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Random curves in physical models

I many important physical processes give rise to self-similar
random curves in the plane, e.g.

I percolation
I cluster boundaries in the Ising model
I self-avoiding walks
I turbulence?
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Critical Percolation

I cells of a honeycomb lattice independently coloured black/white
with equal probability

I cluster distribution
I cluster boundaries
I statistical scale

invariance
I conformal

invariance
I is there a crossing?
I Ising interactions



Self-avoiding Walk

I all non-intersecting walks of fixed length given equal weight
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I in the continuum limit (at critical point) these become a set of
fractal curves - what is the measure on this set?

I or, what is the measure on just one of them?
I specify conditions on the boundary of a simple connected

domain D such that there is always a single open curve from r1
to r2:
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Curves as growth processes

I such curves can be ‘grown’ on the lattice by a discrete
exploration process:

I SLE describes the continuous version of this
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The postulates of SLE
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Property 1. Conditional measure on γ2 in domain D, given γ1, is the
same as the unconditional measure on γ2 in the modified domain
D \ γ1.



D
D

Property 2 (conformal invariance.)
I Let Φ be a conformal mapping of D to D′
I scaling limit of a lattice model in D gives a measure on curves γ

in D
I this gives a measure on the image curves Φ(γ) in D′
I this is the same as that given by the scaling limit of the same

lattice model defined in D′



Loewner evolution (1923)

I choose D = upper half plane H
I let γt be the curve at time t

ta

gt

I let gt(z) be the conformal mapping which sends H \ γt to H,
hydrodynamic normalisation:

gt(z) ∼ z + 0 +
2t
z

+ · · · (as z →∞)

I gt sends the growing tip into at on the real axis



Example: γt = (a, a + ib)

gt(z) = a +
(
(z− a)2 + 4t

)1/2

where b = 2t1/2.

I more generally

gt+δt(z) ≈ at +
(
(gt(z)− at)2 + 4δt

)1/2



I the evolution of gt satisfies the Loewner equation

dgt(z)
dt

=
2

gt(z)− at

I if curve is continuous so is at

I so instead of thinking about a measure on curves we can think
about a measure on continuous functions at

Theorem [Schramm]: if Properties 1-2 hold then at is proportional
to a standard Brownian motion.
That is

at =
√

κBt
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Idea of proof

gt

at

s

t

0

I evolve for time t then for a further time s− t
I image under gt is same as evolving for time s− t starting from at

I as − at given at has the same law as as−t given a0

I a(n+1)δt − anδt are i.i.d. random variables for all δt > 0
I Brownian motion

E
[
(as − at

)2
]

= κ|s− t|



Universality classes

I different values of κ are conjectured (in some cases proved) to
correspond to different universality classes of 2d equilibrium
critical behaviour, eg:

I κ = 8
3 self-avoiding walks

I κ = 3 Ising domain walls
I κ = 4 level lines at roughening transition
I κ = 6 percolation cluster boundaries



Some properties of SLE
I let x̃t = xt − at

I points on the real axis evolve according to Bessel process

dx̃t =
2dt
x̃t
−√κdBt

I if κ > 4, x̃t → 0 (almost surely)
I the curve swallows a whole region:

x0



I for κ ≤ 4 the curve is simple
I for 4 < κ < 8 it has double points (on all length scales):

I for κ ≥ 8 it is space-filling
I fractal dimension for κ ≤ 8:

df = 1 + κ/8



Sample calculation: the crossing formula for percolation
I is there a left-right crossing of the rectangle?
I conformally map to H

0 2x1x

I is there a crossing on white from (0, x2) to (−∞, x1)?
I happens iff x1 gets swallowed by the SLE before x2



Let P(x1, x2) = Pr(x̃1t → 0 before x̃2t)

I evolve for time dt

P(x1, x2) = E
[

P
(

x1 +
2dt
x1

−√κdBt, x2 +
2dt
x2

−√κdBt

)]

I equate terms O(dt), using E[dBt] = 0 and E
[
(dBt)2

]
= dt(

2
x1

∂

∂x1
+

2
x2

∂

∂x2
+

κ

2

(
∂

∂x1
+

∂

∂x2

)2
)

P(x1, x2) = 0

I P depends only on η = −x2/x1 ⇒ hypergeometric equation,
solution (κ = 6):

P =
Γ(2

3)
Γ( 4

3)Γ(1
3)

η1/3
2F1(1

3 , 2
3 , 4

3 ; η)



Further results and extensions

I most of the previously known and conjectured critical exponents
of 2d critical behaviour can be derived by asking the right
questions in SLE

I generalisation to N curves

dgt(z)
dt

=
N∑

j=1

2
gt(z)− ajt

I the ajt satisfy Dyson’s Brownian motion

I measures on closed loops can also be constructed (CLE)
I deep connection with conformal field theory
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