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nearly all the material in this talk is originally due to
G Lawler, O Schramm and W Werner



Random curves in physical models

» many important physical processes give rise to self-similar
random curves in the plane, e.g.

» percolation
» cluster boundaries in the Ising model

» self-avoiding walks
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many important physical processes give rise to self-similar
random curves in the plane, e.g.

percolation
cluster boundaries in the Ising model
self-avoiding walks

turbulence?



Critical Percolation

» cells of a honeycomb lattice independently coloured black/white
with equal probability

» cluster distribution
» cluster boundaries

» statistical scale
invariance

» conformal
invariance

> is there a crossing?

» Ising interactions




Self-avoiding Walk

» all non-intersecting walks of fixed length given equal weight

SAW in plane - 1,000,000 steps



in the continuum limit (at critical point) these become a set of
fractal curves - what is the measure on this set?

or, what is the measure on just one of them?

» specify conditions on the boundary of a simple connected

domain D such that there is always a single open curve from ry
to r:



Curves as growth processes

» such curves can be ‘grown’ on the lattice by a discrete
exploration process:




Curves as growth processes

» such curves can be ‘grown’ on the lattice by a discrete
exploration process:

» SLE describes the continuous version of this



The postulates of SLE

Property 1. Conditional measure on -, in domain D, given -y, is the
same as the unconditional measure on 7, in the modified domain

D\’Yl-
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Property 2 (conformal invariance.)
» Let ® be a conformal mapping of D to D’
» scaling limit of a lattice model in D gives a measure on curves -y
inD
» this gives a measure on the image curves ®(y) in D’

» this is the same as that given by the scaling limit of the same
lattice model defined in D’



Loewner evolution (1923)

» choose D = upper half plane H

» let v, be the curve at time ¢
/gt\\

&
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> let g/(z) be the conformal mapping which sends H \ ~; to H,
hydrodynamic normalisation:

2t
+ - (as z — o0)

g:(z)~z+0—|—z

» g; sends the growing tip into a; on the real axis



Example: v; = (a,a + ib)
g@) =a+ ((z—a) +4)'"

where b = 2¢1/2,

» more generally

gieor(2) ~ ar + ((8:(2) — ar)? +401) "2



» the evolution of g, satisfies the Loewner equation
dg(z) . 2

dt 8:(2) —a

» if curve is continuous so is a;

» so instead of thinking about a measure on curves we can think
about a measure on continuous functions a;



» the evolution of g, satisfies the Loewner equation
dg(z) . 2

dt 8:(2) —a

» if curve is continuous so is a;

» so instead of thinking about a measure on curves we can think
about a measure on continuous functions a;

Theorem [Schramm]: if Properties 1-2 hold then a, is proportional
to a standard Brownian motion.

That is
ar = \/EBI



Idea of proof

/ét\\
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evolve for time ¢ then for a further time s — ¢

image under g, is same as evolving for time s — ¢ starting from a;
as — a, given a, has the same law as a,;_; given ag

A(ns1)5t — Gnor are i.i.d. random variables for all 5z > 0
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Brownian motion

E [(as - a,)z] = Kls — 1



Universality classes
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different values of « are conjectured (in some cases proved) to
correspond to different universality classes of 2d equilibrium
critical behaviour, eg:

K= % self-avoiding walks
Kk = 3 Ising domain walls
x = 4 level lines at roughening transition

r = 6 percolation cluster boundaries



Some properties of SLE
> leti[ = Xy — Q¢
» points on the real axis evolve according to Bessel process

2dt
det - = — \/EdB[
Xt

» if kK > 4, X, — 0 (almost surely)

» the curve swallows a whole region:




» for k < 4 the curve is simple

» for 4 < k < 8 it has double points (on all length scales):

» for k > 8 itis space-filling

» fractal dimension for k < &:

df =1+ /8



Sample calculation: the crossing formula for percolation

» is there a left-right crossing of the rectangle?
» conformally map to H

> is there a crossing on white from (0, x;) to (—o0, x1)?
» happens iff x; gets swallowed by the SLE before x;



Let P(x1,x2) = Pr(X;; — 0 before xy,)

» evolve for time dt

2dt 2dt
P(Xl,XZ) =E |:P <X1 + ; - \/Ech X2 + ; - \/EdBt>:|

» equate terms O(dr), using E[dB;] = 0 and E[(dB,)?| = dt
20 20 k(0 8\
(maxl t oo T2 <al + a) )P(’““”) -

» P depends only on 7 = —x,/x; = hypergeometric equation,
solution (x = 6):

I'(3)
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Further results and extensions

» most of the previously known and conjectured critical exponents
of 2d critical behaviour can be derived by asking the right
questions in SLE

» generalisation to N curves

dgt

Mz
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le gt Jt
» the a; satisfy Dyson’s Brownian motion

» measures on closed loops can also be constructed (CLE)

» deep connection with conformal field theory



Some References

» papers by Lawler, Schramm, Werner on arXiv:math.PR
For physicists:
» W. Kager and B. Nienhuis, A guide to stochastic Loewner
evolution and its applications, math-ph/0312251
» J. Cardy, SLE for theoretical physicists, cond-mat /0503313

» M. Bauer and D. Bernard, 2D growth processes: SLE and
Loewner chains, math-ph/0602049



