On the elimination of the sweeping interactions from theories of hydrodynamic turbulence

Eleftherios Gkioulekas

Department of Applied Mathematics, University of Washington

Some Publications.

This presentation is based on

1. E. Gkioulekas (2006): Ph.D. thesis, University of Washington (Advisor: Ka-Kit Tung)

2. E. Gkioulekas: Physica D, under review. [nlin.CD/0506064]

- Other relevant papers include:
 - 1. U. Frisch, Proc. R. Soc. Lond. A 434 (1991), 89–99.
 - 2. U. Frisch, *Turbulence: The legacy of A.N. Kolmogorov*, Cambridge University Press, Cambridge, 1995.
 - 3. V.S. L'vov and I. Procaccia, *Phys. Rev. E* **52** (1995), 3840–3857.
 - 4. V.S. L'vov and I. Procaccia, *Phys. Rev. E* **54** (1996), 6268–6284.
 - 5. R.J. Hill, J. Fluid. Mech. 353 (1997), 67–81.
 - 6. U. Frisch, J. Bec, and E. Aurell, "Locally homogeneous turbulence: Is it a consistent framework?", [nlin.CD/0502046], 2005.

K41 prediction

- In three-dimensional turbulence there is an energy cascade from large scales to small scales is driven by the nonlinear term of the Navier-Stokes equations
- Using dimensional analysis we get K41 prediction

$$S_n(\mathbf{x}, r\mathbf{e}) = \left\langle \left\{ \left[\mathbf{u}(\mathbf{x} + r\mathbf{e}, t) - \mathbf{u}(\mathbf{x}, t) \right] \cdot \mathbf{e} \right\}^n \right\rangle \tag{1}$$

$$=C_n(\varepsilon r)^{n/3}, \text{ for } \eta \ll r \ll \ell_0$$
 (2)

$$E(k) = C\varepsilon^{2/3}k^{-5/3}, \text{ for } \ell_0^{-1} \ll k \ll \eta^{-1}$$
 (3)

Including intermittency corrections, the real behaviour in the inertial range is:

$$S_n(\mathbf{x}, r\mathbf{e}) = C_n(\varepsilon r)^{n/3} (r/\ell_0)^{\zeta_n - n/3}$$
(4)

$$E(k) \sim C\varepsilon^{2/3} k^{-5/3} (k\ell_0)^{5/3 - \zeta_2}$$
(5)

How do we understand: dimensional analysis, intermittency, and universality?

Outline of presentation

Review of the following ideas:

- Similarity analysis
- Frisch reformulation of K41
- Analytical theories: MSR theory and L'vov-Procaccia theory
- Hierarchical definition of local homogeneity
- Sufficient condition to eliminate sweeping
- Same condition needed to prove 4/5 law
- Stronger condition needed to use the Belinicher-L'vov quasi-Lagrangian transformation
- Open question: More rigorous elimination of sweeping

Similarity analysis I

Similarity analysis is a generalization of dimensional analysis.

- E. Hopf, Statistical hydromechanics and functionals calculus, J. Ratl. Mech. Anal. 1 (1952) 87–123.
- 2. S. Moiseev, A. Tur, V. Yanovskii, *Spectra and expectation methods of turbulence in a compressible fluid*, Sov. Phys. JETP **44** (1976) 556–561.
- 3. A.G. Sazontov, *The similarity relation and turbulence spectra in a stratified medium*, Izv. Atmos. Ocean. Phys. **15** (1979), 566–570.
- 4. S.S. Moiseev and O.G. Chkhetiani, *Helical scaling in turbulence*, JETP **83** (1996), 192–198.
- 5. H. Branover, A. Eidelman, E. Golbraikh, and S. Moiseev, *Turbulence and structures: chaos, fluctuations, and helical self organization in nature and the laboratory*, Academic Press, San Diego, 1999.

Similarity analysis II

Assume gaussian delta-correlated forcing with forcing spectrum F(k) parameterized as

$$F(k) = \varepsilon F_0(k\ell_0) \tag{6}$$

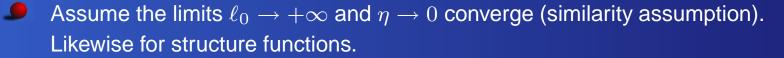
Using the Hopf formalism, it can be shown rigorously that the energy spectrum satisfies

$$E(k,t|\nu,\varepsilon,\ell_0) = \lambda^{-(2\beta+1)} E(k,\lambda^{1-\beta}t|\lambda^{1+\beta}\nu,\lambda^{3\beta-1}\varepsilon,\lambda\ell_0)$$
(7)

From the conditions $\partial E/\partial t = 0$ and $\partial E/\partial \beta = 0$ we find that

$$E(k,t|\nu,\varepsilon,\ell_0) = \varepsilon^{2/3}k^{-5/3}E_0(k\ell_0,k\eta) \tag{8}$$

with $\eta \equiv (\nu^3/\varepsilon)^{1/4}$. If F_0 fixed, then E_0 is fixed.



Frisch reformulation of K41. I

Define the Eulerian velocity differences w_{α} :

$$w_{\alpha}(\mathbf{x}, \mathbf{x}', t) = u_{\alpha}(\mathbf{x}, t) - u_{\alpha}(\mathbf{x}', t).$$
(9)

H1: Local homogeneity/isotropy/stationarity

$$w_{\alpha}(\mathbf{x}, \mathbf{x}', t) \stackrel{\mathbf{x}, \mathbf{x}'}{\sim} w_{\alpha}(\mathbf{x} + \mathbf{y}, \mathbf{x}' + \mathbf{y}, t), \forall \mathbf{y} \in \mathbb{R}^{d}.$$
 (10)

$$w_{\alpha}(\mathbf{x}, \mathbf{x}', t) \stackrel{\mathbf{x}, \mathbf{x}'}{\sim} w_{\alpha}(\mathbf{x}_0 + A(\mathbf{x} - \mathbf{x}_0), \mathbf{x}_0 + A(\mathbf{x}' - \mathbf{x}_0), t), \forall A \in SO(d).$$
 (11)

$$w_{\alpha}(\mathbf{x}, \mathbf{x}', t) \stackrel{\mathbf{x}, \mathbf{x}'}{\sim} w_{\alpha}(\mathbf{x}, \mathbf{x}', t + \Delta t), \forall \Delta t \in \mathbb{R}.$$
 (12)

H2: Self-similarity

$$w_{\alpha}(\lambda \mathbf{x}, \lambda \mathbf{x}', t) \overset{\mathbf{x}, \mathbf{x}'}{\sim} \lambda^h w_{\alpha}(\mathbf{x}, \mathbf{x}', t)$$
 (13)

H3: Anomalous energy sink

Frisch reformulation of K41. II

The argument $I = H2 \Longrightarrow \zeta_n = nh$ • Therefore: $\zeta_n = n/3 \Longrightarrow k^{-5/3}$ scaling 2005: Frisch questions self-consistency of local homogeneity Proof of 4/5 law 1959: Proof by Monin using local homogeneity (in Russian) **1975: Reprinted by Monin and Yaglom book** 1995: Frisch proof uses global homogeneity 1996: Lindborg notes that the pressure gradient/velocity field correlations cannot be eliminated by local isotropy 1997: Problem corrected by Hill 1999: Rasmussen proof uses global homogeneity 2006: Gkioulekas notes that local homogeneity not sufficient.

Analytical theories.

- In the beginning: Quasinormal closure models.
- **9** 1957: Kraichnan showed that they give negative E(k).
- 9 1958: Kraichnan DIA theory $\Longrightarrow k^{-3/2}$ scaling.
- 1961: Wyld shows that DIA is 1-loop line-renormalized diagrammatic theory
- **9** 1962: Experiments confirm $k^{-5/3}$ scaling.
- 1964: Kraichnan notes the need to eliminate the sweeping interactions via a Lagrangian teansformation.
- **9** 1965: LHDIA theory \implies Locality $\implies k^{-5/3}$ scaling.
- 1973: Martin-Siggia-Rose theory (MSR theory)
 - 1977: Phythian reformulates MSR theory in terms of path integrals.

MSR theory. I. Formulation

In MSR formalism we have a quadratic problem of the form

$$\frac{\partial u_{\alpha}}{\partial t} = P_{\alpha\delta} V_{\beta\gamma\delta} u_{\gamma} u_{\delta} + \mathcal{D}_{\alpha\beta} u_{\alpha} + P_{\alpha\beta} f_{\beta}$$
(14)

with gaussian forcing: $Q_{\alpha\beta} = \langle f_{\alpha}f_{\beta} \rangle$.

$$F_{\alpha\beta} = \left\langle u_{\alpha}u_{\beta} \right\rangle, \quad G_{\alpha\beta} = \left\langle \delta u_{\alpha}/\delta f_{\beta} \right\rangle$$
 (15)

The Dyson-Wyld equations are

$$\frac{\partial G_{\alpha\beta}(t)}{\partial t} = \mathcal{D}_{\alpha\gamma}G_{\gamma\beta}(t) + P_{\alpha\beta}\delta(t) + \int_{0}^{t} dt_{1} \ P_{\alpha\gamma}\Sigma_{\gamma\delta}(t_{1})G_{\delta\beta}(t-t_{1})$$
(16)
$$F_{\alpha\beta}(t) = \int dt_{1} \int dt_{2} \ G_{\alpha\gamma}[Q_{\gamma\delta}(t-t_{1}+t_{2}) + \Phi_{\gamma\delta}(t-t_{1}+t_{2})]G_{\delta\beta}(t_{2})$$
(17)

MSR theory. II. Diagram expansion

The operators $\Sigma_{\alpha\beta}$ and $\Phi_{\alpha\beta}$ can be represented with a Feynman diagram expansion

$$\Sigma_{\alpha\beta} = \Sigma_{\alpha\beta}^1 + \Sigma_{\alpha\beta}^2 + \cdots$$
 (18)

$$\Phi_{\alpha\beta} = \Phi^1_{\alpha\beta} + \Phi^2_{\alpha\beta} + \cdots$$
 (19)

In Eulerian formulation, the 1-loop approximation gives DIA:

$$\Sigma_{\alpha\beta} \approx \Sigma_{\alpha\beta}^{1} = (V_{\alpha A\Gamma} + V_{\alpha \Gamma A})(V_{\beta B\Delta} + V_{\beta \Delta B})G_{AB}F_{\Gamma\Delta}$$
(20)

$$\Phi_{\alpha\beta} \approx \Phi^{1}_{\alpha\beta} = V_{\alpha A\Gamma} (V_{\beta B\Delta} + V_{\beta\Delta B}) F_{AB} F_{\Gamma\Delta}$$
⁽²¹⁾

- 1987: Belinicher-L'vov quasi-Lagrangian transformation
- 1995-2001: L'vov and Procaccia go beyond the LHDIA theory

Quasi-Langrangian transformation. I. Definition

- Let $u_{\alpha}(\mathbf{x}, t)$ be the Eulerian velocity field, and let $\rho_{\alpha}(\mathbf{x}_0, t_0|t)$ be the position of the unique fluid particle initiated at (\mathbf{x}_0, t_0) at time *t* relative to its initial position at time t_0 .
 - First, we introduce $v_{\alpha}(\mathbf{x}_0, t_0 | \mathbf{x}, t)$ as

$$\rho_{\alpha}(\mathbf{x}_{0}, t_{0}|t) = \int_{t_{0}}^{t} d\tau \ u_{\alpha}(\mathbf{x}_{0} + \rho(\mathbf{x}_{0}, t_{0}|\tau), \tau)$$

$$v_{\alpha}(\mathbf{x}_{0}, t_{0}|\mathbf{x}, t) = u_{\alpha}(\mathbf{x} + \rho(\mathbf{x}_{0}, t_{0}|t), t).$$
(22)

Then, we subtract the velocity of the fluid particle uniformly:

$$w_{\alpha}(\mathbf{x}_{0}, t_{0} | \mathbf{x}, t) = v_{\alpha}(\mathbf{x}_{0}, t_{0} | \mathbf{x}, t) - \frac{\partial}{\partial t} \rho_{\alpha}(\mathbf{x}_{0}, t_{0} | t)$$

$$= v_{\alpha}(\mathbf{x}_{0}, t_{0} | \mathbf{x}, t) - v_{\alpha}(\mathbf{x}_{0}, t_{0} | \mathbf{x}_{0}, t)$$

$$= u_{\alpha}(\mathbf{x} + \rho(\mathbf{x}_{0}, t_{0} | t), t) - u_{\alpha}(\mathbf{x}_{0} + \rho(\mathbf{x}_{0}, t_{0} | t), t).$$

(23)

Quasi-Langrangian transformation. II. Navier-Stokes equations

Let $w_{\alpha}(\mathbf{x}_{0},t_{0}|\mathbf{x},t)$ be defined as

$$W_{\alpha}(\mathbf{x}_0, t_0 | \mathbf{x}, \mathbf{x}', t) \equiv w_{\alpha}(\mathbf{x}_0, t_0 | \mathbf{x}, t) - w_{\alpha}(\mathbf{x}_0, t_0 | \mathbf{x}', t)$$
(24)

$$= v_{\alpha}(\mathbf{x}_0, t_0 | \mathbf{x}, t) - v_{\alpha}(\mathbf{x}_0, t_0 | \mathbf{x}', t).$$
(25)

Differentiating with respect to time gives an equation of the form

$$\frac{\partial W_{\alpha}}{\partial t} + \mathcal{V}_{\alpha\beta\gamma}W_{\beta}W_{\gamma} = \nu(\nabla_{\mathbf{x}}^2 + \nabla_{\mathbf{x}'}^2)W_{\alpha} + F_{\alpha}, \tag{26}$$

where $\mathcal{V}_{\alpha\beta\gamma}$ is a bilinear integrodifferential operator of the form

$$\mathcal{V}_{\alpha\beta\gamma}W_{\beta}W_{\gamma} \equiv \iint d\mathbf{X}_{\beta}d\mathbf{X}_{\gamma} V_{\alpha\beta\gamma}(\mathbf{x}_{0}|\mathbf{X}_{\alpha},\mathbf{X}_{\beta},\mathbf{X}_{\gamma})W_{\beta}(\mathbf{X}_{\beta})W_{\gamma}(\mathbf{X}_{\gamma}).$$
(27)

9

All the terms, and especially the nonlinear term, are written in terms of velocity differences!

Quasi-Langrangian transformation. III. The theory

Consider the Dyson-Wyld equations with

$$F_{\alpha\beta}(\mathbf{x}_0, t_0 | \mathbf{x}_1, \mathbf{x}_2, t) = \left\langle w_\alpha(\mathbf{x}_0, t_0 | \mathbf{x}_1, t) w_\beta(\mathbf{x}_0, t_0 | \mathbf{x}_2, t) \right\rangle$$
(28)

$$G_{\alpha\beta}(\mathbf{x}_0, t_0 | \mathbf{x}_1, \mathbf{x}_2, t) = \left\langle \frac{\delta w_\alpha(\mathbf{x}_0, t_0 | \mathbf{x}_1, t)}{\delta f_\beta(\mathbf{x}_0, t_0 | \mathbf{x}_2, t)} \right\rangle$$
(29)

Main results of L'vov and Procaccia theory.

- Individual diagrams in $\Sigma_{\alpha\beta}$ and $\Phi_{\alpha\beta}$ converge when $\ell_0 \to \infty$ and $\eta \to 0$.
- **Let** Thus, to n-loop order approximation we obtain K41 prediction $\zeta_n = n/3$.
- This is a generalization of Kraichnan's LHDIA theory.
- \checkmark Diagram locality and rigidity \implies Fusion Rules \implies Anomalous energy sink.
- Intermittency emerges via a multi-interaction effect involving all diagrams
- Scheme for perturbative calculation of scaling exponents ζ_n

Outline of my argument

- The L'vov-Procaccia theory aims to weaken the assumption of self-similarity used by Frisch (H2) while tolerating the other two assumptions: (H1) and (H3)
- A homogeneity assumption stronger than the assumption of local homogeneity, as envisioned by Frisch is required for
 - the elimination of the sweeping interactions
 - \bullet the derivation of the 4/5-law
- The quasi-Lagrangian formulation to eliminate the sweeping interactions uses an even stronger homogeneity assumption which involves many-time correlations instead of one-time correlations.
- Local homogeneity is in fact a consistent framework provided that the sweeping interactions can be eliminated in a more rigorous manner.

Definitions of local homogeneity. I.

The random velocity field \mathbf{u} , is a member of the homogeneity class $\mathcal{H}_m(\mathcal{A})$ where $\mathcal{A} \subseteq \mathbb{R}^d$ a region in \mathbb{R}^d , if and only if $\forall n \in \mathbb{N}^*, \forall \mathbf{x}_l, \mathbf{y}_k, \mathbf{y'}_k \in \mathcal{A}$ we have

$$\left(\sum_{l=1}^{m} \partial_{\alpha_{l},\mathbf{x}_{l}} + \sum_{k=1}^{n} (\partial_{\beta_{l},\mathbf{y}_{l}} + \partial_{\beta_{l},\mathbf{y}'_{l}})\right) \left\langle \left[\prod_{l=1}^{m} u_{\alpha_{l}}(\mathbf{x}_{l},t)\right] \left[\prod_{k=1}^{n} w_{\beta_{k}}(\mathbf{y}_{k},\mathbf{y}'_{k},t)\right]\right\rangle = 0$$

The random velocity field \mathbf{u} is a member of the homogeneity class $\mathcal{H}_m^*(\mathcal{A})$ where $\mathcal{A} \subseteq \mathbb{R}^d$ a region in \mathbb{R}^d , if and only if $\forall n \in \mathbb{N}^*, \forall \mathbf{x}_l, \mathbf{y}_k, \mathbf{y'}_k \in \mathcal{A}$ we have

$$\left(\sum_{l=1}^{m} \partial_{\alpha_{l},\mathbf{x}_{l}} + \sum_{k=1}^{n} (\partial_{\beta_{l},\mathbf{y}_{l}} + \partial_{\beta_{l},\mathbf{y}'_{l}})\right) \left\langle \left[\prod_{l=1}^{m} u_{\alpha}(\mathbf{x}_{l},t_{l})\right] \left[\prod_{k=1}^{n} w_{\beta_{k}}(\mathbf{y}_{k},\mathbf{y}'_{k},t)\right]\right\rangle = 0$$

We also write $\mathcal{H}_m\equiv\mathcal{H}_m(\mathbb{R}^d)$ and $\mathcal{H}_m^*\equiv\mathcal{H}_m^*(\mathbb{R}^d)$ and define

$$\mathcal{H}_{\omega}(\mathcal{A}) = \bigcap_{k \in \mathbb{N}} \mathcal{H}_{k}(\mathcal{A}) \quad \text{and} \quad \mathcal{H}_{\omega}^{*}(\mathcal{A}) = \bigcap_{k \in \mathbb{N}} \mathcal{H}_{k}^{*}(\mathcal{A}).$$
(30)

Definitions of local homogeneity. II.

The homogeneity classes are hierarchically ordered, according to the following relations

$$\mathcal{H}_{\omega}(\mathcal{A}) \subseteq \mathcal{H}_{k}(\mathcal{A}), \ \forall k \in \mathbb{N},$$
(31)

$$\mathcal{H}^*_{\omega}(\mathcal{A}) \subseteq \mathcal{H}^*_k(\mathcal{A}), \ \forall k \in \mathbb{N},$$
(32)

$$\mathcal{H}_{a}(\mathcal{A}) \subseteq \mathcal{H}_{b}(\mathcal{A}) \land \mathcal{H}_{a}^{*}(\mathcal{A}) \subseteq \mathcal{H}_{b}^{*}(\mathcal{A}), \ \forall a, b \in \mathbb{N} : a > b,$$
(33)

$$\mathcal{H}_a(\mathcal{A}) \subseteq \mathcal{H}_a^*(\mathcal{A}), \ \forall a \in \mathbb{N}.$$
 (34)

- Local homogeneity, in the sense of Frisch: $\mathbf{u} \in \mathcal{H}_0(\mathcal{A})$.
 - The homogeneity condition sufficient to
 - eliminate the sweeping interactions over the domain \mathcal{A} : $\mathbf{u} \in \mathcal{H}_1(\mathcal{A})$.
 - **prove the** 4/5-law over the domain \mathcal{A} : $\mathbf{u} \in \mathcal{H}_1(\mathcal{A})$.
 - semploy the Belinicher-L'vov quasi-Lagrangian transformation: $\mathbf{u} \in \mathcal{H}^*_{\omega}$.

Balance equations and sweeping. I.

- The clearest way to understand the sweeping interactions is by employing the balance equations introduced by L'vov and Procaccia (1996).
- The Navier-Stokes equations, where the pressure term has been eliminated, read

$$\frac{\partial u_{\alpha}}{\partial t} + \mathcal{P}_{\alpha\beta}\partial_{\gamma}(u_{\beta}u_{\gamma}) = \nu\nabla^{2}u_{\alpha} + \mathcal{P}_{\alpha\beta}f_{\beta}, \tag{35}$$

where $\mathcal{P}_{\alpha\beta} = \delta_{\alpha\beta} - \partial_{\alpha}\partial_{\beta}\nabla^{-2}$ is the projection operator

The Eulerian generalized structure function is defined as

$$F_n^{\alpha_1\alpha_2\cdots\alpha_n}(\{\mathbf{x},\mathbf{x}'\}_n,t) = \left\langle \left\lfloor \prod_{k=1}^n w_{\alpha_k}(\mathbf{x}_k,\mathbf{x}'_k,t) \right\rfloor \right\rangle,\tag{36}$$

where $\{\mathbf{x}, \mathbf{x}'\}_n$ is shorthand for a list of *n* position vectors.

Balance equations and sweeping. II.

The balance equations are obtained by differentiating the definition of F_n with respect to time t and substituting the Navier-Stokes equations:

$$\frac{\partial F_n}{\partial t} + D_n = \nu J_n + Q_n,\tag{37}$$

where D_n represents the contributions from the nonlinear term and

$$Q_{n}^{\alpha_{1}\alpha_{2}\cdots\alpha_{n}}(\{\mathbf{X}\}_{n},t) = \sum_{k=1}^{n} \left\langle \left[\prod_{l=1,l\neq k}^{n} w_{\alpha_{l}}(\mathbf{x}_{l},\mathbf{x}'_{l},t)\right] \mathcal{P}_{\alpha_{k}\beta}(f_{\beta}(\mathbf{x}_{k},t) - f_{\beta}(\mathbf{x}'_{k},t))\right\rangle$$
(38)

$$J_n^{\alpha_1\alpha_2\cdots\alpha_n}(\{\mathbf{X}\}_n, t) = \mathcal{D}_n F_n^{\alpha_1\alpha_2\cdots\alpha_n}(\{\mathbf{X}\}_n, t)$$
(39)

$$=\sum_{k=1}^{n} (\nabla_{\mathbf{x}_{k}}^{2} + \nabla_{\mathbf{x}'_{k}}^{2}) F_{n}^{\alpha_{1}\alpha_{2}\cdots\alpha_{n}}(\{\mathbf{X}\}_{n}, t),$$

$$(40)$$

Balance equations and sweeping. III.

L'vov and Procaccia (1996) showed that the contribution of the nonlinear term D_n can be rewritten as $D_n = \mathcal{O}_n F_{n+1} + I_n$ where \mathcal{O}_n is a linear integrodifferential operator, and I_n is given by

$$I_{n}^{\alpha_{1}\alpha_{2}\cdots\alpha_{n}}(\{\mathbf{X}\}_{n},t) = \sum_{k=1}^{n} (\partial_{\beta,\mathbf{x}_{k}} + \partial_{\beta,\mathbf{x}'_{k}}) \left\langle \mathcal{U}_{\beta}(\{\mathbf{X}\}_{n},t) \left[\prod_{l=1}^{n} w_{\alpha_{l}}(\mathbf{X}_{l},t)\right] \right\rangle,$$
(41)

where $\mathcal{U}_{\beta}(\{\mathbf{X}\}_n, t)$ is defined as

$$\mathcal{U}_{\alpha}(\{\mathbf{X}\}_{n},t) = \frac{1}{2n} \sum_{k=1}^{n} \left(u_{\alpha}(\mathbf{x}_{k},t) + u_{\alpha}(\mathbf{x}'_{k},t) \right).$$
(42)

- The second term, I_n , represents exclusively the effect of the sweeping interactions.
- \square To set $I_n = 0$ we need the homogeneity assumption $\mathbf{u} \in \mathcal{H}_1(\mathcal{A})$.

Dropping sweeping: The 4/5-law proof

- If we assume $\mathbf{u} \in \mathcal{H}_1(\mathcal{A})$ and set $I_2 = 0$, then one can calculate ζ_3 is from the solvability condition of the homogeneous equation $\mathcal{O}_2 F_3 = 0$, as shown by L'vov and Procaccia (1996).
- Use the conservation of energy to show that

$$\mathcal{D}_{2}F_{3}(\mathbf{x}_{1}, \mathbf{x}'_{1}, \mathbf{x}_{2}, \mathbf{x}'_{2}) = \frac{1}{2} \frac{d[S_{3}(r_{12}) - S_{3}(r_{12'})]}{dr_{1}} + \frac{1}{2} \frac{d[S_{3}(r_{1'2'}) - S_{3}(r_{1'2})]}{dr_{1'}}$$
$$= A[r_{12}^{\zeta_{3}-1} - r_{12'}^{\zeta_{3}-1} + r_{1'2'}^{\zeta_{3}-1} - r_{1'2}^{\zeta_{3}-1}].$$
(43)

where $r_{12} = \|\mathbf{x}_1 - \mathbf{x}_2\|$, etc.

- It follows that $D_n \approx \mathfrak{O}_2 F_3 = 0 \iff \zeta_3 = 1$
 - Dropping I_2 cannot be justified under $\mathbf{u} \in \mathcal{H}_0(\mathcal{A})$, i.e. local homogeneity in the sense of Frisch.

Dropping sweeping: The multifractal formalism.

- ٩
- The homogeneous equations $O_n F_{n+1} = 0$ are invariant with respect to the following group of transformations

$$\mathbf{r} \mapsto \lambda \mathbf{r}, \quad F_n \mapsto \lambda^{nh+\mathcal{Z}(h)} F_n.$$
 (44)

Thus, in an inertial range, solutions $F_{n,h}$ that satisfy the self-similarity property

$$F_{n,h}(\{\lambda \mathbf{x}_{k}, \lambda \mathbf{x}'_{k}\}_{k=1}^{n}, t) = \lambda^{nh+\mathcal{Z}(h)} F_{n,h}(\mathbf{x}_{k}, \mathbf{x}'_{k}\}_{k=1}^{n}, t),$$
(45)

are admissible.

The correct solution is the linear combination of these solutions, given by

$$F_n = \int d\mu(h) F_{n,h}.$$
(46)

This conclusion also needs the assumption $\mathbf{u} \in \mathcal{H}_1(\mathcal{A})$.

If we assume $\mathbf{u} \in \mathcal{H}_1(\mathcal{A})$, then we can simply "exterminate" the sweeping term, with no further worries.

Quasi-Langrangian to Eulerian. I. The claim

Consider the definitions

F

$$F_{n}^{\alpha_{1}\alpha_{2}\cdots\alpha_{n}}(\{\mathbf{x},\mathbf{x}'\}_{n},t) = \left\langle \left[\prod_{k=1}^{n} w_{\alpha_{k}}(\mathbf{x}_{k},\mathbf{x}'_{k},t)\right]\right\rangle,$$
(47)
$$F_{n}^{\alpha_{1}\alpha_{2}\cdots\alpha_{n}}(\mathbf{x}_{0},t_{0}|\{\mathbf{x},\mathbf{x}'\}_{n},t) = \left\langle \left[\prod_{k=1}^{n} W_{\alpha_{k}}(\mathbf{x}_{0},t_{0}|\mathbf{x}_{k},\mathbf{x}'_{k},t)\right]\right\rangle.$$
(48)

Lk=1

The claim of L'vov and Procaccia was that it can be shown that

$$\mathcal{F}_n(\mathbf{x}_0, t_0 | \{\mathbf{x}, \mathbf{x}'\}_n, t) = F_n(\{\mathbf{x}, \mathbf{x}'\}_n, t), \forall n \in \mathbb{N}^*$$
(49)

The claim can be rewritten equivalently as

$$W_{\alpha}(\mathbf{x}_0, t_0 | \mathbf{x}, \mathbf{x}', t) \overset{\mathbf{x}, \mathbf{x}'}{\sim} w_{\alpha}(\mathbf{x}, \mathbf{x}', t).$$
(50)

Quasi-Langrangian to Eulerian. II. Proofs

Proof was re-examined recently by Gkioulekas.

The claim holds if and only if

$$W_{\alpha}(\mathbf{x}_{0}, t_{0} + \Delta t | \mathbf{x}, \mathbf{x}', t) \overset{\mathbf{x}, \mathbf{x}'}{\sim} W_{\alpha}(\mathbf{x}_{0}, t_{0} | \mathbf{x}, \mathbf{x}', t), \ \forall \Delta t \in \mathbb{R} - \{0\}$$
(51)

 \checkmark If $u \in \mathcal{H}^*_{\omega}$, and u_{α} is incompressible, then

$$W_{\alpha}(\mathbf{x}_0, t_0 + \Delta t | \mathbf{x}, \mathbf{x}', t) \overset{\mathbf{x}, \mathbf{x}'}{\sim} W_{\alpha}(\mathbf{x}_0, t_0 | \mathbf{x}, \mathbf{x}', t).$$
(52)

 $u \in \mathcal{H}^*_\omega$ is a sufficient but perhaps not necessary assumption

- However, the assumption $\mathbf{u} \in \mathcal{H}_1(\mathcal{A})$ is **not** sufficient
- The artifact introduced by the quasi-Lagrangian formulation is that the turbulent velocity field is being perceived from the viewpoint of an arbitrary fluid particle whose own motion is also stochastic.

Quasi-Langrangian to Eulerian. III. Another proof

Introduce the conditional correlation tensor defined as

$$\mathcal{F}_{n}(\mathbf{x}_{0}, t_{0}, \mathbf{y} | \{\mathbf{X}\}_{n}, t) = \left\langle \prod_{k=1}^{n} W_{\alpha_{k}}(\mathbf{x}_{0}, t_{0} | \mathbf{x}_{k}, \mathbf{x}'_{k}, t) \middle| \rho(\mathbf{x}_{0}, t_{0} | t) = \mathbf{y} \right\rangle$$
(53)
$$= \left\langle \prod_{k=1}^{n} w_{\alpha_{k}}(\mathbf{x}_{k} + \mathbf{y}, \mathbf{x}'_{k} + \mathbf{y}, t) \middle| \rho(\mathbf{x}_{0}, t_{0} | t) = \mathbf{y} \right\rangle$$
(54)

P The random velocity field **u** is a member of the homogeneity class \mathcal{H}_0^c , if and only if $\forall \mathbf{y} \in \mathbb{R}^d, \forall \mathbf{x}_k, \mathbf{x'}_k \in \mathbb{R}^d$ we have

$$\sum_{k=1}^{n} (\partial_{\beta_k, \mathbf{y}_k} + \partial_{\beta, \mathbf{y}'_k}) \mathcal{F}_n(\mathbf{x}_0, t_0, \mathbf{y} | \{\mathbf{X}\}_n, t) = 0, \, \forall n \in \mathbb{N}, n > 1$$
(55)

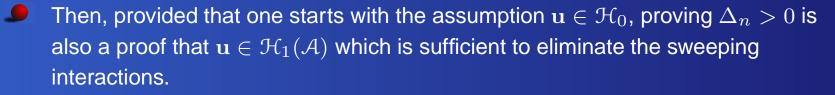
Elimination of the sweeping interactions. I.

- One may conjecture that the sweeping interactions act as a large-scale forcing term whose effect is forgotten in the inertial range.
- It is possible to use the theoretical work based on the quasi-Lagrangian transformation in a way that requires only the assumption $\mathbf{u} \in \mathcal{H}_1(\mathcal{A})$.
 - The quasi-Lagrangian formulation modifies the Navier-Stokes equations by redefining the material derivative.
 - The modified equation remains mathematically equivalent to the Navier-Stokes equation if the velocity field is reinterpreted from an Eulerian field into a quasi-Lagrangian field.
 - For this reinterpretation necessitates the stronger assumption $\mathbf{u} \in \mathcal{H}^*_{\omega}$ to enable a return back to the Eulerian representation.
 - If we accept the hypothesis that the sweeping interactions act as a large-scale forcing, we can just modify the equation of motion in precisely the same way without interpreting the velocity field as quasi-Lagrangian, but rather as Eulerian.

Elimination of the sweeping interactions. II.

To prove that the sweeping interactions act as a large-scale forcing it is sufficient to calculate the scaling exponent Δ_n associated with the ratio

$$\frac{I_n(R\{\mathbf{X}\}_n)}{(\mathcal{O}_n F_{n+1})(R\{\mathbf{X}\}_n)} \sim \left(\frac{R}{\ell_0}\right)^{\Delta_n},\tag{56}$$



If we assume that the generalized structure functions $F_n(R\{\mathbf{X}\}_n)$ satisfy the fusion rules, then the scaling exponent of $\mathcal{O}_n F_{n+1}(R\{\mathbf{X}\}_n)$ is $\zeta_{n+1} - 1$ and it follows that $\Delta_n = \lambda_n - (\zeta_{n+1} - 1)$.

The problem of calculating the scaling exponents λ_n needs to be investigated primarily with numerical simulations and the analysis of experimental data.

Elimination of the sweeping interactions. III.

Commit the following crimes against reality:

- Assume that the velocity field $u_{\alpha}(\mathbf{x}, t)$ can be modeled as a random gaussian delta-correlated (in time) stochastic field acting at large scales.
- Assume that the velocity field $u_{\alpha}(\mathbf{x}, t)$ has an effect on the velocity differences $w_{\alpha}(\mathbf{x}, \mathbf{x}', t)$ via the sweeping interactions

Disregard that $u_{\alpha}(\mathbf{x}, t)$ and $w_{\alpha}(\mathbf{x}, \mathbf{x}', t)$ are obviously constrained by the definition of $w_{\alpha}(\mathbf{x}, \mathbf{x}', t)$.

Using the multifractal formulation, the contribution that supports the Holder exponent h gives $\zeta_n = nh + \mathcal{Z}(h)$, which gives the following evaluation:

$$\Delta_n(h) = -2h + \lambda + 2 \tag{57}$$

- The window for positive scaling exponents Δ_n covers the entire range $h \in (0, 1)$ of local scaling exponents.
- The real challenge is to determine what happens in reality

Conclusion

- Analytical theories are an extension of the Frisch reformulation of K41
- The main stumbling block is the elimination of the sweeping interactions
- Lagrangian methods do not prove that the sweeping interactions are negligible in the inertial range.
- The open question: prove that sweeping is negligible in the inertial range.