u0k for k ∈ G; ii)

Terms that could not appear in Zn−1 due to the general prop-

erty of any projection that PQ = 0 and iii) Terms of the form

h(u0)− (Ph)(û0), where (Ph)(û0) is any expression appearing in

the term Zn−1.

3) Apply the operator PL to the type i) terms. An m + 1 term

in the expression QL(QL)n−1QLu0k arose from an (m − 1) + 1

term and will give rise to an m + 2 term. The symmetric term

2 + m should also appear (the symmetric terms appear due to

the rule of differentiating a product.)
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4) Apply the operator PL to the type ii) terms. An m+ l term in

the expression QL(QL)n−1QLu0k arose from an m +(l− 1) term

where the m term is of the form (Qh)(u0) for some function

h(u0). It will give rise to an (m + 1) + l term. The symmetric

l + (m + 1) term should also appear.

5) Apply the operator PL to the type iii) terms. There are two

cases: a) An (n − 2) + 1 term will give rise to an (n − 1) + 1

term with the n − 1st part being equal to Zn−1. The symmetric

term 1+(n−1) should also appear; b) An m+ l term with l 6= 1

will give rise to an (m + 1) + l and an m + (l + 1) term. The

symmetric terms l +(m+1) and (l +1)+m should also appear.
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6) Make sure that in the final expressions all possible decompo-

sitions of n + 3 into sums of two positive integers appear. All

the expressions for the nth term in the series should be n + 3

powers of Fourier modes.

7) As a last resort, forget about the rules and proceed with

straightforward differentiation.
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Numerical results for the Taylor-Green vortex

The models need to have the range of integration for the mem-

ory term reduced from [0, t] to [t0, t], otherwise the calculation

becomes unstable.

A Taylor series around the current instant cannot be expected to

be accurate for long times in the past and this is the reason for

the need to truncate the memory term’s range of integration.

There is no tuning needed. The results become better, the

longer the range of integration, until the value of the range that

leads to instability. Thus, trial and error is needed not to fit the

results to some prescribed curve, but just to find when does the

calculation becomes unstable.
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Let us assume that we want to calculate the integral
∫ tk+∆t

tk+∆t−t0
f(s)ds,

where f(s) is any of the integrands appearing in the different

order models’ memory terms. Decompose the integral as
∫ tk

tk−t0
f(s)ds +

∫ tk+∆t

tk
f(s)ds −

∫ tk+∆t−t0

tk−t0
f(s)ds

We need to keep an array of length [t0/∆t], where [] stands for

integer part. This array needs to be updated at the end of every

step so that it always keeps the values of the integrand for the

last [t0/∆t] steps.

Use modified Euler method with the trapezoidal rule for the

evaluation of the integrals and ∆t = 10−3.
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(a) Energy evolution for the zeroth order model with N = 83

modes and t0 = 1. (b) Evolution of the energy decay rate.
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(a) Energy evolution for the first order model with N = 83

modes and t0 = 1. (b) Evolution of the energy decay rate.

39



(a) Energy evolution for the second order model with N = 83

modes and t0 = 0.5. (b) Evolution of the energy decay rate.
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(a) Comparison of the energy evolution for the zeroth and first

order models and the t-model with two different resolutions.
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