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Dynamics of Critical phenomenon

• Near a critical point the spin-spin correlation function
shows scaling and the characteristic correlation length, ξ,
diverges.

〈s(x)s(x + r)〉 =
1

rd−2+η
G(|r|/ξ)

ξ ∼ |T − Tc|
−γ as T → Tc

where η, γ are critical exponents.
• The time-dependent correlation function:

〈s(x, 0)s(x + r, t)〉 = 〈s(x)s(x + r)〉f(t/τ)

τ ∼ ξz

where ξ is the dynamic critical exponent.



Turbulence

• Structure functions:

δφ(x, r, t) ≡ φ(x + r, t) − φ(x, t)

Sp(r) ≡ 〈[δφ]p〉

• In fully developed turbulence, the structure functions show
multiscaling

Sp(r) ∼ rζp

where ζp is a nonlinear convex function of p.
• K41 implies ζp = p/3.
• How does the dynamic structure functions behave ?

F(r, t) ≡ 〈δφ(r, t)δφ(r, 0)〉
= Sp(r)G[t/τ(r)]

τ(r) ∼ rz



Measurements are typically done by a single probe. The
time-series of velocity is converted to spatial field by Taylor’s
hypothesis.



Eulerian, Lagrangian and quasi-Lagrangian

• For Eulerian variables : typical time and length scales are
linearly related. Hence dynamic scaling exponent z = 1. A
phenomenon called sweeping.

• For Lagrangian quantities, K41 predicts:

τ(r) ∼
r

δu(r)
∼ r2/3

z = 2/3

• Quasi-Lagrangian velocity is the Eulerian velocity relative
to a fluid particle. This is expected to show no sweeping.
The equal-time behaviour is similar to Eulerian and
dynamic behaviour is similar to the Lagrangian velocities.



Dynamics of Lagrangian quantities

• Kraichnan model of passive-scalar
• Multifractal model for fluid turbulence.
• Multifractal model for passive-scalar turbulence.



Kraichnan model of passive scalar

∂tθ + (u · ∇)θ = κ∇2θ + fθ,

Velocity is random, Gaussian with co-variance

〈ui(x, t)uj(x + `, t′)〉 = 2Dij(`)δ(t − t′)

Dij(`) = D0δij −
1

2
dij(`)

• D0 ∼ Lξ

• L → ∞ and η → 0,
dij = D1`

ξ
[
(d − 1 + ξ)δij − ξ

`i`j

`2

]
∼ `ξ



Equal-time statistics

• Multiscaling can be analytically (but perturbative)
demonstrated.

• Sp(`) ∼ `ζθ
p .

• 0 < ξ < 2 .
• Structure functions have good limits, not correlation

functions.



Dynamic structure functions

δφ(x, t, r) ≡ φ(x + r, t) − φ(x, t)

Fφ
2 (r, t) = 〈[δφ(x, 0, r)δφ(x, t, r)]〉

= 2Cφ(0, t) − 2Cφ(r, t)

Cφ(r, t) ≡ 〈φ(x + r, 0)φ(x, t)〉

• t strictly positive.



Dynamic scaling

∂tC
φ(r, t) = 〈φ(x + r, 0)∂t[φ(x, t)]〉

= −〈φ(0)(u · ∇)θ〉+ κ∇2 〈φ(0)φ〉+
〈
φ(0)fφ

〉

∂tC
θ(r, t) = D0(L)∂iiC

θ ∼ Lξ∂iiC
θ;

∂tC
θ̂(r, t) =

(
D0δij − Dij

)
∂ijC

θ̂ ∼ dij(r)∂ijC
θ̂.

Cφ(r, t) ∼ exp[−t/τφ(r)]

τθ̂(r, t) = r1−ξ; τθ(r, t) = r2

In the limit of L → ∞, Cθ(r, t) diverges for all r.
zql = 2 − ξ, a bridge relationship.
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Dynamics of Kraichnan model

• Generalization to higher order is possible but messy.
• Eulerian time-dependent structure functions have no good

limit due to sweeping, diverges as Lξ.
• Quasi-Lagrangian time-dependent structure functions

remain finite, shows exponential decay in time, and simple
dynamic scaling:

zql = 2 − ξ

• Same dynamic scaling can be recovered by simple
dimensional analysis.

• The dynamic scaling exponent bears no relationship with
zero-modes.



Numerics of Kraichnan-shell model
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• Shell model analog of Kraichnan model.
• Dynamic exponent of 4-th order.



Varieties of time-scales

τI(k)

τC(k) t

C(k,t) 

• In dynamic critical phenomenon the integral and curvature
time has the same scaling properties. More generally the
dynamic scaling property does not depend on how you
define the time scale.

τC ∼ τI ∼ k−z ∼ rz



Varieties of dynamic multiscaling

• Integral time scale

T I
p (`) ≡ 1

Sp(`)

∫∞

0
Fp(`, t)dt ∼ `zI

p,1

• Curvature time scale

T D
p,2(`) ≡

[
1

Sp(`)

∂2

∂t2
Fp(`, t)dt

](−1/2)

∼ `zD
p,2

• Using the multifractal model we derive the bridge relations

zI
p,1 = 1 + [ζp−1 − ζp],

zD
p,2 = 1 + [ζp − ζp+2]/2.



Multifractal Derivation for Integral Scale

Fp(`, t) ∝
∫

I
dµ(h)(

`

L
)Z(h)Gp,h(

t

τp,h
),

where Gp,h( t
τp,h

) has a characteristic decay time

τp,h ∼ `/δv(`) ∼ `1−h, and Gp,h(0) = 1. If
∫∞

0 t(M−1)Gp,hdt

exists,

T I
p,1(`) ≡ 1

Sp(`)

∫∞

0
Fp(`, t)dt

∝ 1

Sp(`)

∫

I
dµ(h)(

`

L
)Z(h)

∫∞

0
dtGp,h(

t

τp,h
)

∝
[

1

Sp(`)

∫

I
dµ(h)(

`

L
)ph+3−D(h)`1−h

]

In the last step, we have used :
τp,h ∼ `/δv(`) ∼ `1−h



Summary

• Dynamic multiscaling is expected to be observed to
Lagrangian or quasi-Lagrangian dynamic structure
functions.

• There is no scale invariance of the whole dynamic structure
function, scaling of a particular time-scale depends on how
you have defined that time-scale.

• Dynamic scaling exponents can be related to the
equal-time exponents by bridge relations.



Evidence from shell models
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• Needs very long avearaging.
• Several very serious difficulties with present computing

power to do similar study in DNS of fluid turbulence.



Passive scalar model

• Using the multifractal model for passive-scalar (not
white-in-time) we can derive bridge relations for the
passive-scalar dynamic exponents.

zD,θ
p,2 = 1 − ζu

2 /2

zI,θ
p,2 = 1 − ζu

−1

• But we need to assume certain correlation between the
velocity and the passive scalar flux.

• These predictions are expected to work for Lagrangian or
quasi-Lagrangian representation for the passive-scalar.



Dynamic multiscaling in decaying turbulence

• In critical phenomenon, dynamics can be monitored by:
• Disturbing the system away from equilibrium and looking

at its approach to equilibrium.
• Measuring time-dependent correlation function in

equilibrium.
• And these two approaches gives the same dynamic

exponent.
• The analog in turbulence would be to compare dynamic

exponents in forced and decaying turbulence. There is no
a-priori reason why they should be equal.

• There are two ways to study decay:
• Get the system to a non-equilibrium stationary steady state

and then turn off forcing at t = t0 and observe the
subsequent evolution.

• Begin from an initial state with most of the energy in
large-scales, then as the system decays the cascade is
completed at time t = t0, observe the subsequent evolution.

• We get the same exponents from both of these methods.



Decaying dynamic structure functions

• The simplest possible form (factorisation)

Fd
p (`, t0, t) = g(t0)Ff

p(`, t)

• We should then have

Qp(`, t) ≡ Fd
p (`, t0, t)

Fd
p (`, t0, 0)

to be independent of t0.
• The dynamic multiscaling properties of Qp(`, t) is seen to

be same as the dynamic multiscaling properties of F f
p(`, t)



Data from shell model
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Summary

• There is strong dynamic univsersality in turbulence, at
least in shell models of turbulence.

• Confirmed numerically in Kraichnan-shell model.
• Confirmed numerically in GOY shell model and

passive-scalar shell model.
• The simplest factorisation ansatz seems to be correct.


