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Example 1 : “Weak” wave turbulence on a lake
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Example 2 : “Strong” wave turbulence on the ocean
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What is Wave Turbulence?
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Waves are damped at very
large and / or very small
scales. Scale separation.

Energy transferred by
interaction between waves

Concept of inertial range

In the limit of large inertial ranges, system often becomes scale
invariant and exhibit a power law spectrum :E(k) ∼ k−x.

Turbulence and Nonequilibrium Stat Mech, Warwick, July 2006 – p.4/23



Hamiltonian Model

Hamiltonian evolution for the complex Fourier amplitudes, a~k
, a∗~k :

∂a~k

∂t
= i

δH

δa∗~k
+ f~k − γ~k

a~k

Wave-vector, ~k is a d-dimensional vector.

H has a (linear) kinetic and (nonlinear) potential term

H = T + U =

∫

t(k)dk +

∫

u(k)dk

where t(k) = ω~k
a~k
a∗~k

.

Elementary solutions : a(x, t) =
∫

dk ake
i(k·x−ωkt).

Forcing and dissipation functions are separated in ~k-space.
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Structure of the interaction
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3 wave systems :

u(k1) =

∫

Vk1k2k3

(

ak1
ak2

a∗
k3

+ a∗
k1
a∗
k2
ak3

)

δ(k1 − k2 − k3) dk2dk3

4 wave systems :

u(k1) =

∫

Tk1k2k3k4

(

ak1
ak2

a∗
k3
a∗
k4

+ a∗
k1
a∗
k2
ak3

ak4

)

δ(k1 + k2 − k3 − k4) dk2dk3dk4
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Conservation Laws and Scale Invariance

Scale invariance: Many interesting cases possess scale invariance :

Dispersion relation : ωhk = hαωk.

Nonlinear interactions :

Vhk1hk2hk3
= hβVk1k2k3

3-wave

Thk1hk2hk3hk4
= hβTk1k2k3k4

4-wave

The parameters α, d and β determine the scaling properties of the
system.
Conservation laws:

Energy, H.

Momentum : ~P =
∫

ka~k
a∗~k
dk. (but often, ~P = 0)

Wave-action : N =
∫

a~k
a∗~k
dk. (4-wave only)
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A starting point...

Hamilton’s equations give an equation governing for the spectrum.
For the 3-wave case :

∂n(k1)

∂t
= 2

∫

Vk1k2k3
Im〈a∗k1

ak2
ak3

〉δ(k1 − k2 − k3)dk2dk3

− 2

∫

Vk2k3k1
Im〈a∗k2

ak3
ak1

〉δ(k2 − k3 − k1)dk2dk3

− 2

∫

Vk3k1k2
Im〈a∗k3

ak1
ak2

〉δ(k3 − k1 − k2)dk2dk3

Similarly the 4-wave case ...but now what? Closure problem.
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The weak turbulence limit

In weak turbulence, potential energy is small compared to the
kinetic energy.

u(k)

t(k)
= ǫ≪ 1

ǫ provides a small parameter to do perturbation theory.

Nonlinearity becomes localised on resonant triads or quartets.
Resonances transfer energy over long timescales (1/ǫ2)

Roughly :

Im〈a∗k1
ak2

ak3
〉 ∼ Vk1k2k3

(n2n3 − n1n2 − n1n3)δ(ω1 − ω2 − ω3)

δ(k1 − k2 − k3)

Lowest order of perturbation theory gives a wave kinetic theory
for the slow evolution of n(k).
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The Wave Kinetic Equation

Isotropic 3-wave kinetic equation in frequency space is:

∂n1

∂t
= ǫ2

∫

Uω1ω2ω3
(n2n3 − n1n2 − n1n3)δ(ω1 − ω2 − ω3)dω2dω3

− ǫ2
∫

Uω2ω3ω1
(n3n1 − n2n3 − n2n1)δ(ω2 − ω3 − ω1)dω2dω3

− ǫ2
∫

Uω3ω1ω2
(n1n2 − n3n1 − n3n2)δ(ω3 − ω2 − ω1)dω2dω3

4wave kinetic equation in frequency space :

∂n1

∂t
= ǫ2

∫

Uω1ω2ω3ω4
(n2n3n4 + n1n3n4 − n1n2n4 − n1n2n3)

δ(ω1 + ω2 − ω3 − ω4)dω2dω3dω4
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Kolmogorov-Zakharov Solutions of the Kinetic Equation

Stationary scaling solutions, n(k) = c k−x, can be found exactly :

(ω2, ω3) → (
ω1ω

′

2

ω′

3

,
ω2

1

ω′

3

), (ω2, ω3) → (
ω2

1

ω′

2

,
ω1ω

′

3

ω′

2

).

3W case : kinetic energy cascade :

n(k) = c
(P )
3

√
Pk−β−d

4W case : Two cascades - kinetic
energy and wave action :

n(k) = c
(P )
4 P 1/3k−(2β+3d)/3

n(k) = c
(Q)
4 Q1/3k−(2β−3d+α)/3

m
2

m1

m 2

m 1

δ(

−
)

m−

m
1 m

2

δ(m
−

−
)

m 1

m 2

δ(

−
)

m−

m
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What about the strong turbulence case?

In the strong turbulence case, potential energy may be as
larger or larger than the kinetic energy.

No perturbative expansion.

However, conservation laws still hold but it is total energy rather
than kinetic energy which is conserved. For 4W case, wave
action remains conserved.

More like hydrodynamic turbulence case.

Conservation laws should still provide constraints on the
inertial range statistics, even for strong turbulence in the spirit
of Kolmogorov’s 4/5 Law.
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Exact Conservation Law for Wave Action

Consider 4-wave wave-action cascade. In the inertial range:

∂Nk1

∂t
≡ ∂Qk1

∂k1

=

∫

∏

i=2,3,4

(kd−1
i dki) [L1,2,3,4 + L2,1,3,4 − L3,4,1,2 − L4,3,1,2]

where

Nk1
=

∫

n(k1)k
d−1
1 dΩ1, L1,2,3,4 = Tk1,k2,k3,k4

Kk1,k2,k3,k4

Kk1,k2,k3,k4
=

∫

∏

i=1,2,3,4

dΩiIm〈a∗
k1
a∗
k2
ak3

ak4
〉δ(k1 + k2 − k3 − k4)

This is true whether nonlinearity is weak or strong.
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Constant Flux Relation for Wave Action

Assume Kk1,k2,k3,k4
is a scaling function of degree, h, with the

obvious symmetries.

Kak1,ak2,ak3,ak4
= ahKk1,k2,k3,k4

One can still apply the Zakharov Transformation even without the ω
delta functions, to obtain:

∂Nk1

∂t
=

∫

∏

i=2,3,4

(kd−1
i dki)L1,2,3,4 [ky

1 + ky
2 − ky

3 − ky
4 ]

where y = −h− β − 4d. RHS clearly vanishes for h = β + 4d,
corresponding to a constant flux of n(k) in the inertial range.
Weak limit :

Kk1,k2,k3,k4
∼ T (k)n3δ(k)δ(ω) ∼ kβ−3∗(2β+3d−α)/3+d−α ∼ k−β−4d
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Exact conservation law for total energy

Problem: if the nonlinearity is strong then it is the total energy
density, h(k) = t(k) + u(k), rather than just the kinetic energy
density whose flux should be constant in the stationary state.
The following statement is exact :

∂hk1

∂t
≡ ∂Jk1

∂k1
= 4

∫

∏

i=2,3

(kd−1
i dki) [L1,2,3 − L2,1,3]

hk1
=

∫

(t(k1) + u(k1)) k
d−1
1 dΩ1, L1,2,3 = Vk1,k2,k3

Kk1,k2,k3

Kk1,k2,k3
=

∫

∏

i=1,2,3

dΩiRe〈a∗
k1
ȧ∗
k2
ak3

〉δ(k1 − k2 − k3)
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Constant Flux Relation for Energy

Again, if Kk1,k2,k3
is a scaling function of degree, h, the Zakharov

transformation can be applied to give

∂Jk1

∂k1
= 4

∫

∏

i=2,3

(kd−1
i dki)L1,2,3

[

1 −
(

k1

k2

)3d+β+h
]

Clearly we have a constant flux when h = −β − 3d.
This is different from previously. The CFR correlation function
Re〈a∗

k1
ȧ∗
k2
ak3

〉 contains time derivatives.
Corresponding result for 4-wave energy cascade is :

∫

∏

i=1,2,3,4

dΩiRe〈a∗
k1
ȧ∗
k2
ak3ak4

〉δ(k1 + k2 − k3 − k4) ∼ k−β−4d
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The Assumption of Locality

In deriving the CFR scaling, we implicitly assumed convergence of
the exact collision integral when the flux-carrying correlation
function takes the scaling form. For example, for the 3-wave case,
we can deduce that

Kk1,k2,k3
= (k2k3)

h
2 Φ

(

k2

k3

)

We require that the scaling function, Φ decays fast enough at 0 and
∞ to ensure convergence. This is to say that the transfer of energy
is local. Our arguments at present do not tell anything about Φ.

For weak turbulence, locality can be checked a posteriori. For hy-

drodynamic turbulence no such problem exists (the entire argument

is local in x.) Here, it is an assumption.
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The MMT Model

The MMT model is the simplest real wave turbulence model :

H =

∫

wk1
φk1

φ∗k1
dk1+

∫

Tk1k2k3k4
φ∗k1

φ∗k2
φk3

φk4
δ(k1+k2−k3−k4)dk1,2,3,4

with ωk = kα and Tk1k2k3k4
= (k1k2k3k4)

β

4 .

Original model is one dimensional but it can clearly be written
down in higher dimensions too.

Does not generally exhibit weak turbulence due to resonance
sparsity in 1-d.

Exhibits direct and inverse cascades.

A good candidate to check CFR?
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A Tentative Numerical Result for the MMT Model
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A “Shell” Model of 3-wave Turbulence

What is the simplest possible system which should obey a
non-trivial CFR?

Discrete waves (0-dimensional)

3-wave interactions

Positive wave vectors only.

“Local” interactions only : k + k → 2k. So only have powers of
2 : kn = 2n.

These simplifications lead one to write down the following minimal
Hamiltonian:

H =
∑

n

kα
nana

∗

n + kβ
n−1(a

∗

na
2
n−1 + ana

∗2
n−1)

Really a system of oscillators, strongly coupled in a special way.
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Momentum CFR for the “Shell” Model

Equation of motion :

∂an

∂t
= iωnan + igkβ

n−1a
2
n−1 + 2igkβ

nan−1ān

Minimal model conserves H and momentum P =
∑

n knana
∗

n.

Momentum cascade is inverse and energy cascade is direct.

Force and damp different modes to generate “turbulence”.

Model is exactly solvable for the stationary states. Momentum
CFR :

Im〈an+1a
∗2
n 〉 = −JP

4
k−β−1

n

where JP is the momentum flux.
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Numerical Confirmation of Momentum CFR for the “Shell” Model

Numerical integration of the minimal model with forcing and
damping confirm the CFR prediction for momentum :
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Corresponding energy cascade is still a work in progress.
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Conclusions and Ongoing Work

Conclusions:

Conservation laws in wave turbulence can be used to fix the
scaling of the flux-carrying correlation function in the inertial
range, even in the case of strong wave turbulence.

Energy conservation in wave turbulence, (assuming that our
results are borne out by numerics), is of a different character to
hydrodynamic turbulence. It links correlation functions of
different order.

Current work:

Verify energy cascade in the minimal model.

Observe CFR scaling for more realistic models, especially
MMT.

Physical predictions in real space?
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