
Introduction Adaptive wavelet numerical simulation Results Conclusions

Scaling of space–time modes

with Reynolds number
in two-dimensional turbulence

Nicholas Kevlahan

Department of Mathematics & Statistics

18 July 2006

Nicholas Kevlahan McMaster University

Scaling of space–time modes with Reynolds number



Introduction Adaptive wavelet numerical simulation Results Conclusions

Collaborators

I Jahrul Alam
McMaster University (PhD student)

I Oleg Vasilyev
University of Colorado at Boulder

Nicholas Kevlahan McMaster University

Scaling of space–time modes with Reynolds number



Introduction Adaptive wavelet numerical simulation Results Conclusions

Outline

Introduction

Adaptive wavelet numerical simulation

Results

Conclusions

Nicholas Kevlahan McMaster University

Scaling of space–time modes with Reynolds number



Introduction Adaptive wavelet numerical simulation Results Conclusions

Intermittency and turbulence

I The active regions of turbulence are distributed
inhomogeneously in space and time.

I The active proportion of the flow is believed to decrease with
Reynolds number.

I This intermittency is a fundamental property of turbulence.
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Qualitative picture of intermittency

DNS of homogeneous isotropic turbulence at Reλ = 1 217 (Yokokawa et

al. 2002). Active regions are intermittent (and fractal?).
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Mathematical estimates of number of turbulence modes

I Foias & Prodi (1967) conjectured that solutions of the
Navier–Stokes equations are determined uniquely by a finite
number of spatial modes.

I Friz & Robinson (2001) proved this conjecture for stationary
periodic 2D turbulence.

I Jones & Titi (1993) found an upper bound on the number of
spatial Fourier required to represent 2D periodic turbulence of
O(Re2).

I Galdi (2006) extended this result to 3D flow past bluff bodies.
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Computational complexity of turbulence simulations

I Assuming homogeneity, the spatial computational complexity
of turbulence scales like Re9/4 (or Re1 in 2D).

I Similarly, space–time computational complexity scales like Re3

(or Re3/2 in 2D).

I Yakhot & Sreenivasan recently claimed it is even worse: Re4.

I However, these estimates ignore intermittency.
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Questions

I What is the actual scaling of spatial degrees of freedom with
Reynolds number, Reβ?

I What is the actual scaling of space-time degrees of freedom
with Reynolds number, Reα?

I Is turbulence more intermittent in space or time?

I What is the fractal dimension of the active regions of the
flow? (Assuming the β−model.)
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Numerical estimation of space-time modes

I Use a simultaneous space–time adaptive wavelet solver.

I Take the number of active space–time wavelet modes as an
upper bound on the number of space–time degrees of freedom.

I Consider periodic, unforced, 2D turbulence.

I Perform a sequence of simulations for 1 260 ≤ Re ≤ 40 400.
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Why use a wavelet basis for adaptivity?

I High rate of data compression (e.g. jpeg2 2000 image
compression).

I Fast O(N ) transform.

I Fast signal de-noising (optimal for additive Gaussian noise).

I Easy to control wavelet properties (e.g. smoothness, boundary
conditions).
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Wavelet multiresolution analysis of L
2(R)

A sequence of approximation subspaces
M = {V j ⊂ L

2(R) | j ∈ J } s.t.

I V j ⊂ V j+1 (subspaces are nested).

I ∪j∈J V j is dense in L
2(R).

I Each V j has a Riesz basis of scaling functions {φj
k | k ∈ Kj}.

Nicholas Kevlahan McMaster University

Scaling of space–time modes with Reynolds number



Introduction Adaptive wavelet numerical simulation Results Conclusions

Wavelet multiresolution analysis of L
2(R)

A sequence of approximation subspaces
M = {V j ⊂ L

2(R) | j ∈ J } s.t.

I V j ⊂ V j+1 (subspaces are nested).

I ∪j∈J V j is dense in L
2(R).

I Each V j has a Riesz basis of scaling functions {φj
k | k ∈ Kj}.

Nicholas Kevlahan McMaster University

Scaling of space–time modes with Reynolds number



Introduction Adaptive wavelet numerical simulation Results Conclusions

Wavelet multiresolution analysis of L
2(R)

A sequence of approximation subspaces
M = {V j ⊂ L

2(R) | j ∈ J } s.t.

I V j ⊂ V j+1 (subspaces are nested).

I ∪j∈J V j is dense in L
2(R).

I Each V j has a Riesz basis of scaling functions {φj
k | k ∈ Kj}.

Nicholas Kevlahan McMaster University

Scaling of space–time modes with Reynolds number



Introduction Adaptive wavelet numerical simulation Results Conclusions

Wavelet multiresolution analysis of L
2(R)

A sequence of approximation subspaces
M = {V j ⊂ L

2(R) | j ∈ J } s.t.

I V j ⊂ V j+1 (subspaces are nested).

I ∪j∈J V j is dense in L
2(R).

I Each V j has a Riesz basis of scaling functions {φj
k | k ∈ Kj}.

Nicholas Kevlahan McMaster University

Scaling of space–time modes with Reynolds number



Introduction Adaptive wavelet numerical simulation Results Conclusions

Wavelet multiresolution analysis of L
2(R)

A sequence of approximation subspaces
M = {V j ⊂ L

2(R) | j ∈ J } s.t.

I V j ⊂ V j+1 (subspaces are nested).

I ∪j∈J V j is dense in L
2(R).

I Each V j has a Riesz basis of scaling functions {φj
k | k ∈ Kj}.

Wavelets ψj
k span the complement space W j , where

V j+1 = V j ⊕ W j , i.e. wavelet coefficients give the detail.
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Nested collocation wavelet grids

Scaling functions are constructed from interpolating polynomials of
degree 2N − 1 on nested grids:

Gj =
{

x
j
k ∈ Ω : x

j
k = x

j+1
2k , k ∈ Kj

}

Collocation: each scaling
function and wavelet is
associated to a unique grid point.
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Wavelet compression
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Wavelet compression
||u(x) − u≥(x)||2 = O(ε)

N = O(ε−1/2N)

||u(x) − u≥(x)||2 = O(N−2N)
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Space–time adaptive wavelet turbulence calculation

Advantages
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Space–time adaptive wavelet turbulence calculation

Advantages

I Global error control in time.

I Local time step.

I Potentially optimal complexity for highly intermittent problems

I Number of grid points is an approximation to the number of
space–time degrees of freedom in the flow.
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Numerical method: pseudo BVP in space–time domain

I Add dynamic pseudo boundary condition for long time
boundary.

I Use adaptive wavelet multilevel solver with V-cycles for BVP.

I FAS approximation to cope with nonlinear equations.

I Iterate until residual satisfies L2 norm tolerance.

I Split space–time domain in time direction into manageable
slices.
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1D+t example: Burgers equation

∂u

∂t
+ (U + u)

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (−1, 1), t > 0

I Steepening shock: U = 0, u(x , 0) = − sin(πx), u(±1, t) = 0.

I Moving shock: U = 1, u(x , 0) = − tanh((x + 1/2)/(2ν)),
u(±∞, t) = ∓1.

I Parameters: ν = 10−2, ε = 10−5.
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∂u

∂t
+ (U + u)

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (−1, 1), t > 0

I Steepening shock: U = 0, u(x , 0) = − sin(πx), u(±1, t) = 0.

I Moving shock: U = 1, u(x , 0) = − tanh((x + 1/2)/(2ν)),
u(±∞, t) = ∓1.

I Parameters: ν = 10−2, ε = 10−5.
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Burgers equation: steepening shock
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Burgers equation: moving shock
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Burgers equation: time integration error
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2D decaying turbulence simulations

Run Re Resolution ∆x λ Reλ

I 1 260 192 × 192 3.3 × 10−2 1.1 × 10−1 138
II 2 530 192 × 192 3.3 × 10−2 8.3 × 10−2 195
III 5 050 192 × 192 3.3 × 10−2 5.9 × 10−2 275
IV 10 100 256 × 256 2.5 × 10−2 4.1 × 10−2 389
V 20 200 384 × 384 1.6 × 10−2 2.9 × 10−2 551
VI 40 400 512 × 512 1.2 × 10−2 2.0 × 10−2 779

Table: Parameters for space–time turbulence simulations.
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2D decaying turbulence simulations

Run Re Resolution ∆x λ Reλ

I 1 260 192 × 192 3.3 × 10−2 1.1 × 10−1 138
II 2 530 192 × 192 3.3 × 10−2 8.3 × 10−2 195
III 5 050 192 × 192 3.3 × 10−2 5.9 × 10−2 275
IV 10 100 256 × 256 2.5 × 10−2 4.1 × 10−2 389
V 20 200 384 × 384 1.6 × 10−2 2.9 × 10−2 551
VI 40 400 512 × 512 1.2 × 10−2 2.0 × 10−2 779

Table: Parameters for space–time turbulence simulations.

Comparison simulations were also done using a standard pseudo-spectral code, and

time marching adaptive wavelet simulations were done to estimate the number of

spatial degrees of freedom.
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Re = 40 400 simulation, t = [0, 400]
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Re = 40 400 simulation, t = [21, 128]
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Vorticity field at Re = 40 400

10
0

10
1

10
2

10
−10

10
−5

10
0

k

E
(k

)

 

 

k
−3

k
−4

7 895 wavelet modes 263 169 Fourier modes Energy spectrum

Nicholas Kevlahan McMaster University

Scaling of space–time modes with Reynolds number



Introduction Adaptive wavelet numerical simulation Results Conclusions

Vorticity at t = 126

Re = 1260 Re = 2530 Re = 5050

Re = 10100 Re = 20200 Re = 40400
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Adaptive wavelet grids at Re = 40 400

(a)

t

(b)

t

(c)

t ∈ [0, 2.1] t ∈ [123.8, 126.0] Spatial grid only
at t = 126.0
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Adaptive wavelet grids at Re = 40 400

(a)

t

(b)

t

(c)

t ∈ [0, 2.1] t ∈ [123.8, 126.0] Spatial grid only
at t = 126.0

Note the strong time intermittency of the solution: the smallest
time step is strongly localized in space.

Nicholas Kevlahan McMaster University

Scaling of space–time modes with Reynolds number



Introduction Adaptive wavelet numerical simulation Results Conclusions

Scaling of modes with Reynolds number
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Scaling of modes with Reynolds number
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Note that intermittency reduces the number of modes significantly
compared with the usual computational estimates.
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β-model fractal dimension

The β-model for two-dimensional turbulence implies that the

spatial modes should scale like N ∼ Re

3DF
DF +4 .
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β-model fractal dimension

The β-model for two-dimensional turbulence implies that the

spatial modes should scale like N ∼ Re

3DF
DF +4 .

I Spatial fractal dimension is DF ≈ 1.2

I A simple extension gives a temporal fractal dimension
DF ≈ 0.3

I Flow appears to be much more intermittent in time

Assumes that the active proportion of the flow decreases like
lengthscale to the power D − DF .
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Conclusions

I Spatial modes scale like Re
0.7

I Space–time modes scale like Re
0.9

I Spatial fractal dimension of active regions is 1.2

I Temporal fractal dimension is 0.3

I 2D turbulence is more intermittent than previously thought
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Conclusions

I Spatial modes scale like Re
0.7

(compared with homogeneous estimate Re1)

I Space–time modes scale like Re
0.9

(compared with homogeneous estimate Re1.5)

I Spatial fractal dimension of active regions is 1.2

I Temporal fractal dimension is 0.3

I 2D turbulence is more intermittent than previously thought

This is the first quantitative estimate of the Reynolds
number dependence of the space–time intermittency of
turbulence
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