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Motivation: collapses and turbulent spectra

It is well known that singularities give the power type

behavior of the Fourier amplitudes that provides appearance

of power tails for turbulent spectra.

(1958) Phillips spectrum for gravity waves on the fluid

surface. Surface singularities are wedges:

X 0

⇐ z = η(x, t) ⇒
ηxx ∼ δ(x− x0)

or ηk ∼ k−2.

Hence, according to Phillips,

Ek = 2πk · g〈|ηk|2〉 ∼ k−3 or

Eω ∼ ω−5 where ω =
√
gk is as-

sumed.
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Motivation: collapses and turbulent spectra

(1967) WT Zakharov-Filonenko spectrum:

Eω ∼ P 2/3ω−4, P the energy flux.

(1967) Kraichnan spectrum for 2D hydrodynamic

turbulence at Re� 1: Ek ∼ η2/3k−3 where η is the

enstrophy flux.

(1971) Saffman spectrum: Ek ∼ k−4. It appears due to

vorticity discontinuities which are observed in many

numerics.

(1973) Kadomtsev-Petviashvili spectrum. According to

KP acoustic turbulence is a random set of shocks:

x0

ρx ∼ δ(x− x0),

ρk ∼ k−1 ⇒ Eω ∼ ω−2.

(1951, unpublished) Burgers found this spectrum in 1D.
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Turbulence of water waves

Phillips implicitly assumed the singularities are point like

although they are distributed on the whole lines.

0D: The temporal autocorrelation function (at some spatial

point) K(τ) = 〈η(t+ τ)η(t)〉 gives the turbulent spectrum as

its Fourier transform: Eω = g
∫

∞

−∞
K(τ)eiωτdτ.

Assume that

∂2η

∂t2
=

∑

i

Γiδ(t− ti) + regular terms,

with random both Γi and ti .

For the singular part the Fourer transform is

ηω = − 1

2πω2

∑

i

Γie
−iωti.
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Turbulence of water waves

Hence after averaging we have

Eω =
g

2πT
〈|ηω|2〉 =

gν

2πω4
Γ2

where ν = N/T is the cusp appearance frequency, N the

number of discontinuities during the averaging time T .

This spectrum has the same power dependence as

Zakharov-Filonenko WT spectrum Eω ∼ P 2/3ω−4. Notice that

in WT ω- and k spectra are connected with each other. This

follows from

Ekω = ε(k) δ(ω − ωk),

so that

Eω = 2πk
dk

dω
ε(k(ω)).
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Turbulence of water waves

In the strong nonlinear regime it is not so. Consider

singularity of the wedge type parallel to y -axis with length

l = x1 − x2 centered at (x0, y0) :

∂2η

∂y2
= Γ(x)δ(y − y0) + regular terms

Here Γ(x) = 0 outside the interval [x1, x2] including endpoints

Γ(x1,2) = 0. Hence

ηk = − 1

k2
y

e−ikyy0

∫ x2

x1

Γ(x)e−ikxxdx,

with k = (kx, ky).
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Turbulence of water waves

Summation with respect to all crests gives

ηk = −
∑

α

e−i(knα)yα

(knα)2

∫ x2α

x1α

Γα(x)e−i(kτα)xdx.

Here normal and tangent vectors nα and τα define

orientation of the crest α.

Spectrum is determined after averaging |ηk|2 against all

random variables.

Average with respect (xα, yα) distributed uniformly gives

|ηk|2 = N〈
∣

∣

∣

∣

1

(kn)4

∫ x2

x1

Γ(x)e−i(kτ)xdx

∣

∣

∣

∣

2

〉.

Here N is the mean number of discontinuities inside area S.
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Turbulence of water waves

We are interested in short wave asymptotics when kL� 1

with L being the characteristic length of breaks. Then for all

angles, except θk ≤ θ0 = (kL)−1, the spectrum ε̃(k) can be

estimated as

ε̃2(k) ≈ gn

2π2

〈(Γ′)2〉
(kn)4(kτ)4

,

where Γ
′ ≡ Γ′(x1.2). For narrow cone of angles ε̃(k)

ε̃1(k) ≈ gn

4π2k4
〈(Γ̄l)2〉, θk ≤ (kL)−1.

where n is the density of breaks,

Γ̄l =

∫ x2

x1

Γ(x)dx, l = x1 − x2, L = 〈l〉.
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Turbulence of water waves

Hence the spectrum is obtained after average with respect to

angles: E(k) = kε̃(k).

The isotropic case:

E(k) =
gn

π2k4L

[

〈(Γ̄l)2〉 +
2

3
〈(Γ′)2〉(L3 + a3)

]

that by one power differs from the Phillips spectrum. Here a

is the mean bending size of discontinuities.

This spectrum is in correspondence with the spectrum

Eω ∼ ω−4 because in the isotropic case the Fourier transform

of the correlation function K(r) = 〈η(r + x, t)η(x, t)〉 will have

the same power, i.e. ∼ k−4.

Note that if ω =
√
gk then Eω ∼ ω−7 instead of ω−4!
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Turbulence of water waves

Strong anisotropy:

If the angular width ∆θ of the distribution is narrow enough,

∆θ < θ0 = 1/(kL), then in this cone of angles the spectrum

will fall ∼ k−3, like for the Phillips spectrum.

With k > k∗ = (L∆θ)−1 the spectrum gets another power: k−4

and, respectively, with increasing k the angular width of the

spectrum becomes more narrow decreasing like (kL)−1 that

in the k-space results in JETS.
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2D hydrodynamic turbulence

The situation with 2D turbulence is analogous to the water

waves case, if, following Saffman, one assumes, that vorticity

Ω undergoes jumps with widths δ � L, the characteristic

scale of turbulence.

For 2D turbulence sharp vorticity gradients were observed in

many numerical experiments (Lilly, 1971; McWilliams, 1984;

Kida, 1985; Brachet, Meneguzzi, & Sulem, 1986; Okhitani,

1991).

Such tendency can be understood if within the Euler equation

one introduces the divergence-free vector B (di-vorticity),

Bx =
∂Ω

∂y
, By = −∂Ω

∂x
.

where B obeys the equation
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2D hydrodynamic turbulence

∂B

∂t
= rot [v × B].

This vector field is frozen-in, changes due to the velocity

component vn, normal to B. By introducing new trajectories,

dr

dt
= vn(r, t); r|t=0 = a,

B is expressed through the mapping r = r(a, t) and its

Jacobian J (analog of VLR):

B(r, t) =
(B0(a) · ∇a)r(a, t)

J

J is not fixed, i.e., the mapping is compressible, that is a

reason of appearance of sharp gradients in 2D Euler.
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2D hydrodynamic turbulence

The spectrum in this case is found by the same scheme.

We will assume that L−1 � k � δ−1.

By considering one vorticity jump,

∂Ω

∂y
= G(x) δ(y − y0) + regular terms

with G(x) vanishing outside the interval [x1x2] and at x = x1,2,

we find first Ωk for one jump, then after summation we get the

Fourier amplitude for the whole ensemble of discontinuities:

Ωk = −i
∑

α

e−i(kn)yα

(knα)

∫ x2α

x1α

Gα(x)e−i(kτ α)xdx.
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2D hydrodynamic turbulence

The spectrum ε(k) is given as follows

ε1(k) =
n

8π2k4
〈(Ḡl)2〉, θk ≤ θ0;

ε2(k) =
n

4π2k2

〈(G′)2〉
(kn)2(kτ)4

, θk > θ0,

where n is the density of discontinuities.

Hence, after averaging over angles we have

in the isotropic case - the Saffman spectrum

E(k) =
n

2π2k4L

[

〈(Ḡl)2〉 +
2L4

3
〈(G′)2〉

]

,
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2D hydrodynamic turbulence

in the strong anisotropic case - the combination of spectra of

the Saffman and Kraichnan types:

max
θ
E(k) ∼ k−3 if ∆θ < θ0 = (kL)−1 (Kraichnan);

max
θ
E(k) ∼ k−4 if ∆θ > θ0 = (kL)−1 (Saffman)

The latter assumes also that the angle distribution becomes

more narrow with increasing k with θ0 = (kL)−1, i.e., the

formation of jets at large k.
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Numerical experiment

To support the above arguments and reveal the direct

connection between the formation of the sharp vorticity

gradients and the tail of the energy spectrum we have

performed a numerical study of the evolution of decaying 2D

turbulence.

Numerically we solved the Euler equation with hyperviscosity:

∂ω

∂t
+ {ω, ψ} = µ2n∇2nω,

where ψ is the streamfunction and n = 3 and µ6 = 10−20. In

our case the energy decreased by less than 0.002% . We

used a double periodic domain by employing a high

resolution fully de-aliased spectral scheme. The domain size

was taken to be unity and the resolution was 2048 × 2048.
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Numerical experiment

The time scale corresponded to inverse maximal value of

vorticity, ω−1
0 .

Fig.1. Initial distribution
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Numerical experiment

Fig.2. Vorticity field at time 95 corresponding to 10 vortex

turnover times. Maximum ω0 = 1 and minimum is -1.
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Numerical experiment

Fig.3. Compensated energy spectrum at different times

k3E(k) corresponding to the vorticity field in Fig. 2.
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Numerical experiment

Fig.4. The di-vorticity field B at T = 95. The modulus of

di-vorticity, the maximum (red) value is 673.
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Numerical experiment

Fig.5. High pass filtered vorticity field from Fig. 2, k > 10.

Turbulent spectra generated by singularities – p. 22



Numerical experiment

Fig.6. 2D energy spectrum ε(kx, ky), logarithmic scale.
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Acoustic turbulence

For acoustic turbulence, following Kadomtsev and

Petviashvili, singularities are shocks. Therefore for 1D case

we have

E1(k) =
n1c

2
s

2πρ0k2
(∆ρ)2.

where n1 is the density of shocks (per unit length). This

result was obtained first by Burgers (1951).

In 3D isotropic case the spectrum can be easily found from

1D spectrum.
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Acoustic turbulence

The pair density correlation function

φ(y1) = 〈ρ(x1 + y1, x2, x3)ρ(x1, x2, x3)〉

has the Fourier spectrum

φk =
n1

2πk2
(∆ρ)2.

Hence the energy spectrum is given by

E3(k) =
2n1c

2
s

πρ0k2
∆ρ2.

This is the KP spectrum.
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Conclusion

For water waves the frequency spectrum due to surface

cusps has the same dependence (∼ ω−4) as the WT

Zakharov-Filonenko spectrum and can be considered as

its continuation.

For the 2D water wave spectrum the situation is very

different:

i) in the isotropic case E(k) ∼ k−4, strongly differs from

the Phillips spectrum,

ii) the Phillips spectrum can be obtained for very

anisotropic distribution.
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Conclusion

For 2D hydrodynamic turbulence we have reproduced in

the isotropic case the Saffman spectrum. The

Kraichnan-type spectrum has been found for very

anisotropic case as intermediate asymptotics at

k < k∗ = (L∆θ) ; for k > k∗ we have found jets with

decreasing angular width.

The performed numerics for 2D decay turbulence have

demonstrated that the spectrum tails appear due to

sharp vorticity gradients.

For acoustic turbulence our approach leads to the

results of K & P.
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