

Comparative experimental study of quasi-2D turbulence in fluids and plasma

Michael Shats

Research School of Physical Sciences and Engineering The Australian National University Canberra, Australia

In collaboration with

Hua Xia and Horst Punzmann

Motivation

Plasma physics perspective

- Understanding improved plasma confinement
- Physics behind modifications of turbulence during confinement transitions

2D fluid turbulence

- Conditions and thresholds for spectral condensation of 2D turbulence
- Modification to the 2D turbulence spectra in the presence of condensate

Transitions to improved plasma confinement (self-organization in

Content

quasi-2D plasma turbulence as a paradigm for L-H transitions)

Spectral transfer in plasma turbulence

(i) Single-field description; (ii) Power transfer analysis; (iii) Inverse energy cascade

Modifications in plasma turbulence consistent with spectral condensation in plasma turbulence

(i) Transitions from random-phase cascade-type transfer to non-local coherent transfer;(ii) Zonal flows and transport barriers

Spectral condensation in 2D fluid turbulence

(i) Introduction; (ii) Previous experiments, modified setup; (iii) evolution of turbulence during condensation; (iv) Approaches to threshold studies (reduced linear damping; role of induced anisotropy...)

Summary

**

Plasma experiment : H-1 heliac – helical axis stellarator (ANU)

Plasma parameters:

R = 1 m, $\langle a \rangle \sim 0.2 \text{ m}$, N = 3, low magnetic shear, B < 0.1 T, Argon $T_i \sim 30 \text{ eV}$, $T_e \sim 10 \text{ eV}$, $n_e \sim 1 \times 10^{18} \text{ m}^{-3}$,

Dimensionless plasma parameters similar to the edge region of other "fusionrelevant" machines: $\rho^* = \rho_i / (n_e / \nabla n) = 0.5 - 1$ $\upsilon^* = \upsilon_{ei}^{eff} / \omega_{be} \approx 1$ $\beta \approx 0.01$

Low temperatures allow probes, visible spectroscopy ... to be used to characterize plasma and turbulence with better spatial / temporal resolution

Confinement transitions in H-1 plasma

Strong E_r shear regions mark top / foot of the density pedestal

Turbulence spectrum in L-mode

- Broadband spectrum ($P \sim f^{-6}$)
- Stationary (low frequency <0.6 kHz) zonal flows
- Geodesic acoustic modes f = 4 5 kHz $\omega_{GAM} \approx c_s/L_{\parallel}$

Good agreement with GAM frequency corrected for stellarator geometry [Watari et al. PoP 2005]

 $m(f) = k_{\theta}(f)r = r(\Delta \varphi_{12}(f) / \Delta y)$ $\Delta \varphi_{13}(f) = k_{\parallel}(f)\Delta L_{\parallel} + k_{\theta}(f)\Delta y_{13}$

Non-linear power transfer analysis

If single-field description of turbulence is
valid,
mode coupling and the direction of energy
cascading is described by the wave
kinetic equation
[e.g Ritz et al. *Phys. Fluids* B1 (1989)]
$$\frac{\partial \phi_k(t)}{\partial t} = (\gamma_k + i\omega_k)\phi_k(t) + \frac{1}{2}\sum_{k=k_1+k_2}\Lambda_{k_1,k_2}\phi_{k_1}(t)\phi_{k_2}(t)$$
$$\frac{\partial \phi_k(t)}{\partial t} = (\gamma_k + i\omega_k)\phi_k(t) + \frac{1}{2}\sum_{k=k_1+k_2}\Lambda_{k_1,k_2}\phi_{k_1}(t)\phi_{k_2}(t)$$
$$\int_{k=0}^{k} F_k = \phi_k(t)\phi_k^*(t)$$
$$\frac{\partial P_k}{\partial t} = 2\gamma_k P_k + \sum_{k=k_1+k_2}T_k(k_1,k_2)$$
$$\frac{\partial P_k}{\partial t} = 2\gamma_k P_k + \sum_{k=k_1+k_2}T_k(k_1,k_2)$$

Justification of single field description of quasi-2D plasma turbulence

- "Linear" k-f dispersion justifies time-domain analysis
- □ Density and potential fluctuations are in-phase – adiabatic response $\tilde{E}_{\theta} = -\nabla_{\theta} \tilde{\phi}$
- Density and potential fluctuations are highly coherent (~60%)

$$\widetilde{n}_e = \widetilde{\phi} + \delta n_e$$
 $\widetilde{n}_e = n_0 \exp(e\widetilde{\phi} / T)$

 $\partial n_i / \partial t + \mathbf{V}_E \cdot \nabla n_i + \nabla \cdot (n_i \mathbf{V}_P) = 0$ $n_i = n_0 + \tilde{n}_i$ **Polarization drift nonlinearity ~** *ExB* **drift nonlinearity when**

$$k_{\perp}\rho_{s} = \delta = c_{s}/(L_{n}v_{e})$$

In our conditions $k_{\perp}\rho_s (= 0.5 - 2.5) >> \delta(\approx 0.1)$ - polarization drift dominates

Energy transfer function does not show coherent spectral features

ETF computation requires heavy statistical averaging. Capable of accounting for random-phase 3-wave interactions

Applicable if single-field description is justified (n- ϕ fluctuations are in phase), e.g. Hasegawa-Mima-type turbulence

Broadband turbulence is generated via inverse energy cascade

Formation of ZF in H-mode pedestal II

Evidence in support of spectral condensation in plasma

Strong stationary ZF develop in the pedestal region

Both development of stationary ZF & the BB turbulence reduction might result from redistribution of spectral energy towards lower *k*

Non-local spectral transfer in plasma

[Balk, Zakharov, Nazarenko JETP (1990), Physics Letters A (1990)

Dyachenko, Nazarenko, Zakharov Phys. Letts. A (1992)]:

overcome damping of zonal flow

Condensation of turbulence in 2D fluids

The maximum of the energy spectrum lies in the low-k range, at $k_{\rm F}$, and in the absence of the energy dissipation at large scales can not be constant in time since it accumulates spectral energy $k_{\rm F} = f(\varepsilon, t)$

Condensation of turbulence in 2D fluid: experiment

Constantly forced turbulence (previous studies – decaying, or randomly forced)

Electromagnetically driven turbulence Thin electrolyte layers. **10 x 10 J**x**B** driven vortices. Stratified fluid (2 layers, NaCl solution of different density) [Paret&Tabeling (1998)]

Turbulence visualization – particle image velocimetry (PIV), latex particles (~0.1mm) $v_x = dx/(t_2 - t_1)$

 $v_y = dy/(t_2 - t_1)$

Turbulence evolution in 2D fluid (10 x 10 vortices)

 $t = 9 \, s$ *t* = 25 s *t* = 60 s

[M. Shats, H. Xia, H. Punzmann Phys. Rev.E. (2005)

Spectral evolution of 2D turbulence

k

Change in the power law at $k < k_i$ from $\sim k^{-1}$ to k^{-3} is indicative of changed nature of the spectral transfer (e.g., local to nonlocal)

k

Summary

- I. Empirical similarity between self-organization in 2D fluid turbulence and in quasi-2D toroidal plasma demonstrated;
- II. Both systems show onset of regular anisotropic flow and reduction in the intermediate-scale turbulent eddies;
- III. Spectral condensation paradigm "confirmed" in the pedestal region during L-H transitions in plasma;
- IV. No simple threshold condition for the condensate formation has yet been found in our experiments in 2D fluid turbulence
- V. Larger scale separation experiments are under way