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Outlines
We will introduce the formulation of Multifractal Probability 
Density Function Analysis (MPDFA)
– that provide us with a unified formulation of PDFs for variables 

representing intermittent large deviations due to the invariance of 
basic equations under a scale transformation.

As we have succeeded to analyze PDFs of velocity 
fluctuations, of velocity derivatives and of fluid partice
accelerations, we proceed, in this talk, 
– to the analyses of actual PDFs of energy transfer rates and of energy 

dissipation rates with the help of PDFs within MPDFA, and

– to a new route to obtain the generalized dimension from actual PDF
data by separating those contributions violating the scaling 
invariance in the analyses of negative moments, and by 
complementing a rack of extremely rare events data in actual PDF 
by theoretical PDF in the analyses of positive higher moments.
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Historical survey
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The Navier-Stokes equation for an incompressible fluid

is invariant under the scale transformation

for an arbitrary real number α.
This leads to the scalings

ρρ: mass density: mass density
pp : pressure / : pressure / ρ ρ 
νν: : kimenaticalkimenatical viscosityviscosity

Scale invariance
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A schematic interpretation
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“Singularities” 1/3
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The velocity derivative, the acceleration and the energy transfer rate
become, respectively, singular for α< 3, α< 1.5 and α< 1 in the 
limit               . 
When α<1, all these three quantities become large for each       .
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“Singularities” 2/3

The energy dissipation rate within the inertial range is 
introduced through

with an effective viscosity (turbulent viscosity)        satisfying 
the scale transformation, i.e.,

The energy dissipation rates behaves as

having the same exponent as the energy transfer rates.

) ,0[ ∞∈nε
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“Singularities” 3/3

The substitution for      is usually given by the average of the 
microscopic dissipation rate         per unit mass, whose origin 
is due to the dissipation term in N-S equation, over the space 
in a volume element , i.e.,

Here, the volume of the element         is chosen to be        
with d being the dimension of real space. 
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Definitions 1/2
Following Meneveau and Sreenivansan (1987), we introduce 
the mass exponent through

The summation can be translated into the integration with 
respect to α with the help of the maltifractal spectrum f(α) as

which provides us with the Legendre transformation

The generalized dimension is introduced by the relation
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Definitions 2/2

The    moment of the energy dissipation rate can be expressed by 
means of the mass exponent as

where, 

with

Note that we need         boxes (the vol. of each box is       ) to cover 
whole the space of vol.        in d dim. space without vacancy.

plays the central role in the following formulation.
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Mpdfa 1/5

MPDFA starts with the assignment of the probability, to find a 
singularity specified by the strength α within the range 
α~α+dα, in the form

Here,          represents an appropriate multifractal spectrum
defined in the range 

Then,

with
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Mpdfa 2/5
Let us now derive expressions of PDFs for observables

of a physical quantity related to α by the relation

Then, the spatial derivative defined by

diverges when 

The quantity x’ reduces to the velocity derivative and fluid 
particle acceleration for φ = 1 and φ = 2, respectively, and 
formally to the energy transfer rate or the energy dissipation 
rate for φ = 3.
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Mpdfa 3/5
Now, we assume that the probability to find the physical 
quantity xn taking a value in the domain                        can be, 
generally, divided into two parts as

Here, the first term describes the contribution from the 
abnormal part of the physical quantity xn due to the fact that 
its singularities distribute themselves multifractal way in real
space. This is the part given by

On the other hand, the second term represents the 
contributions from the dissipation term that violates the 
invariance based on the scale transformation.
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Mpdfa 4/5

For those PDFs with variables whose domain is              , we 
symmetrize the PDFs before we start analyses when they are 
not symmetric, under the assumption that the intermittency 
manifests itself in the deviations from the mean value of the 
quantity under consideration.

) ,( ∞−∞
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Mpdfa 5/5
The formula for the mth order structure function (moments) of 
the variable |xn| is given by

with

κ = 1:            ; κ = 2:                      Normalization:

The generalized dim. is given by
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Choice of P(n)(α)
P model: Binomial dist.
Log-normal model: Gaussian dist.
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A&A model 2/3
The mass exponents, the scaling exponents and other 
important quantities

are expressed in terms of 

Note that q < 1 in the following analyses, hence Cq > 1.
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ζ m = m / 3

ζ m = m / 3 - μ m(m-3) / 18

ζ m = m / 3 - μ (m-3) / 3

ζ m = 1- log2 [pm/3 + (1-p)m/3 ]
p = ( 1 + (2μ -1)1/2)/2

ζ m = m / 9 + 2( 1- (2/3)m/3 )

K41 (1941)

Log-normal (1962)

β-model (1978)

Log-Poisson (1994)

p-model (1987)
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Note

: distribution of α
: multifractal spectrum

: mass exponents
: scaling exponents of VSF

The argument up to here on the scaling exponents is the 
usual one referring only to the tail part of PDF 
representing the characteristics of the scaling invariance.

In treating actual data, the contributions to the central 
part of PDF should be taken into account.
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A&A model 3/3

Tail part for variables ξnwith the ranges both            and

Center part for variables ξnwith the range 

),0[ ∞

),0[ ∞

),( ∞−∞

),( ∞−∞

Center part for variables ξnwith the range 

φ = 1: veloocity fluctuations and derivatives
φ = 2: pressure fluctuations and fluid particle accelerations
φ = 3: energy transfer rates and dissipation rates
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It is revealed through the analyses of actual data that the minimal 
structure of PDF having fat tail should have at least two parts, i.e, 

one is the tail part, and 
the other the center part.

connecting point

tail part Connection 1/2

log scale linear scale

center part

tail part

connecting point

*
nξ

Structure of PDFs with the range 

),( ∞−∞

),( ∞−∞
We are assuming that the contribution to PDF from intermittent large 
deviations is symmetric for the variables with the range        .),( ∞−∞
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Structure of PDFs with the range 

tail part

log scale

center part

connecting point

linear scale

*
nξ

),0[ ∞

It is also shown that the minimal structure of PDF for energy 
dissipation rates should have at least two parts, i.e, 

one is the tail part, and 
the other the center part.
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Parameters
The parameters are determined in order that the zooming 
increment Δn = n' - n coincides with the increment r - r'
corresponding to the process how one extracted the series of 
PDFs by changing the consecutive distances r = ln and r’ = ln’

between two observing points, i.e.,

The tail part of PDF is determined mainly by the intermittency 
exponent μ and the multifractal depth n (or, equivalently, the 
distance ln), and the central part by the entropy index q' and θ. 

Note that the values of parameters a0, X and q are determined 
as functions of μ, self-consistently. 
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Wind tunnel 1/3
The graph shows the time dependence of the quantity 
closely related to the energy dissipation rates εn, obtained 
from the time-series data of rough-wall turbulence measured 
at boundary-layer in a wind tunnel.
(Mouri et al., Phys.Rev.E, 2004)

The Reynolds number for this experiment is Reλ = 1258.

averaging domains
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Wind tunnel 2/3
Closed circles
Experimental PDFs by Mouri
r/η from top to bottom: 
32.6, 65.1, 130, 260, 521, 1040
with η = 0.106 mm
Inertial range: 67.3< r/η <642

Lines
Theoretical PDF with q = 0.368
(μ= 0.230) by A&A model
(n, q’,θ ) from top to bottom:
(10.1, 1.88, 1.50), (9.00, 1.81, 1.60), 
(8.18, 1.76, 1.45), (7.20, 1.54, 1.65),
(6.20, 1.35, 1.90), (5.20, 1.10, 2.40)

Connection pts. ξn
∗ from top to bottom:

0.835, 0.844, 0.856, 0.899, 0.992, 
1.12 (α∗= 0.948)
ξn

max from top to bottom:
571, 283, 169, 94.3, 54.5, 32.2

For better visibility, the left PDF is 
shifted by –1 unit along the vertical 
axis.

PDF of energy dissipation rates
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Wind tunnel 3/3

Generalized dimension

generalized dimension (data) by 
separating those contributions 
violating the scaling invariance, 
and by complementing a rack of 
extremely rare events data in 
actual PDF by theoretical PDF in 
the analysis of positive higher 
moments.

generalized dimension (data) by 
separating those contributions 
violating the scaling invariance, 
but without the complement.

generalized dimension (theory)
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DNS 40963 1/3

We will analyze the PDFs of energy transfer rates and of 
energy dissipation rates measured in the DNS on 40963

mesh size by Kaneda's group.
(Aoyama et al., J.Phys.Soc.Japan, 2005) 

The Reynolds number for this DNS is Reλ = 1132.

The observed PDFs of energy transfer rates are made 
symmetric by averaging the data on the left and the right 
hand sides. 
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DNS 40963 2/3
PDFs of energy transfer rates (symmetrized)

Closed circles
Experimental PDFs by Kaneda
r/η from top to bottom: 
13.7, 78.1, 449
with η = 5.12 x 10-4

Inertial range: 62.8< r/η <224

Lines
Theoretical PDF with q = 0.534
(μ= 0.320) by A&A model
(n, q’) from top to bottom:
(9.00, 1.75), (6.50, 1.70), (3.80, 1.50)

Connection pts. ξn
∗ from top to bottom:

0.477, 0.637, 0.882 (α∗= 0.928)
ξn

max from top to bottom:
1400, 203, 25.7

For better visibility, the left and right 
PDFs are respectively shifted by –1 and 
by - 0.1 unit along the vertical axis.
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DNS 40963 3/3

PDFs of energy dissipation rates
Closed circles
Experimental PDFs by Kaneda
r/η from top to bottom: 
13.7, 78.1, 449
with η = 5.12 x 10-4

Inertial range: 62.8< r/η <224

Lines
Theoretical PDF with q = 0.568
(μ= 0.345) by A&A model
(n, q’,θ ) from top to bottom:
(7.35, 1.59, 1.30), (4.90, 1.10, 1.70), 
(2.35, 1.10, 4.10)

Connection pts. ξn
∗ from top to bottom:

0.597, 0.839, 1.53 (α∗= 0.922)
ξn

max from top to bottom:
676, 95.7, 14.5

For better visibility, the left PDF is 
shifted by –1 unit along the vertical 
axis.
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Summary and prospects 1/2
It has been revealed that there exist two main contributions to 
PDFs of those variables representing intermittent large 
deviations. 

The tail part of the PDFs is determined mainly by the global 
structure of turbulence representing its intermittent character, 
which is the outcome of the multifractal distribution of 
singularities in real space.

The shape of the central part is 
a reflection of  local structure 
of flow fields representing a 
wave and oscillation of vortex 
due to the interaction between 
vortices and so on.

2006/7/15-21 U of Ｗａｒｗｉｃｋ 06 32

Summary and prospects 2/2

We expect that MPDFA can be a clue to search for the 
fundamental process of intermittency, i.e., the origin of 
singularities and the reason why the singularities distribute 
themselves multifractal way, etc., which may provide us with a 
fruitful insight to produce something for the dynamical 
approach. 

It is one of the attractive future problems to find out two 
different dynamics, i.e., the one determines the tail part of 
PDF, and the other the central part of PDF. 

When the underlying dynamics of MPDFA is revealed by 
starting the consideration with N-S equation, it may provide us 
with new route to extract intermittency from the dynamical 
point of view, e.g., an appropriate RG pathway to intermittency.
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Thank you for your attention.


