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Passive scalar field 6(x, t)

Examples:

» concentration of tracer (by definition)
or pollutant (density similar to fluid)

> temperature in absence of buoyancy

Basic advection-diffusion forced equation:

D:0(x, t) +v(x, t) - BO(x, t) = KoD?0(x, t) + f(x, t)
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two-point equal-time
CORRELATION FUNCTION:

C(x,x") = (8(x, t)0(x', t)) — C(r)
{ r=x-—x relative separation
z=(x+x")/2 centre of mass
Inertial-convective range: n < r < Lf (r < L)
Cry=a—-prrt = (G=2-¢
Unforced range: r > L¢ (r > L¢)

C(ry=~r*9% = (=2-d-¢
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» velocity always homogeneous and isotropic

» inhomogeneous forcing

C(r, z) function of 6 variables

!

quest for dependence on r

!

decomposition of C on bases invariant under:

1. translations

2. rotations
l
parametrical analysis
l

reconstruction problem
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INHOMOGENEOUS SOLUTION

Inertial-convective range r < Ly:

~

C(r; fq) =

A(lq) — B(Lq)Z(r)

(r<tg) |
a(lq) — b(£q)r>=¢  (pseudo-homogeneous limit)
b (tg—o0)
a— Br>=¢ (homogeneous limit)

presence of Bessel functions 7
= absence of a unique scaling exponent
= superposition of different power laws
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RECONSTRUCTION PROBLEM

Antitransformed q — z:

dependence on forcing

> excitation on discrete modes:
OK for (at least) r < min¢, +— OK also for small £,

= HOMOGENEITY WELL RESTORED AT SMALL SCALES

» forcing with continuum spectrum
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(F(x, t)F(X, t')) = 8(t — t)3(x)3(X')Fo

——
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C(rilg) ~ GLg)K(r) = yr2=d=s
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RANDOM POINT SOURCE

Random emission or absorption in the origin:

{ (f(x, 1)) =0
(F(x, t)F(X, t')) = 8(t — t)3(x)3(X')Fo

———
3(r)o(z) — d(r) — ©
Unforced equation (r > Lf — 0):

(Lqg>>r)

C(ritq) ~ G(Eq)K(r) == yr2~d=¢

D Cr2) p4+E/2 (small s)
7 z=(E=9/C=9 14+ 0(r?=¢)] (large s)

= (&) (%)

= PSEUDO-RECOVERY OF HOMOGENEITY
AT SMALL SCALES
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» Finite integral scale £, = coupling inhomogeneity-anisotropy:

PN ) P\ 2
1+o(>] ¢ = Ghom 1+o<>
L, 0
N v

N ~ ~ r\¢/r\%¢
=0~ GC~G (ﬁv) <£q) subdominant

ao'_> ao

» Finite diffusive scale n (£ =0)

» Batchelor range £ = 2:

C(r.q) =g(q)r " = C(r,2) =7
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CONSTANT POINT SOURCE

Constant emission from the origin (d = 3): f(x,t) = f,(x)
Mean value:

(O)(x, 1) < x7

C(r,q) found analytically for ¢ = 2 (hypergeometric)
= numerical antitransformed for C(r, z)
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» Comparison random <« constant emission
» Inhomogeneous or anisotropic velocity

» “Real” (NS solution) instead of stochastic (K model) flow
with numerical approach

» Large-Eddy Simulation



