Inverse cascades and conformally invariant curves

Antonio Celani CNRS - INLN

With: D. Bernard, LPT ENS G. Boffetta, U.Torino G. Falkovich, Weizmann

Questions

- Is 2D NS the only system displaying conformally invariant isolines ?
- Do other systems sharing this property, if any, fall into the same universality class (percolation) ?
- Can we predict the universality class from scaling arguments ?
- Are isolines conformally invariant in the direct cascade range of 2D NS as well ?

Surface Quasi-Geostrophic turbulence

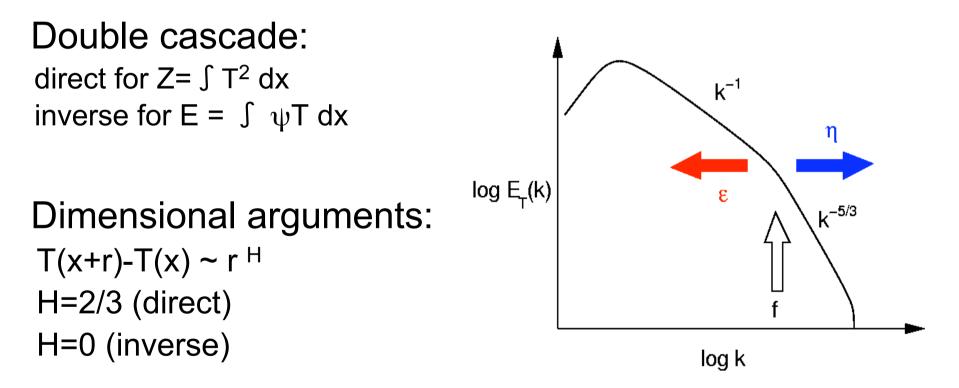
 Temperature advection at the surface of a volume of constant potential vorticity (Held et al, JFM 1995)

$$\partial_{t} T + v \nabla T = \kappa \nabla^{2}T + f - T/\tau$$

 $v = z \ x \nabla \psi$

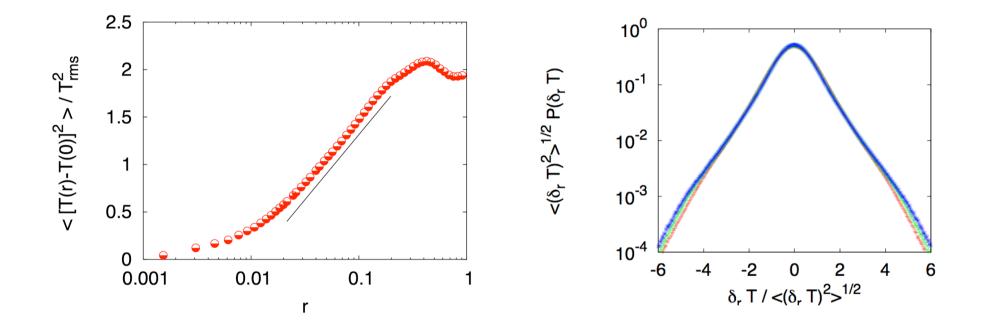
$$\psi(x,t) = \int |x-y|^{-1} T(y,t) dy$$

Phenomenology of SQG turbulence



DNS: Pierrehumbert *et al*, Chaos Sol Fract 1994, Held *et al* JFM 1995, Schorghofer PRE 2000, Smith *et al* JFM 2002, Celani *et al* NJP 2002

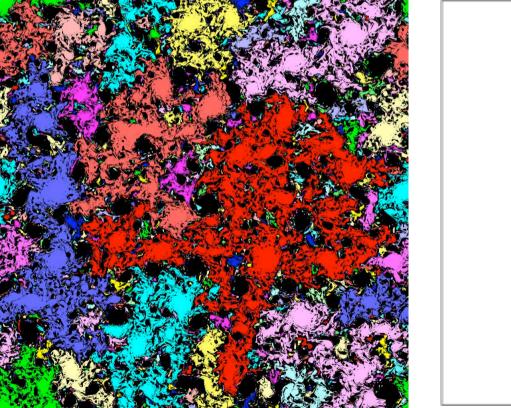
Inverse cascade in SQG turbulence

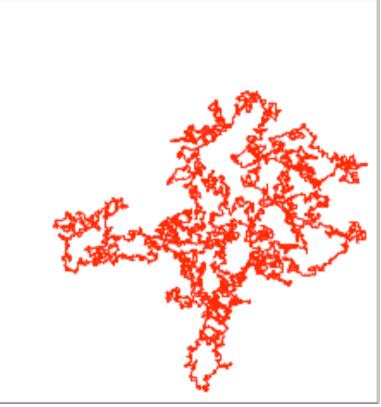


- Logarithmic correlations
- Self-similarity

Clusters and loops

- Clusters: connected domains of like-sign temperature
- Loops: isolevel lines topologically equivalent to circles





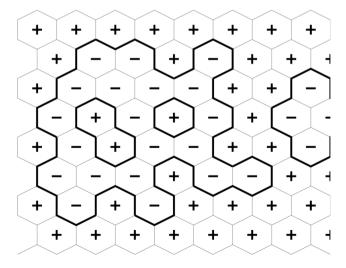
Cluster and loop statistics

- The temperature field is self-similar with H=0
- The fractal dimension of loops is 3/2

 [Cardy 1994, Saleur Duplantier PRL 1987
 D_F=(3-H)/2 for 0<H<1 Kondev & Henley PRL 1995]
- Same as for O(2) and 4-state Potts model
- → Predictions for various fractal dimensions and probability density functions

O(n) model

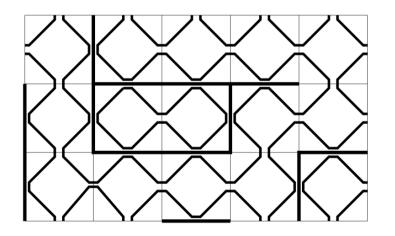
- $Z = Tr \prod_{rr'} (1 + x s^a_r s^b_{r'})$ a,b=1,...,n $Tr s^a_r s^b_r = \delta^{ab}$
- Random graph representation $Z = \sum_{graphs} x^{length} n^{number of loop}$
- n=1 Ising
- n=2 maps to SOS model
- n=0 SAW
- n=-2 LERW



Potts model

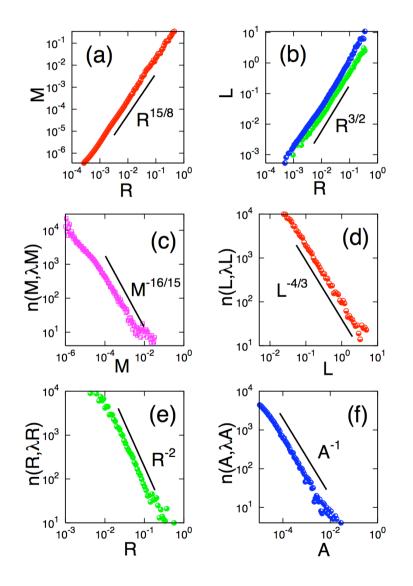
- $Z = \text{Tr} \exp \left[\beta J \sum_{rr'} \delta_{s_{r'},s_{r'}} \right] = \text{Tr} \prod_{rr'} (1-p + p \delta_{s_{r'},s_{r'}})$ $s=1,...,Q \quad \exp \beta J = (1-p)^{-1}$
- Random graph representation (Fortuin-Kasteleyn)

 $Z = \sum_{\text{graphs}} p^{\text{edges}} (1-p)^{\text{edges in the complement}} Q$ connected components



 Boundaries of critical FK clusters correspond to loops in the dense phase of the O(n) model with n=Q^{1/2}

Clusters and loops in SQG turbulence



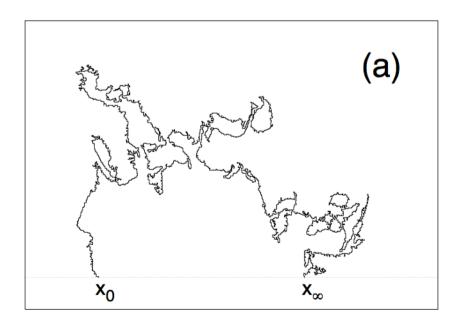
- Fractal dimension of clusters and loops
- Number of clusters of given mass
- Number of loops of given length, radius of gyration, area

Are loops conformally invariant curves ?

- Conjecture: locally equivalent to SLE₄
- Verification: requires an algorithm to extract the driving function from candidate SLE traces
- Difficulties: loops, no locality

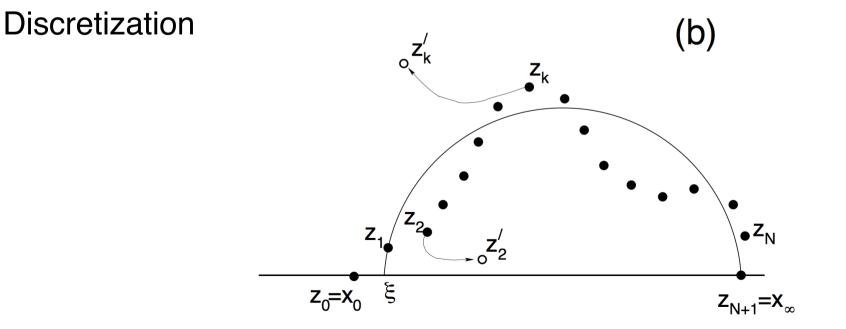
From loops to SLE traces

loop surgery

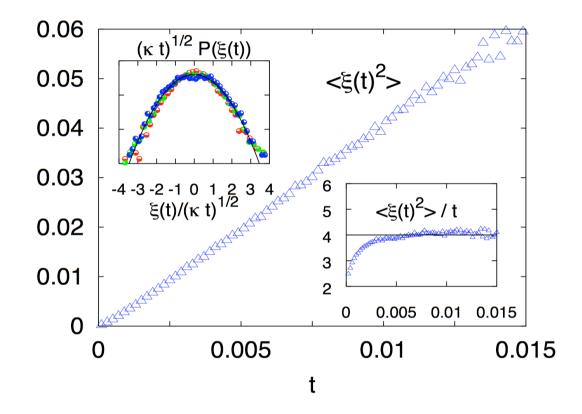


From loops to SLE traces

Chordal SLE from x_0 to x_∞ in the upper half-plane $\partial_t g = 2 / \{ \phi(g_t) [\phi(g_t) - \xi_t] \}$ $\phi(z) = x_0 + (x_\infty - x_0)(z - x_0)/(x_\infty - z_t)$



Statistics of the driving function

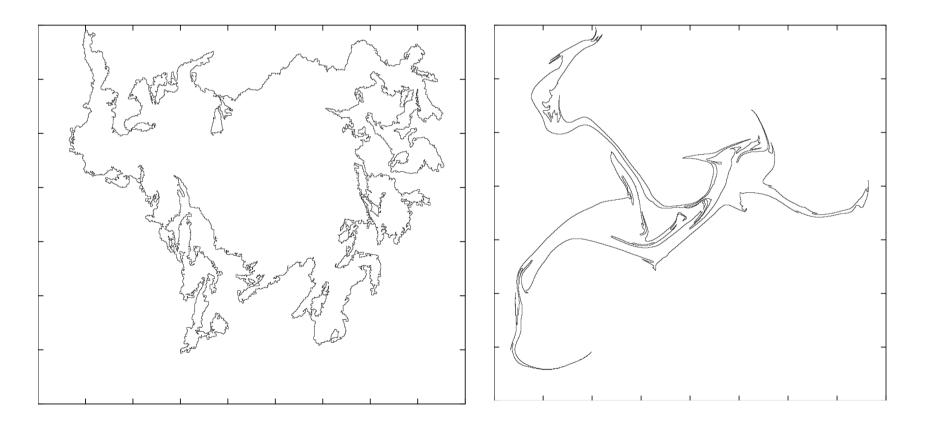


• $\xi(t)$ is an effective diffusion process with $\kappa=4$ \rightarrow loops are statistically equivalent to SLE₄

Inverse vs direct cascades

SQG turbulence inverse cascade

2D NS turbulence direct cascade



Conclusions

- Evidence for conformal invariance of isolevel lines in Surface Quasi-Geostrophic turbulence
- Loops are locally SLE₄
- Loops in NS 2D direct cascade are not SLE

Perspectives

Active scalar models (Pierrehumbert *et al*, Chaos Sol Fract 1994)

$$\partial_{t} T + v \nabla T = \kappa \nabla^{2} T + f$$

 $v = z x \nabla \psi$

$$\psi(\mathbf{x},\mathbf{t}) = \int |\mathbf{x}-\mathbf{y}|^{\alpha-2} T(\mathbf{y},\mathbf{t}) d\mathbf{y}$$

 α = 1 : Surface Quasi-Geostrophic α → 2 : 2D Navier-Stokes α = -2 : Charney-Hasegawa-Mima

Perspectives: active scalar

- Dimensional arguments for the inverse cascade: $H = (2-2\alpha)/3$
- Fractal dimension of loops $(3-H)/2 = (7+2\alpha)/6$

(in the range 0 < H < 1 corresponding to $1 > \alpha > -1/2$)

• Conjecture: isolevel lines are SLE_{κ} with $\kappa = 4(1 + 2\alpha)/3$

Open issues

- CFT for inverse cascades ?
- Are correlation functions conformally invariant ?
- Markov domain property ?
- Relationship to stat mech models (point vortices) ?