Roughness-induced criticality in turbulence

Nigel Goldenfeld

Department of Physics

University of Illinois at Urbana-Champaign

Nicholas Guttenberg

Gustavo Gioia Pinaki Chakraborty

Reference

- G. Gioia and P. Chakraborty, Turbulent Friction in Rough Pipes and the Energy Spectrum of the Phenomenological Theory. *Phys. Rev. Lett.* 96, 044502 (2006).
- N. Goldenfeld, Roughness-induced criticality in turbulence. *Phys. Rev. Lett.* **96**, 044503 (2006).

Some questions

Is turbulence a critical phenomenon?

- Common features
 - Strong fluctuations
 - Power law correlations
- Critical phenomena now solved
 - Widom discovered "data collapse" (1963)
 - Kadanoff explained data collapse from coarse-graining (1966)
 - Wilson systemised and extended Kadanoff's theory (1971)
- Turbulence still unsolved
 - Can we repeat the pattern of discovery exemplified by critical phenomena?

Experimental signatures of criticality?

FIG. 1. Experimental *MHT* data on five different magnetic materials plotted in scaled form. The five materials are CrBr₃, EuO, Ni, YIG, and Pd₃Fe. None of these materials is an idealized ferromagnet: CrBr₃ has considerable lattice anisotropy, EuO has significant second-neighbor interactions. Ni is an itinerant-electron ferromagnet, YIG is a ferrimagnet, and Pd₃Fe is a ferromagnetic alloy. Nonetheless, the data for all materials collapse onto a single scaling function, which is that calculated for the d=3 Heisenberg model [after Milošević and Stanley (1976)].

- M(H,T) ostensibly a function of two variables
- Plotted in appropriate scaling variables get ONE universal curve
- Scaling variables involve critical exponents

Stanley (1999)

Experimental signatures of criticality?

- Amorphous magnet in a field hysteresis loop
- Crackling noise as a result of avalanches
- Jump distribution depends on size s and aspect ratio k
- Nonequilibrium critical point data collapse

FIG. 2. The Barkhausen jump size distribution for different values of the demagnetizing factor k in the Fe₂₁Co₆₄B₁₅ amorphous alloy under tensile stress The data collapse reported in the inset is done using $\tau = 1.27$ and $1/\sigma_k = 0.79$.

Durin and Zapperi (2000)

Experimental signatures of criticality?

- Criticality is a concept usually associated with equilibrium phase transitions.
 - Phenomenology well-established

Non-equilibrium critical points also studied

- Distinct from concept of "self-organized criticality" because there is a phase diagram with critical points only at certain parameter values
- Rich phenomenology with predictive power
 - Noise spectra, scaling functions, exponent relations
 - Comparison with experiment possible (e.g. disordered magnets)
- Power laws are not enough: frequently hard to get enough decades
 - Must seek universal scaling functions, crossover phenomena

What are the analogues of data collapse for turbulence?

Power law scaling is not enough!

Outline of talk

- 1. Review analogy between turbulence and critical phenomena
- 2. Experimental data on friction factor of turbulent pipe flow
- 3. Argument for data collapse
- 4. Physical model for friction factor
- 5. Predictions and tests for 2D turbulence

Critical phenomena and turbulence

PHYSICAL REVIEW E

VOLUME 50, NUMBER 6

DECEMBER 1994

Analogies between scaling in turbulence, field theory, and critical phenomena

Gregory Eyink and Nigel Goldenfeld Physics Department and Beckman Institute, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (Received 16 June 1994)

We discuss two distinct analogies between turbulence and field theory. In one analog, the field theory has an infrared attractive renormalization-group fixed point and corresponds to critical phenomena. In the other analog, the field theory has an ultraviolet attractive fixed point, as in quantum chromodynamics.

E(k) ~ k^{-5/3} Energy spectrum

Turbulence

space separation rviscosity venergetic length scale L

mean dissipation $\overline{\epsilon}$ dissipation wave number $k_d \equiv \eta_d^{-1}$ velocity correlation function

 $S_2(\mathbf{r}) = \langle [\mathbf{v}(\mathbf{r}'+\mathbf{r})-\mathbf{v}(\mathbf{r}')]^2 \rangle$

intermittency exponent μ

G(k) ~ k⁻²

Spin correlations

Critical phenomena

wave number k temperature variable $\tau - \tau_c$ uv cutoff A (or inverse lattice spacing a^{-1}) stiffness constant K correlation length ξ spin correlation function $C(\mathbf{k}) = \sum_{\mathbf{r} \in az^d} a^d e^{i\mathbf{k}\mathbf{r}} \langle \sigma(\mathbf{r})\sigma(\mathbf{0}) \rangle$

correlation exponent η_c

Critical phenomena and turbulence

	Critical phenomena	Turbulence
Correlations	G(k)~k ⁻²	E(k)~k ^{-5/3}
Large scale thermodynamics	$M(h,t) = t ^{\beta} f_M(ht^{-\beta\delta})$?

 $M \sim M_0[|T - T_c|/T_c]^{\beta}$ for H = 0 as $T \to T_c$ Critical isotherm: $M \sim H^{1/\delta}$ for $T = T_c$

• Widom (1963) pointed out that both these results followed from a *similarity formula*:

 $M(t,h) = |t|^{\beta} f_M(h/t^{\Delta})$

where $t \equiv (T - T_c)/T_c$ for some choice of exponent Δ and scaling function $f_M(x)$

Critical phenomena and turbulence

 $M(t,h) = |t|^{\beta} f_M(h/t^{\Delta})$

where $t \equiv (T - T_c)/T_c$ for some choice of exponent Δ and scaling function $f_M(x)$

- To determine the properties of the scaling function and unknown exponent, we require:
 - $f_M(z) = const.$ for z = 0
 - This gives the correct behaviour of the magnetization at zero field, for T < $\rm T_{c}$
 - For large values of z, i.e. non-zero h, and t →0, we need the t dependence to cancel out.
 - Thus $f_M(z) \sim z^{1/\delta}, z \to \infty$.

Calculate Δ : t dependence will only cancel out if $\beta - \Delta/\delta = 0$

$$M = |t|^{\beta} f_M(h/|t|^{\beta\delta})$$

 This data collapse formula connects the scaling of correlations with the thermodynamics of the critical point

What is analogue of critical point data in turbulence?

- Need analogues of the *two* scaling limits $T \rightarrow T_c$ and $H \rightarrow 0$
- Experimental data on a real flow
 - Systematic in same geometry over many decades of Re
 - Systematic variation over the other parameter
- Classic experiments on pipe flow ...
 - Pipes with radius D and roughness r

Nikuradse's pipe experiment (1933)

Figure 3.- Test apparatus.

- em = electric motor
- kp = centrifugal pump
- vk = supply canal
- wk = water tank
- vr = test pipe
- zl = supply line
 str = vertical pipe
- fr = overflow pipe
- ft = trap

-
- h = outlet valve zr = feed line
- zr = ieeu ine
- mb = measuring tank
- gm = velocity measuring device ksv = safety valve on water tank
- $sb_1 = gate valve between wk and kp$
- ab gate we have between why and an
- sb_2 = gate value between wk and zr
- gl = baffles for equalizing flow

Monodisperse sand grains 0.8mm glued to sides of pipe

Figure 4.- Microphotograph of sand grains which produce uniform roughness. (Magnified about 20 times.)

Friction factor in turbulent rough pipes

Strickler scaling

Gioia and Chakraborty (2006)

FIG. 1. Nikuradse's data. Up to a Re of about 3000 the flow is streamlined (free from turbulence) and $f \sim 1/\text{Re}$. Note that for very rough pipes (small R/r) the curves do not form a belly at intermediate values of Re. Inset: verification of Strickler's empirical scaling for f at high Re, $f \sim (r/R)^{1/3}$.

Scaling of Nikuradse's data

	Critical phenomena	Turbulence
Temperature control	t ightarrow 0	1/Re ightarrow 0
Field control	h ightarrow 0	r/D ightarrow 0

Scaling of Nikuradse's Data

- In the turbulent regime, the extent of the Blasius regime is apparently roughness dependent.
 f ~ Re^{-1/4} as r/D → 0
- At large Re, f is independent of roughness.
 - f ~ (r/D)^{1/3} for Re $\rightarrow \infty$
- Combine into unified scaling form
 - $f = Re^{-1/4} g([r/D] Re^{\alpha})$
 - Determine α by scaling argument: Re dependence must cancel out at large Re to give Strickler scaling
 - Exponent $\alpha = \frac{3}{4}$ and the scaling function g(z) ~ $z^{1/3}$ for $z \rightarrow \infty$
- f = Re^{-1/4} g([r/D] Re^{3/4})

Scaling of Nikuradse's Data

- Is it true that $f = Re^{-1/4} g([r/D] Re^{3/4})$?
 - Check by plotting f $Re^{1/4}$ vs. [r/D] $Re^{3/4}$
 - Do data as a function of two variables collapse onto a single universal curve?

Scaling of Nikuradse's Data

- Scaling function is unlikely to be universal, independent of the nature of the roughness
 - Grains, riblets, mesh, ...
 - May account for slight departures from data collapse
- Roughness = 0 is a critical point.
 - In order to understand the turbulent state, important to consider flows with boundary roughness
 - Singular behaviour in roughness as well as Re

Scaling argument for Blasius and Strickler regimes (Gioia and Chakraborty 2006)

 $^{\prime}2$

- $\mathbf{f} \sim \rho \mathbf{V} \mathbf{u}_{s} / \rho \mathbf{V}^{2} \sim \mathbf{u}_{s} / \mathbf{V}$
 - Contribution to friction factor from dominant eddy on scale of roughness element, s=r+5η

– Sum over scales smaller than "cove" to get

$$f \propto \left[\int_0^{s/R} \frac{E(\sigma)}{\sigma^2} d\sigma \right]^{1/2}$$

- K41
 - s/D=(r/D + const. Re^{-3/4}) and E ~ $\sigma^{5/3}$
 - Large Re: f ~ (r/D)^{1/3} Strickler law predicted!
 - Small r/D: f ~ Re^{-1/4} Blasius law predicted!
- Friction factor formula satisfies our scaling relation

Evaluation of friction factor

Now include the dissipation range and integral scale

Evaluation of friction factor

FIG. 3. Plot of (1). Inset: Plot of (2) (no correction for the energetic range: solid lines) and plot of (2) with $\gamma = 0$ (no correction for the energetic range and the dissipative range: dashed lines).

- Functional form of friction factor reproduces all main features of data
- By removing parts of the spectrum, can identify origin of specific features

Gioia and Chakraborty (2006)

Friction factor contributions

Gioia and Chakraborty (2006)

Boundary layer structure

- How many adjustable parameters in Gioia-Chakraborty model?
 - -a = 5, so that thickness of viscous layer $\sim 5 \eta$
 - b measured to be 11.4 (Antonia and Pearson (2000)
- Model essentially completely determined.
- But: scale of curves do not match data!
 - Something missing!
 - Guess: need better model for structure of viscous layer

Friction factor scaling in two dimensions

- Test scaling argument: predict friction factor for a turbulent soap film suspended between rough wires: a 2D rough turbulent pipe
 - Now we use enstrophy cascade: E (σ) ~ σ^3
 - 2D number of degrees of freedom scales as Re^{2/4}
 - s/D = r/D + const. Re^{-1/2}

$$f = \left[\int_0^{s/R} \sigma^3 \frac{d\sigma}{\sigma^2}\right]^{1/2}$$

- Blasius scaling: f ~ Re^{-1/2}
- Strickler scaling: f ~ (r/D)

Evaluation of friction factor integral in 2D

Enstrophy cascade f ~ Re^{-1/2} (Blasius) f ~ (r/D) (Strickler) Inverse cascade f ~ Re^{-1/6} (Blasius) f ~ (r/D)^{1/3} (Strickler)

Ongoing work

- Experiments on 2D soap films to test predictions for the friction factor (W. Goldburg)
- DNS of 2D rough pipes
- Block spin derivation of friction factor: improved calculation of momentum transfer
- Nikuradse experiment needs to be repeated.
 - Role of different forms of roughness?
 - Influence of correlations in roughness?
 - Probe mechanisms of momentum transfer
 - Verify identification of the features in the friction factor

Conclusion

- Collapse of turbulent rough pipe flow data indicative of a governing non-equilibrium critical point
- Anatomy of friction factor curves obtained
 - But overall quantitative scale needs to be understood
- Friction factor in 2D predicted, and computational and experimental tests underway