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Some Publications.
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4. V.S. L’vov and I. Procaccia, Phys. Rev. E 54 (1996), 6268–6284.

5. R.J. Hill, J. Fluid. Mech. 353 (1997), 67–81.

6. U. Frisch, J. Bec, and E. Aurell, “Locally homogeneous turbulence: Is it a consistent

framework?’”, [nlin.CD/0502046], 2005.
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K41 prediction

In three-dimensional turbulence there is an energy cascade from large scales to
small scales is driven by the nonlinear term of the Navier-Stokes equations

Using dimensional analysis we get K41 prediction

Sn(x, re) = 〈{[u(x + re, t) − u(x, t)] · e}n〉 (1)

= Cn(εr)n/3, for η � r � �0 (2)

E(k) = Cε2/3k−5/3, for �−1
0 � k � η−1 (3)

Including intermittency corrections, the real behaviour in the inertial range is:

Sn(x, re) = Cn(εr)n/3(r/�0)ζn−n/3 (4)

E(k) ∼ Cε2/3k−5/3(k�0)
5/3−ζ2 (5)

How do we understand: dimensional analysis, intermittency, and universality?
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Outline of presentation

Review of the following ideas:

Similarity analysis

Frisch reformulation of K41

Analytical theories: MSR theory and L’vov-Procaccia theory

Hierarchical definition of local homogeneity

Sufficient condition to eliminate sweeping

Same condition needed to prove 4/5 law

Stronger condition needed to use the Belinicher-L’vov quasi-Lagrangian
transformation

Open question: More rigorous elimination of sweeping
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Similarity analysis I

Similarity analysis is a generalization of dimensional analysis.

1. E. Hopf, Statistical hydromechanics and functionals calculus, J. Ratl. Mech.
Anal. 1 (1952) 87–123.

2. S. Moiseev, A. Tur, V. Yanovskii, Spectra and expectation methods of
turbulence in a compressible fluid, Sov. Phys. JETP 44 (1976) 556–561.

3. A.G. Sazontov, The similarity relation and turbulence spectra in a stratified
medium, Izv. Atmos. Ocean. Phys. 15 (1979), 566–570.

4. S.S. Moiseev and O.G. Chkhetiani, Helical scaling in turbulence, JETP 83
(1996), 192–198.

5. H. Branover, A. Eidelman, E. Golbraikh, and S. Moiseev, Turbulence and
structures: chaos, fluctuations, and helical self organization in nature and the
laboratory, Academic Press, San Diego, 1999.
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Similarity analysis II

Assume gaussian delta-correlated forcing with forcing spectrum F (k)

parameterized as

F (k) = εF0(k�0) (6)

Using the Hopf formalism, it can be shown rigorously that the energy spectrum
satisfies

E(k, t|ν, ε, �0) = λ−(2β+1)E(k, λ1−βt|λ1+βν, λ3β−1ε, λ�0) (7)

From the conditions ∂E/∂t = 0 and ∂E/∂β = 0 we find that

E(k, t|ν, ε, �0) = ε2/3k−5/3E0(k�0, kη) (8)

with η ≡ (ν3/ε)1/4. If F0 fixed, then E0 is fixed.

Assume the limits �0 → +∞ and η → 0 converge (similarity assumption).
Likewise for structure functions.
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Frisch reformulation of K41. I

Define the Eulerian velocity differences wα:

wα(x,x′, t) = uα(x, t) − uα(x′, t). (9)

H1: Local homogeneity/isotropy/stationarity

wα(x,x′, t) x,x′
∼ wα(x + y,x′ + y, t) ,∀y ∈ R

d. (10)

wα(x,x′, t) x,x′
∼ wα(x0 + A(x − x0),x0 + A(x′ − x0), t) ,∀A ∈ SO(d). (11)

wα(x,x′, t) x,x′
∼ wα(x,x′, t + ∆t) ,∀∆t ∈ R. (12)

H2: Self-similarity

wα(λx, λx′, t) x,x′
∼ λhwα(x,x′, t) (13)

H3: Anomalous energy sink
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Frisch reformulation of K41. II

The argument

H1 and H3 =⇒ 4/5 law =⇒ ζ3 = 1

H2 =⇒ ζn = nh

Therefore: ζn = n/3 =⇒ k−5/3 scaling

2005: Frisch questions self-consistency of local homogeneity

Proof of 4/5 law

1959: Proof by Monin using local homogeneity (in Russian)

1975: Reprinted by Monin and Yaglom book

1995: Frisch proof uses global homogeneity

1996: Lindborg notes that the pressure gradient/velocity field correlations
cannot be eliminated by local isotropy

1997: Problem corrected by Hill

1999: Rasmussen proof uses global homogeneity

2006: Gkioulekas notes that local homogeneity not sufficient.
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Analytical theories.

In the beginning: Quasinormal closure models.

1957: Kraichnan showed that they give negative E(k).

1958: Kraichnan DIA theory =⇒ k−3/2 scaling.

1961: Wyld shows that DIA is 1-loop line-renormalized diagrammatic theory

1962: Experiments confirm k−5/3 scaling.

1964: Kraichnan notes the need to eliminate the sweeping interactions via a
Lagrangian teansformation.

1965: LHDIA theory =⇒ Locality =⇒ k−5/3 scaling.

1973: Martin-Siggia-Rose theory (MSR theory)

1977: Phythian reformulates MSR theory in terms of path integrals.
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MSR theory. I. Formulation

In MSR formalism we have a quadratic problem of the form

∂uα

∂t
= PαδVβγδuγuδ + Dαβuα + Pαβfβ (14)

with gaussian forcing: Qαβ =
〈
fαfβ

〉
.

Define the correlators

Fαβ =
〈
uαuβ

〉
, Gαβ =

〈
δuα/δfβ

〉
(15)

The Dyson-Wyld equations are

∂Gαβ(t)

∂t
= DαγGγβ(t) + Pαβδ(t) +

∫ t

0
dt1 PαγΣγδ(t1)Gδβ(t − t1) (16)

Fαβ(t) =

∫
dt1

∫
dt2 Gαγ [Qγδ(t − t1 + t2) + Φγδ(t − t1 + t2)]Gδβ(t2)

(17)
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MSR theory. II. Diagram expansion

The operators Σαβ and Φαβ can be represented with a Feynman diagram
expansion

Σαβ = Σ1
αβ + Σ2

αβ + · · · (18)

Φαβ = Φ1
αβ + Φ2

αβ + · · · (19)

In Eulerian formulation, the 1-loop approximation gives DIA:

Σαβ ≈ Σ1
αβ = (VαAΓ + VαΓA)(VβB∆ + Vβ∆B)GABFΓ∆ (20)

Φαβ ≈ Φ1
αβ = VαAΓ(VβB∆ + Vβ∆B)FABFΓ∆ (21)

Problem: In Eulerian formulation, IR divergences arise from sweeping interactions

1987: Belinicher-L’vov quasi-Lagrangian transformation

1995-2001: L’vov and Procaccia go beyond the LHDIA theory
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Quasi-Langrangian transformation. I. Definition

Let uα(x, t) be the Eulerian velocity field, and let ρα(x0, t0|t) be the position of
the unique fluid particle initiated at (x0, t0) at time t relative to its initial position at
time t0.

First, we introduce vα(x0, t0|x, t) as

ρα(x0, t0|t) =

∫ t

t0

dτ uα(x0 + ρ(x0, t0|τ), τ)

vα(x0, t0|x, t) = uα(x + ρ(x0, t0|t), t).
(22)

Then, we subtract the velocity of the fluid particle uniformly:

wα(x0, t0|x, t) = vα(x0, t0|x, t) − ∂

∂t
ρα(x0, t0|t)

= vα(x0, t0|x, t) − vα(x0, t0|x0, t)

= uα(x + ρ(x0, t0|t), t) − uα(x0 + ρ(x0, t0|t), t).
(23)
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Quasi-Langrangian transformation. II. Navier-Stokes equations

Let wα(x0, t0|x, t) be defined as

Wα(x0, t0|x,x′, t) ≡ wα(x0, t0|x, t) − wα(x0, t0|x′, t) (24)

= vα(x0, t0|x, t) − vα(x0, t0|x′, t). (25)

Differentiating with respect to time gives an equation of the form

∂Wα

∂t
+ VαβγWβWγ = ν(∇2

x + ∇2
x′)Wα + Fα, (26)

where Vαβγ is a bilinear integrodifferential operator of the form

VαβγWβWγ ≡
∫∫

dXβdXγ Vαβγ(x0|Xα,Xβ ,Xγ)Wβ(Xβ)Wγ(Xγ). (27)

All the terms, and especially the nonlinear term, are written in terms of velocity
differences!
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Quasi-Langrangian transformation. III. The theory

Consider the Dyson-Wyld equations with

Fαβ(x0, t0|x1,x2, t) =
〈
wα(x0, t0|x1, t)wβ(x0, t0|x2, t)

〉
(28)

Gαβ(x0, t0|x1,x2, t) =

〈
δwα(x0, t0|x1, t)

δfβ(x0, t0|x2, t)

〉
(29)

Main results of L’vov and Procaccia theory.

Individual diagrams in Σαβ and Φαβ converge when �0 → ∞ and η → 0.

Thus, to n-loop order approximation we obtain K41 prediction ζn = n/3.

This is a generalization of Kraichnan’s LHDIA theory.

Diagram locality and rigidity =⇒ Fusion Rules =⇒ Anomalous energy sink.

Intermittency emerges via a multi-interaction effect involving all diagrams

Scheme for perturbative calculation of scaling exponents ζn
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Outline of my argument

The L’vov-Procaccia theory aims to weaken the assumption of self-similarity used
by Frisch (H2) while tolerating the other two assumptions: (H1) and (H3)

A homogeneity assumption stronger than the assumption of local homogeneity, as
envisioned by Frisch is required for

the elimination of the sweeping interactions

the derivation of the 4/5-law

The quasi-Lagrangian formulation to eliminate the sweeping interactions uses an
even stronger homogeneity assumption which involves many-time correlations
instead of one-time correlations.

Local homogeneity is in fact a consistent framework provided that the sweeping
interactions can be eliminated in a more rigorous manner.
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Definitions of local homogeneity. I.

The random velocity field u, is a member of the homogeneity class Hm(A) where
A⊆ R

d a region in R
d, if and only if ∀n ∈ N

∗,∀xl,yk,y′
k ∈ A we have

(
m∑

l=1

∂αl,xl +
n∑

k=1

(∂βl,yl
+ ∂βl,y

′
l
)

)〈[
m∏

l=1

uαl(xl, t)

] [
n∏

k=1

wβk
(yk,y′

k, t)

]〉
= 0

The random velocity field u is a member of the homogeneity class H∗
m(A) where

A⊆ R
d a region in R

d, if and only if ∀n ∈ N
∗,∀xl,yk,y′

k ∈ A we have

(
m∑

l=1

∂αl,xl +

n∑
k=1

(∂βl,yl
+ ∂βl,y

′
l
)

)〈[
m∏

l=1

uα(xl, tl)

] [
n∏

k=1

wβk
(yk,y′

k, t)

]〉
= 0

We also write Hm ≡ Hm(Rd) and H∗
m ≡ H∗

m(Rd) and define

Hω(A) =
⋂
k∈N

Hk(A) and H∗
ω(A) =

⋂
k∈N

H∗
k(A). (30)
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Definitions of local homogeneity. II.

The homogeneity classes are hierarchically ordered, according to the following
relations

Hω(A) ⊆ Hk(A), ∀k ∈ N, (31)

H∗
ω(A) ⊆ H∗

k(A), ∀k ∈ N, (32)

Ha(A) ⊆ Hb(A) ∧ H∗
a(A) ⊆ H∗

b (A), ∀a, b ∈ N : a > b, (33)

Ha(A) ⊆ H∗
a(A), ∀a ∈ N. (34)

Local homogeneity, in the sense of Frisch: u ∈ H0(A).

The homogeneity condition sufficient to

eliminate the sweeping interactions over the domain A: u ∈ H1(A).

prove the 4/5-law over the domain A: u ∈ H1(A).

employ the Belinicher-L’vov quasi-Lagrangian transformation: u ∈ H∗
ω.
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Balance equations and sweeping. I.

The clearest way to understand the sweeping interactions is by employing the
balance equations introduced by L’vov and Procaccia (1996).

The Navier-Stokes equations, where the pressure term has been eliminated, read

∂uα

∂t
+ Pαβ∂γ(uβuγ) = ν∇2uα + Pαβfβ , (35)

where Pαβ = δαβ − ∂α∂β∇−2 is the projection operator

The Eulerian generalized structure function is defined as

F α1α2···αn
n ({x,x′}n, t) =

〈[
n∏

k=1

wαk (xk,x′
k, t)

]〉
, (36)

where {x,x′}n is shorthand for a list of n position vectors.
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Balance equations and sweeping. II.

The balance equations are obtained by differentiating the definition of Fn with
respect to time t and substituting the Navier-Stokes equations:

∂Fn

∂t
+ Dn = νJn + Qn, (37)

where Dn represents the contributions from the nonlinear term and

Qα1α2···αn
n ({X}n, t) =

n∑
k=1

〈⎡⎣ n∏
l=1,l�=k

wαl (xl,x
′
l, t)

⎤
⎦Pαkβ(fβ(xk, t) − fβ(x′

k, t))

〉
.

(38)

Jα1α2···αn
n ({X}n, t) = DnF α1α2···αn

n ({X}n, t) (39)

=
n∑

k=1

(∇2
xk

+ ∇2
x′

k
)F α1α2···αn

n ({X}n, t), (40)

sweeping talk – p.19/30



Balance equations and sweeping. III.

L’vov and Procaccia (1996) showed that the contribution of the nonlinear term Dn

can be rewritten as Dn = OnFn+1 + In where On is a linear integrodifferential
operator, and In is given by

Iα1α2···αn
n ({X}n, t) =

n∑
k=1

(∂β,xk
+ ∂β,x′

k
)

〈
Uβ({X}n, t)

[
n∏

l=1

wαl (Xl, t)

]〉
,

(41)

where Uβ({X}n, t) is defined as

Uα({X}n, t) =
1

2n

n∑
k=1

(
uα(xk, t) + uα(x′

k, t)
)
. (42)

The second term, In, represents exclusively the effect of the sweeping
interactions.

To set In = 0 we need the homogeneity assumption u ∈ H1(A).
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Dropping sweeping: The 4/5-law proof

If we assume u ∈ H1(A) and set I2 = 0, then one can calculate ζ3 is from the
solvability condition of the homogeneous equation O2F3 = 0, as shown by L’vov
and Procaccia (1996).

Use the conservation of energy to show that

O2F3(x1,x′
1,x2,x′

2) =
1

2

d[S3(r12) − S3(r12′ )]

dr1
+

1

2

d[S3(r1′2′ ) − S3(r1′2)]

dr1′

= A[rζ3−1
12 − rζ3−1

12′ + rζ3−1
1′2′ − rζ3−1

1′2 ].

(43)

where r12 = ‖x1 − x2‖, etc.

It follows that Dn ≈ O2F3 = 0 ⇐⇒ ζ3 = 1

Dropping I2 cannot be justified under u ∈ H0(A), i.e. local homogeneity in the
sense of Frisch.
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Dropping sweeping: The multifractal formalism.

The homogeneous equations OnFn+1 = 0 are invariant with respect to the
following group of transformations

r �→ λr, Fn �→ λnh+Z(h)Fn. (44)

Thus, in an inertial range, solutions Fn,h that satisfy the self-similarity property

Fn,h({λxk, λx′
k}n

k=1, t) = λnh+Z(h)Fn,h(xk,x′
k}n

k=1, t), (45)

are admissible.

The correct solution is the linear combination of these solutions, given by

Fn =

∫
dµ(h)Fn,h. (46)

This conclusion also needs the assumption u ∈ H1(A).
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The Bottom Line

If we assume u ∈ H1(A),
then we can simply “exterminate” the sweeping term,

with no further worries.
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Quasi-Langrangian to Eulerian. I. The claim

Consider the definitions

F α1α2···αn
n ({x,x′}n, t) =

〈[
n∏

k=1

wαk (xk,x′
k, t)

]〉
, (47)

Fα1α2···αn
n (x0, t0|{x,x′}n, t) =

〈[
n∏

k=1

Wαk (x0, t0|xk,x′
k, t)

]〉
. (48)

The claim of L’vov and Procaccia was that it can be shown that

Fn(x0, t0|{x,x′}n, t) = Fn({x,x′}n, t),∀n ∈ N
∗ (49)

The claim can be rewritten equivalently as

Wα(x0, t0|x,x′, t) x,x′
∼ wα(x,x′, t). (50)
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Quasi-Langrangian to Eulerian. II. Proofs

Proof was re-examined recently by Gkioulekas.

The claim holds if and only if

Wα(x0, t0 + ∆t|x,x′, t) x,x′
∼ Wα(x0, t0|x,x′, t), ∀∆t ∈ R − {0} (51)

If u ∈ H∗
ω , and uα is incompressible, then

Wα(x0, t0 + ∆t|x,x′, t) x,x′
∼ Wα(x0, t0|x,x′, t). (52)

u ∈ H∗
ω is a sufficient but perhaps not necessary assumption

However, the assumption u ∈ H1(A) is not sufficient

The artifact introduced by the quasi-Lagrangian formulation is that the turbulent
velocity field is being perceived from the viewpoint of an arbitrary fluid particle
whose own motion is also stochastic.
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Quasi-Langrangian to Eulerian. III. Another proof

Introduce the conditional correlation tensor defined as

Fn(x0, t0,y|{X}n, t) =

〈
n∏

k=1

Wαk (x0, t0|xk,x′
k, t)

∣∣∣∣∣ ρ(x0, t0|t) = y

〉
(53)

=

〈
n∏

k=1

wαk (xk + y,x′
k + y, t)

∣∣∣∣∣ ρ(x0, t0|t) = y

〉
(54)

The random velocity field u is a member of the homogeneity class Hc
0, if and only

if ∀y ∈ R
d,∀xk,x′

k ∈ R
d we have

n∑
k=1

(∂βk,yk
+ ∂β,y′

k
)Fn(x0, t0,y|{X}n, t) = 0, , ∀n ∈ N, n > 1 (55)

The condition u ∈ Hc
0 implies The claim
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Elimination of the sweeping interactions. I.

One may conjecture that the sweeping interactions act as a large-scale forcing
term whose effect is forgotten in the inertial range.

It is possible to use the theoretical work based on the quasi-Lagrangian
transformation in a way that requires only the assumption u ∈ H1(A).

The quasi-Lagrangian formulation modifies the Navier-Stokes equations by
redefining the material derivative.

The modified equation remains mathematically equivalent to the
Navier-Stokes equation if the velocity field is reinterpreted from an Eulerian
field into a quasi-Lagrangian field.

This reinterpretation necessitates the stronger assumption u ∈ H∗
ω to enable

a return back to the Eulerian representation.

If we accept the hypothesis that the sweeping interactions act as a large-scale
forcing, we can just modify the equation of motion in precisely the same way
without interpreting the velocity field as quasi-Lagrangian, but rather as
Eulerian.
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Elimination of the sweeping interactions. II.

To prove that the sweeping interactions act as a large-scale forcing it is sufficient to
calculate the scaling exponent ∆n associated with the ratio

In(R{X}n)

(OnFn+1)(R{X}n)
∼
(

R

�0

)∆n

, (56)

Then, provided that one starts with the assumption u ∈ H0, proving ∆n > 0 is
also a proof that u ∈ H1(A) which is sufficient to eliminate the sweeping
interactions.

If we assume that the generalized structure functions Fn(R{X}n) satisfy the
fusion rules, then the scaling exponent of OnFn+1(R{X}n) is ζn+1 − 1 and it
follows that ∆n = λn − (ζn+1 − 1).

The problem of calculating the scaling exponents λn needs to be investigated
primarily with numerical simulations and the analysis of experimental data.
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Elimination of the sweeping interactions. III.

Commit the following crimes against reality:

Assume that the velocity field uα(x, t) can be modeled as a random gaussian
delta-correlated (in time) stochastic field acting at large scales.

Assume that the velocity field uα(x, t) has an effect on the velocity
differences wα(x,x′, t) via the sweeping interactions

Disregard that uα(x, t) and wα(x,x′, t) are obviously constrained by the
definition of wα(x,x′, t).

Using the multifractal formulation, the contribution that supports the Holder
exponent h gives ζn = nh + Z(h) , which gives the following evaluation:

∆n(h) = −2h + λ + 2 (57)

The window for positive scaling exponents ∆n covers the entire range h ∈ (0, 1) of
local scaling exponents.

The real challenge is to determine what happens in reality
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Conclusion

Analytical theories are an extension of the Frisch
reformulation of K41

The main stumbling block is the elimination of the
sweeping interactions

Lagrangian methods do not prove that the sweeping
interactions are negligible in the inertial range.

The open question: prove that sweeping is negligible in
the inertial range.
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