Scaling of space-time modes with Reynolds number in two-dimensional turbulence

Nicholas Kevlahan

Department of Mathematics & Statistics

18 July 2006

Nicholas Kevlahan

McMaster University

Collaborators

Jahrul Alam

McMaster University (PhD student)

Oleg Vasilyev

University of Colorado at Boulder

Outline

Introduction

Adaptive wavelet numerical simulation

Results

Conclusions

Nicholas Kevlahan Scaling of space–time modes with Reynolds number

- The active regions of turbulence are distributed inhomogeneously in space and time.
- The active proportion of the flow is believed to decrease with Reynolds number.
- ► This intermittency is a fundamental property of turbulence.

- The active regions of turbulence are distributed inhomogeneously in space and time.
- The active proportion of the flow is believed to decrease with Reynolds number.
- ► This intermittency is a fundamental property of turbulence.

- The active regions of turbulence are distributed inhomogeneously in space and time.
- The active proportion of the flow is believed to decrease with Reynolds number.
- ► This intermittency is a fundamental property of turbulence.

- The active regions of turbulence are distributed inhomogeneously in space and time.
- The active proportion of the flow is believed to decrease with Reynolds number.
- ► This intermittency is a fundamental property of turbulence.

Result

Qualitative picture of intermittency

DNS of homogeneous isotropic turbulence at $\operatorname{Re}_{\lambda} = 1217$ (Yokokawa et al. 2002). Active regions are intermittent (and fractal?).

Nicholas Kevlahan

McMaster University

Result

Qualitative picture of intermittency

DNS of homogeneous isotropic turbulence at $\operatorname{Re}_{\lambda} = 1217$ (Yokokawa et al. 2002). Active regions are intermittent (and fractal?).

Nicholas Kevlahan

McMaster University

Results

Qualitative picture of intermittency

DNS of homogeneous isotropic turbulence at $\operatorname{Re}_{\lambda} = 1217$ (Yokokawa et al. 2002). Active regions are intermittent (and fractal?).

Nicholas Kevlahan

McMaster University

Result

Qualitative picture of intermittency

DNS of homogeneous isotropic turbulence at $\operatorname{Re}_{\lambda} = 1217$ (Yokokawa et al. 2002). Active regions are intermittent (and fractal?).

Nicholas Kevlahan

McMaster University

- Foias & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of O(Re²).
- ► Galdi (2006) extended this result to 3D flow past bluff bodies.

- Foias & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of O(Re²).
- ▶ Galdi (2006) extended this result to 3D flow past bluff bodies.

- Foias & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of O(Re²).
- ▶ Galdi (2006) extended this result to 3D flow past bluff bodies.

- Foias & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of O(Re²).
- ▶ Galdi (2006) extended this result to 3D flow past bluff bodies.

- Foias & Prodi (1967) conjectured that solutions of the Navier–Stokes equations are determined uniquely by a finite number of spatial modes.
- Friz & Robinson (2001) proved this conjecture for stationary periodic 2D turbulence.
- Jones & Titi (1993) found an upper bound on the number of spatial Fourier required to represent 2D periodic turbulence of O(Re²).
- ► Galdi (2006) extended this result to 3D flow past bluff bodies.

- Assuming homogeneity, the spatial computational complexity of turbulence scales like Re^{9/4} (or Re¹ in 2D).
- Similarly, space-time computational complexity scales like Re³ (or Re^{3/2} in 2D).
- ▶ Yakhot & Sreenivasan recently claimed it is even worse: Re⁴.
- ► However, these estimates ignore intermittency.

- Assuming homogeneity, the spatial computational complexity of turbulence scales like Re^{9/4} (or Re¹ in 2D).
- Similarly, space-time computational complexity scales like Re³ (or Re^{3/2} in 2D).
- Yakhot & Sreenivasan recently claimed it is even worse: Re⁴.
- ► However, these estimates ignore intermittency.

- Assuming homogeneity, the spatial computational complexity of turbulence scales like Re^{9/4} (or Re¹ in 2D).
- Similarly, space-time computational complexity scales like Re³ (or Re^{3/2} in 2D).
- ▶ Yakhot & Sreenivasan recently claimed it is even worse: Re⁴.
- ► However, these estimates ignore intermittency.

- Assuming homogeneity, the spatial computational complexity of turbulence scales like Re^{9/4} (or Re¹ in 2D).
- Similarly, space-time computational complexity scales like Re³ (or Re^{3/2} in 2D).
- ▶ Yakhot & Sreenivasan recently claimed it is even worse: *Re*⁴.

► However, these estimates ignore intermittency.

- Assuming homogeneity, the spatial computational complexity of turbulence scales like Re^{9/4} (or Re¹ in 2D).
- Similarly, space-time computational complexity scales like Re³ (or Re^{3/2} in 2D).
- Yakhot & Sreenivasan recently claimed it is even worse: Re⁴.
- ► However, these estimates ignore intermittency.

- What is the actual scaling of spatial degrees of freedom with Reynolds number, Re^β?
- ► What is the actual scaling of space-time degrees of freedom with Reynolds number, Re^α?
- Is turbulence more intermittent in space or time?
- What is the fractal dimension of the active regions of the flow? (Assuming the β-model.)

- What is the actual scaling of spatial degrees of freedom with Reynolds number, Re^β?
- ▶ What is the actual scaling of space-time degrees of freedom with Reynolds number, Re^α?
- Is turbulence more intermittent in space or time?
- What is the fractal dimension of the active regions of the flow? (Assuming the β−model.)

- What is the actual scaling of spatial degrees of freedom with Reynolds number, Re^β?
- ► What is the actual scaling of space-time degrees of freedom with Reynolds number, Re^α?
- Is turbulence more intermittent in space or time?
- What is the fractal dimension of the active regions of the flow? (Assuming the β-model.)

- What is the actual scaling of spatial degrees of freedom with Reynolds number, Re^β?
- ► What is the actual scaling of space-time degrees of freedom with Reynolds number, Re^α?
- Is turbulence more intermittent in space or time?
- What is the fractal dimension of the active regions of the flow? (Assuming the β−model.)

- What is the actual scaling of spatial degrees of freedom with Reynolds number, Re^β?
- ► What is the actual scaling of space-time degrees of freedom with Reynolds number, Re^α?
- Is turbulence more intermittent in space or time?
- What is the fractal dimension of the active regions of the flow? (Assuming the β-model.)

- ► Use a simultaneous space-time adaptive wavelet solver.
- Take the number of active space-time wavelet modes as an upper bound on the number of space-time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \le Re \le 40400$.

► Use a simultaneous space-time adaptive wavelet solver.

- Take the number of active space-time wavelet modes as an upper bound on the number of space-time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \le Re \le 40400$.

- ► Use a simultaneous space-time adaptive wavelet solver.
- Take the number of active space-time wavelet modes as an upper bound on the number of space-time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \le Re \le 40400$.

- ► Use a simultaneous space-time adaptive wavelet solver.
- Take the number of active space-time wavelet modes as an upper bound on the number of space-time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \le Re \le 40400$.

- ► Use a simultaneous space-time adaptive wavelet solver.
- Take the number of active space-time wavelet modes as an upper bound on the number of space-time degrees of freedom.
- Consider periodic, unforced, 2D turbulence.
- Perform a sequence of simulations for $1260 \le Re \le 40400$.

- High rate of data compression (e.g. jpeg2 2000 image compression).
- ▶ Fast O(N) transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).

- High rate of data compression (e.g. jpeg2 2000 image compression).
- **Fast** $O(\mathcal{N})$ transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).

- High rate of data compression (e.g. jpeg2 2000 image compression).
- ▶ Fast O(N) transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).

- High rate of data compression (e.g. jpeg2 2000 image compression).
- ▶ Fast *O*(*N*) transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).

- High rate of data compression (e.g. jpeg2 2000 image compression).
- ▶ Fast *O*(*N*) transform.
- ► Fast signal de-noising (optimal for additive Gaussian noise).
- Easy to control wavelet properties (e.g. smoothness, boundary conditions).
A sequence of approximation subspaces $\mathbf{M} = \{ V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J} \} \text{ s.t.}$

▶ $V^j \subset V^{j+1}$ (subspaces are nested).

▶ $\cup_{j \in \mathcal{J}} V^j$ is dense in $L^2(\mathbb{R})$.

• Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

A sequence of approximation subspaces $\mathbf{M} = \{ V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J} \} \text{ s.t.}$

• $V^j \subset V^{j+1}$ (subspaces are nested).

▶ $\cup_{j \in \mathcal{J}} V^j$ is dense in $L^2(\mathbb{R})$.

• Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

A sequence of approximation subspaces $\mathbf{M} = \{V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J}\}$ s.t.

• $V^j \subset V^{j+1}$ (subspaces are nested).

▶
$$\cup_{j \in \mathcal{J}} V^j$$
 is dense in $L^2(\mathbb{R})$.

• Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

A sequence of approximation subspaces $\mathbf{M} = \{V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J}\}$ s.t.

• $V^j \subset V^{j+1}$ (subspaces are nested).

►
$$\cup_{j \in \mathcal{J}} V^j$$
 is dense in $L^2(\mathbb{R})$.

► Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

A sequence of approximation subspaces $\mathbf{M} = \{ V^j \subset \mathbf{L}^2(\mathbb{R}) \mid j \in \mathcal{J} \} \text{ s.t.}$

- $V^j \subset V^{j+1}$ (subspaces are nested).
- ► $\cup_{j \in \mathcal{J}} V^j$ is dense in $L^2(\mathbb{R})$.

► Each V^j has a Riesz basis of scaling functions $\{\phi_k^j \mid k \in \mathcal{K}^j\}$.

Wavelets ψ_k^j span the complement space W^j , where $V^{j+1} = V^j \oplus W^j$, i.e. wavelet coefficients give the detail.

Nested collocation wavelet grids

Scaling functions are constructed from interpolating polynomials of degree 2N - 1 on nested grids:

$$\mathcal{G}^{j} = \left\{ x_{k}^{j} \in \Omega : \ x_{k}^{j} = x_{2k}^{j+1}, \ k \in \mathcal{K}^{j} \right\}$$

Collocation: each scaling function and wavelet is associated to a unique grid point.

Nested collocation wavelet grids

Scaling functions are constructed from interpolating polynomials of degree 2N - 1 on nested grids:

$$\mathcal{G}^{j} = \left\{ x_{k}^{j} \in \Omega : \ x_{k}^{j} = x_{2k}^{j+1}, \ k \in \mathcal{K}^{j}
ight\}$$

Collocation: each scaling function and wavelet is associated to a unique grid point.

$$u(x) = \sum_{k \in \mathcal{K}^J} u(x_k^J) \phi_k^J(x) = \sum_{k \in \mathcal{K}^0} u(x_k^0) \phi_k^0(x) + \sum_{j=0}^{J-1} \sum_{k \in \mathcal{L}^j} d_k^j \psi_k^j(x)$$

Nicholas Kevlahan

Result

Wavelet compression

$$u(x) = \sum_{k \in \mathcal{K}^0} u(x_k^0) \phi_k^0(x) + \sum_{j=0}^{+\infty} \sum_{k \in \mathcal{L}^j} d_k^j \psi_k^j(x)$$

Nicholas Kevlahan

McMaster University

Result

Wavelet compression

$$u_{\geq}(x) = \sum_{k \in \mathcal{K}^0} u(x_k^0) \phi_k^0(x) + \sum_{\substack{j=0\\ |\mathbf{d}^j_k| \geq \epsilon}}^{J-1} \sum_{\substack{k \in \mathcal{L}^j\\ |\mathbf{d}^j_k| \geq \epsilon}} d_k^j \psi_k^j(x)$$

Nicholas Kevlahan

McMaster University

Result

Wavelet compression

$$||u(x) - u_{\geq}(x)||_{2} = O(\epsilon)$$

$$\mathcal{N} = O(\epsilon^{-1/2N})$$

$$||u(x) - u_{\geq}(x)||_{2} = O(\mathcal{N}^{-2N})$$

Nicholas Kevlahan

McMaster University

Advantages

Nicholas Kevlahan Scaling of space-time modes with Reynolds number

Advantages

• Global error control in time.

- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Number of grid points is an approximation to the number of space-time degrees of freedom in the flow.

Advantages

Global error control in time.
 Error grows uncontrollably in classical time marching.

- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Number of grid points is an approximation to the number of space-time degrees of freedom in the flow.

Advantages

- Global error control in time.
 Error grows uncontrollably in classical time marching.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Number of grid points is an approximation to the number of space-time degrees of freedom in the flow.

Advantages

- Global error control in time.
 Error grows uncontrollably in classical time marching.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Number of grid points is an approximation to the number of space-time degrees of freedom in the flow.

Advantages

- Global error control in time.
 Error grows uncontrollably in classical time marching.
- Local time step.
- Potentially optimal complexity for highly intermittent problems
- Number of grid points is an approximation to the number of space-time degrees of freedom in the flow.

- Add dynamic pseudo boundary condition for long time boundary.
- ► Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ► FAS approximation to cope with nonlinear equations.
- ▶ Iterate until residual satisfies *L*₂ norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ► FAS approximation to cope with nonlinear equations.
- ▶ Iterate until residual satisfies *L*₂ norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- ► Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ▶ FAS approximation to cope with nonlinear equations.
- Iterate until residual satisfies L₂ norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- ► Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ► FAS approximation to cope with nonlinear equations.
- Iterate until residual satisfies L₂ norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- ► Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ► FAS approximation to cope with nonlinear equations.
- Iterate until residual satisfies L_2 norm tolerance.
- Split space-time domain in time direction into manageable slices.

- Add dynamic pseudo boundary condition for long time boundary.
- ► Use adaptive wavelet multilevel solver with V-cycles for BVP.
- ► FAS approximation to cope with nonlinear equations.
- Iterate until residual satisfies L_2 norm tolerance.
- Split space-time domain in time direction into manageable slices.

$$\frac{\partial u}{\partial t} + (U+u)\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-1,1), \ t > 0$$

- Steepening shock: U = 0, $u(x, 0) = -\sin(\pi x)$, $u(\pm 1, t) = 0$.
- Moving shock: U = 1, $u(x, 0) = -\tanh((x + 1/2)/(2\nu))$, $u(\pm \infty, t) = \mp 1$.
- Parameters: $\nu = 10^{-2}$, $\epsilon = 10^{-5}$.

Nicholas Kevlahan

$$\frac{\partial u}{\partial t} + (U+u)\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-1,1), \ t > 0$$

- Steepening shock: U = 0, $u(x, 0) = -\sin(\pi x)$, $u(\pm 1, t) = 0$.
- Moving shock: U = 1, $u(x, 0) = -\tanh((x + 1/2)/(2\nu))$, $u(\pm \infty, t) = \mp 1$.
- Parameters: $\nu = 10^{-2}$, $\epsilon = 10^{-5}$.

Nicholas Kevlahan

$$\frac{\partial u}{\partial t} + (U+u)\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-1,1), \ t > 0$$

- Steepening shock: U = 0, $u(x, 0) = -\sin(\pi x)$, $u(\pm 1, t) = 0$.
- Moving shock: U = 1, $u(x, 0) = -\tanh((x + 1/2)/(2\nu))$, $u(\pm \infty, t) = \mp 1$.
- Parameters: $\nu = 10^{-2}$, $\epsilon = 10^{-5}$.

Nicholas Kevlahan

$$\frac{\partial u}{\partial t} + (U+u)\frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2}, \quad x \in (-1,1), \ t > 0$$

- Steepening shock: U = 0, $u(x, 0) = -\sin(\pi x)$, $u(\pm 1, t) = 0$.
- Moving shock: U = 1, $u(x, 0) = -\tanh((x + 1/2)/(2\nu))$, $u(\pm \infty, t) = \mp 1$.
- Parameters: $\nu = 10^{-2}$, $\epsilon = 10^{-5}$.

Nicholas Kevlahan

Burgers equation: steepening shock

Nicholas Kevlahan

McMaster University

Burgers equation: moving shock

Burgers equation: time integration error

2D decaying turbulence simulations

Run	Re	Resolution	Δx	λ	$\operatorname{Re}_{\lambda}$
I	1 260	192 imes 192	$3.3 imes10^{-2}$	$1.1 imes10^{-1}$	138
II	2 5 3 0	192 imes 192	$3.3 imes10^{-2}$	$8.3 imes10^{-2}$	195
	5 050	192 imes 192	$3.3 imes10^{-2}$	$5.9 imes10^{-2}$	275
IV	10 100	256 imes256	$2.5 imes10^{-2}$	$4.1 imes10^{-2}$	389
V	20 200	384 imes 384	$1.6 imes10^{-2}$	$2.9 imes10^{-2}$	551
VI	40 400	512 imes 512	$1.2 imes10^{-2}$	$2.0 imes10^{-2}$	779

Table: Parameters for space-time turbulence simulations.

2D decaying turbulence simulations

Run	Re	Resolution	Δx	λ	$\operatorname{Re}_{\lambda}$
1	1 260	192 imes 192	$3.3 imes10^{-2}$	$1.1 imes10^{-1}$	138
II	2 5 3 0	192 imes 192	$3.3 imes10^{-2}$	$8.3 imes10^{-2}$	195
	5 050	192 imes 192	$3.3 imes10^{-2}$	$5.9 imes10^{-2}$	275
IV	10 100	256 imes256	$2.5 imes10^{-2}$	$4.1 imes10^{-2}$	389
V	20 200	384 imes 384	$1.6 imes10^{-2}$	$2.9 imes10^{-2}$	551
VI	40 400	512 imes 512	$1.2 imes10^{-2}$	$2.0 imes10^{-2}$	779

Table: Parameters for space-time turbulence simulations.

Comparison simulations were also done using a standard pseudo-spectral code, and time marching adaptive wavelet simulations were done to estimate the number of spatial degrees of freedom.

$Re = 40\,400$ simulation, t = [0, 400]

Nicholas Kevlahan Scaling of space-time modes with Reynolds number

$Re = 40\,400$ simulation, t = [21, 128]

Vorticity field at Re = 40400

Vorticity at t = 126

Adaptive wavelet grids at $\mathrm{Re}=40\,400$

Spatial grid only at t = 126.0

Nicholas Kevlahan

McMaster University
Adaptive wavelet grids at $\mathrm{Re}=40\,400$

at t = 126.0

Note the strong time intermittency of the solution: the smallest time step is strongly localized in space.

Scaling of modes with Reynolds number

Scaling of space-time modes with Reynolds number

Scaling of modes with Reynolds number

Note that intermittency reduces the number of modes significantly compared with the usual computational estimates.

The β -model for two-dimensional turbulence implies that the spatial modes should scale like $\mathcal{N} \sim \operatorname{Re}^{\frac{3D_F}{D_F+4}}$.

• Spatial fractal dimension is $D_F \approx 1.2$

- Spatial fractal dimension is $D_F \approx 1.2$
- ► A simple extension gives a temporal fractal dimension $D_F \approx 0.3$

- Spatial fractal dimension is $D_F \approx 1.2$
- A simple extension gives a temporal fractal dimension $D_F \approx 0.3$
- Flow appears to be much more intermittent in time

The β -model for two-dimensional turbulence implies that the spatial modes should scale like $\mathcal{N} \sim \operatorname{Re}^{\frac{3D_F}{D_F+4}}$.

• Spatial fractal dimension is $D_F \approx 1.2$

A simple extension gives a temporal fractal dimension $D_F \approx 0.3$

Flow appears to be much more intermittent in time

Assumes that the active proportion of the flow decreases like lengthscale to the power $D - D_F$.

- \blacktriangleright Spatial modes scale like $\mathrm{Re}^{0.7}$
- ► Space-time modes scale like Re^{0.9}
- Spatial fractal dimension of active regions is 1.2
- ► Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought

- ► Spatial modes scale like Re^{0.7}
- Space-time modes scale like Re^{0.9}
- Spatial fractal dimension of active regions is 1.2
- ► Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought

- Spatial modes scale like Re^{0.7} (compared with homogeneous estimate Re¹)
- Space-time modes scale like Re^{0.9}
- ► Spatial fractal dimension of active regions is 1.2
- ► Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought

- Spatial modes scale like Re^{0.7} (compared with homogeneous estimate Re¹)
- Space-time modes scale like Re^{0.9}
- Spatial fractal dimension of active regions is 1.2
- ► Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought

- Spatial modes scale like Re^{0.7} (compared with homogeneous estimate Re¹)
- Space-time modes scale like Re^{0.9} (compared with homogeneous estimate Re^{1.5})
- Spatial fractal dimension of active regions is 1.2
- ► Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought

- Spatial modes scale like Re^{0.7} (compared with homogeneous estimate Re¹)
- Space-time modes scale like Re^{0.9} (compared with homogeneous estimate Re^{1.5})
- Spatial fractal dimension of active regions is 1.2
- ► Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought

- Spatial modes scale like Re^{0.7} (compared with homogeneous estimate Re¹)
- Space-time modes scale like Re^{0.9} (compared with homogeneous estimate Re^{1.5})
- Spatial fractal dimension of active regions is 1.2
- ► Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought

- Spatial modes scale like Re^{0.7} (compared with homogeneous estimate Re¹)
- Space-time modes scale like Re^{0.9} (compared with homogeneous estimate Re^{1.5})
- Spatial fractal dimension of active regions is 1.2
- ► Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought

- Spatial modes scale like Re^{0.7} (compared with homogeneous estimate Re¹)
- Space-time modes scale like Re^{0.9} (compared with homogeneous estimate Re^{1.5})
- Spatial fractal dimension of active regions is 1.2
- ► Temporal fractal dimension is 0.3
- 2D turbulence is more intermittent than previously thought

This is the first quantitative estimate of the Reynolds number dependence of the space-time intermittency of turbulence