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Qutlines

> We will introduce the formulation of Multifractal Probability
Density Function Analysis (MPDFA)

- that provide us with a unified formulation of PDFs for variables
representing intermittent large deviations due to the invariance of
basic equations under a scale transformation.

> As we have succeeded to analyze PDFs of velocity
fluctuations, of velocity derivatives and of fluid partice
accelerations, we proceed, in this talk,

- to the analyses of actual PDFs of energy transfer rates and of energy
dissipation rates with the help of PDFs within MPDFA, and

- to a new route to obtain the generalized dimension from actual PDF
data by separating those contributions violating the scaling
invariance in the analyses of negative moments, and by
complementing a rack of extremely rare events data in actual PDF
by theoretical PDF in the analyses of positive higher moments.
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H iStoricaI Survey | era ’ major evolution of researches

1513]sketeh of turbulence (Leonardo da Vined)
[883|start of systematic experiments (Reynolds)

1941 start of theoretical works (IKolmogorov)

Hferiticism of K41, Landau equation (Landan)

18 turbulent viscosity (Heisenberg; 55 Chandrasekhar)
55 vortex tangle, quantum turbulence (Feynman)

57 closure [rl‘lll lem Ii'.g..'l.;ilhlllllil

59 DIA (Kraichnan: 64 Edwards, 65 Novikov)

62|log-normal model (Oboukhov, Kolmogorov: 66 Yaglom)
65 Lagrangian picture (Kraichnan)
TT|concept of fractals (Mandelbrot)
Renormalization Group (Forster-Nelson: 86 Yakhot)
7813 model (Frisch-Nelkin)
81 Lagrangian renormalized approximation (Kaneda)
S84 random 3 model (Benzi)
fractal objects and strange sets (Procaccia)
85[distribution of singularities (Frisch-Parisi)
87[p model (Meneveau-Sreenivasan)
91|generalized class of Cantor-set models (Hosokawa)
94{log-Poisson model (She-Leveque)
re-summation (Procaccia)
Lagrangian method (Pope: 99 Reynolds, 00 Sawford-Yeung)
20000 A& A model: MPDEFA (Arimitsu-Arimitsu)
01{direct observation of singularities (Bodenschatz)

Table 1.1. Historical survey
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Scale Invariance

The Navier-Stokes equation for an incompressible fluid

0 : mass density

— 4 (i - V)it = —Vp+ vV2ii p . pressure / p
ot v . kimenatical viscosity

il

Is invariant under the scale transformation
T =A\F, d—@ =X\3a, t—t' =\—o/3 p_p =)\2/3)
- ‘”! _ /\l—-—uf.‘l“

for an arbitrary real number a..
This leads to the scalings

m — ya/3 nfl _ §2a/3 df'”; _ "t'l—l.
tih‘“ ~ n :)-Jnl] — n I — Yn
ou, =|u(e+0 )—u(e)| op, = o+l )— .
J=luet)=u@ ] dp, =|(p/pNe+t,)-(p/p)e) oemn = LulIntegral scale
(“ - "illriu—n.,,- "in =45" (n = 0,1.2,-- -). O > 1‘
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A schematic interpretation

1

n

A
V

The eddy of the nth generation in
the length cascade

ou

t =60, (6,=27")
ou

n

kn+l

E ,=i6u’= jdk kinetic energy per unit massinscale / =k
kn

4./ . -
t, = %u eddy turnover time

3
o€, = E/ = 5”% . energy transfer rate that represents

the rate of transfer of energy per unit mass

b, € (—o0, ) from eddies of size ¢, to those of size 7, ,.
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“Singularities” 1/3

With the length ¢ =5/, (5,=2""), these quntities are given
as follows.

_ ) . ou i 1,
= lim = im S~ i £, =ute +£,) ()|,
op,

a =lima, = lim ===~ lim ¢ S ap, =|(p/eNe+,)-(p/p)e),

a-1
limoe, = |im££"j ~ lim¢ **
0

n—»o0 l,—0 ¢ (,—0

where 3 :%ﬁ+(g.§) i isthe acceleration of fluid particle.
t

The velocity derivative, the acceleration and the energy transfer rate
become, respectively, singular for < 3, < 1.5and @ < 1inthe
limity > 0.

When o <1, all these three quantities become large for each ¢ 0
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“Singularities” 2/3

The energy dissipation rate 5u| within the inertial range is
introduced through

- 2
. o Olly,
"’fn ~ En = Vp f_
n

with an effective viscosity (turbulent viscosity) 7. satisfying
the scale transformation, i.e.,

Pn _ si+a/3
=6k ‘

p
The energy dissipation rates behaves as

o ge-l &, €[0, )
£
having the same exponent as the energy transfer rates.
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“Singularities” 3/3

The substitution for &, is usually given by the average of the
microscopic dissipation rate £(r) per unit mass, whose origin
is due to the dissipation term in N-S equation, over the space
in a volume element AV, i.e.,

[ay dir 2(7)

{ d

n

Y

-1

Here, the volume of the element AV, is chosen to be Knd
with d being the dimension of real space.
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Definitions 1/2

Following Meneveau and Sreenivansan (1987), we introduce
the mass exponent 7(q il|through

yd

q
Z(f”} — E (-”'n) _ E O‘{n—l——d}q X “)‘—r_,fff!’:‘
¢ i,,j' mn mn
€ %o

# of boxes # of boxes

The summation can be translated into the integration with
respect to o with the help of the maltifractal spectrum f(a) as

1) S(a—14+d)g— fqla)
[r;” = /n"flp(m}rﬁii I+d)G—fa()

which provides us with the Legendre transformation

fal@) = (0 =1+ d)g = T7a(q). G= y a—1+d= —‘[T;’;é‘”‘
The generalized dimension Dyl is introduced by the relation
ra(q) = (1 — q)D;
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Definitions 2/2

The rjrll\ moment of the energy dissipation rate can be expressed by
means of the mass exponent as

] q > ) ) q )
( n) _ P (i) (l) {]{H? (i) ~ :."—T.,llfr;:l—-—}"Ju—r;rf
¢ i ¢ ¢ § € "

}

where,
P () g (Z2) PM), = PO (a)da
Wlth ( € ) ( € ) EnFl
o _ #of boxessatisfying &, = 0 that covers the space with dim. D, _ 5.”
Pg #0 oc n- - - = nfd
" #of boxes covering whole the space with dim. d 0,
- - - _f‘(a)
PO (@)da o #of boxes covering whole the space with dim. /() _9,""da

#of boxes covering whole the space with dim. d 5

Note that we need ri;“’| boxes (the vol. of each box is (‘,{ ) to cover
whole the space of vol. ([{ in d dim. space without vacancy. 5 E/
n = y EO

P™(a)| plays the central role in the following formulation.
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Mpdfa 1/5

MPDFA starts with the assighment of the probability, to find a
singularity specified by the strength o within the range
o~otda, in the form

P (a)da = \"f f" ()| Indy,

:ii_-“”] da

Here, f(a) represents an appropriate multifractal spectrum
deflned |n the range Omin _/ @ § max -

Then,
with
/ f" (o) dr(q)
(1 = | T e —
ﬂirl‘ \,'Ill j'” l::”.'li | “ 1 fl{f‘.‘
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Mpdfa 2/5
Let us now derive expressions of PDFs for observables

or, =r(e+1(,)—x(e) |
of a physical quantity related to o by the relation

) o 1o, _ cba/3
A T =\ \-—-— f.ff

| :'}..I'H

Then, the spatial derivative defined by

) 0 . _
2'| = lim —= x lim ¢¢2/3-1

£€n—0 bh n— 00

diverges when « < 3/0.

The quantity x’ reduces to the velocity derivative and fluid
particle acceleration for ¢ =1 and ¢ = 2, respectively, and
formally to the energy transfer rate or the energy dissipation
rate for ¢ = 3.
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Mpdfa 3/5

Now, we assume that the probability to find the physical
quantity x, taking a value in the domain . ~ x, +dz, can be,
generally, divided into two parts as

1" (x,)dr, = 0% (xr,)dr, + ALY (x, w.,-,,|

Here, the first term describes the contribution from the
abnormal part of the physical quantity x,, due to the fact that
its singularities distribute themselves multifractal way in real
space. This is the part given by

ory,

(n), \ 5(n) . - her /3
IT, q{ Tn _]n'" Tn| X p\™ (av)da I = I—' = 05" ‘
@00 Arp

On the other hand, the second term represents the
contributions from the dissipation term that violates the
invariance based on the scale transformation.
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Mpdfa 4/5

For those PDFs with variables whose domain is (-, ©) , we
symmetrize the PDFs before we start analyses when they are
not symmetric, under the assumption that the intermittency
manifests itself in the deviations from the mean value of the
quantity under consideration.
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Mpdfa 5/5

The formula for the mth order structure function (moments) of
the variable |x,| is given by

e
S,y . . Comyrin) o . (n) . (n) -Com
\ Lo N = h / (!.-' n In ll(—_) [.f H} = K {é.m + (1 — h /.0 ”{‘—,,“ ”IJ
0

with

S (177 (o)
- (n} _ I L ) 'l"n} . . — I%
’.r(;f?,ﬂl — V/(; d‘l'n.|'1n AHO (i_n)? (A hom \/ .f‘Hl:“O!H,.- 3 }

o =17 om
om — L — 1 3 .

k=1:[0.)];k=2: (—x.x)| Normalization: / eIl (1) = l‘

The generalized dim. is given by G,=1—-(1 -9 D;, (—oc <g< )
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A&A model assumes that the distribution of « is given by the
Tsallis-type distribution function

P (a) ==L [1 _ lezao)” ]%1’”

z™ (Axr)?

with (Aa)? = 2% -2 « Then, the multifractal spectrum has the

M (@) =1k log, [1- e

Three parameters o, X, g are determined by the conditons
(eufe)=1 ((e,/ef ) =62, &=L L.

Note that (---} is taken with P ().

f(ai)zo

A generalization of the
scaling relation proposed
by Lyra & Tsallis (1998).

. .
o 05
] (@) x =

0.4 04}

= oz 03}

Choice of PM(q)
P model: Binomial dist.
Log-normal model: Gaussian dist.

0z

0.z
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A&A model 2/3

The mass exponents, the scaling exponents and other
important quantities

2X 2
m(q)=1—apq+ 1 ) l—* I [l—lugg(l*\/ﬁ:)]‘

Ll \!( q l — 4

Qpin 2Xm? 1 [
o 3 ']( \.r"r( m j) 1 — ) {l 1023 (l : Vr( ?N.-""--J')]|
J— R |
f”{'rlql = ("?(_l)_i ‘ ;)‘ a3; = a 2 _
2X ! \,fv(!(lm/(;{)
2qX
(1“, = iy — 1_'_—\/(_“{

are expressed in terms of

Cy=1+ 21— )X In2|

Note that g < 1 in the following analyses, hence C, > 1.
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Scaling exponents ¢, of velocity structure function

> N
IS4 ¥
- & ?0\‘550(\
Q < S m D)
6IIIIIIIII|IIIIIIII,1}|IIIIIII/I’I|III’l <(5un) >m’€n
w sy e - 2 ce\’\tmode\ i
s } & T preg withdu, =| u(e+/,)—u(e) |,
r i A 1
e s coo)) =
4 / o i < >—J-da P(a).
o AT
L ,,;f’/, i o Meneveau and_Sreenivasan (1991) K41 (1941)
’1;/’/ :“_—__‘-\ _
oL // *\\\ | Em=m/3
. Log-normal Log-normal (1962)
- pn=0.238 N, . €,=m/3-um(m-3)/18
AN
0 AN AE AR NN FEN ﬁ-mOde|(l978)
0 10 20 30
m €n=m/3-pu(m-3)/3
— %om _ZX—m__
Sn =73 T Sanjen [1 log 2(1+ VCss )] p-model (1987)
with present model (2000) ¢ .= 1- log, [p™ + (1-p) |
C,=1+2X g*(1-q)In2 p=(1+(@-1)")2
Log-Poisson (1994)
J_ \a0+(l (I) —(1-q) b _ 1%
T (I=g)n2- €o=m/9+2(1-(2/3)m3)
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Note

® P (g) : distribution of o
— f(«) : multifractal spectrum
o /(@) (=/(@)-a4) .mass exponents
>, (=1-7(%)) : scaling exponents of VSF

® The argument up to here on the scaling exponents is the
usual one referring only to the tail part of PDF

representing the characteristics of the scaling invariance.

® |n treating actual data, the contributions to the central
part of PDF should be taken into account.
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A&A model 3/3

Tail part for variables &£, with the ranges both (=,«) and [0,)

1 ) n l 'f'} /‘é :1‘71
\r ‘E'- 1 — ( ’ \(\.I..S.'I." :- n = 77— oW
Hoalln) =Ha o {l n L = 2X | no, ] V)
-"-.3',_. o
Center part for variables & with the range (—w, « =
n
ri — Ir_" — A n
: 1/(1-q") T |
Arin =(n ’ I b+ 3f (o n : . !
ch)r(fn]zﬂé ){1—(1_Q)O—,)f_(a ) |:(€—*) —1:|} 61'ﬂ=|;l‘l:.+fn)—
2@ fn \

Center part for variables &, with the range [0.)

nl €n -l . ) ;09+3f’(a*] gﬂ 2 | 1/(1-q")
gn): (£n> {1—(1—Q)T (g) _1

¢ = 1: veloocity fluctuations and derivatives
¢ = 2: pressure fluctuations and fluid particle accelerations
¢
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Structure of PDFs with the range (—oo,©)

We are assuming that the contribution to PDF from intermittent large
deviations is symmetric for the variables with the range (—o0, ).

: ‘\ linear scale (b)

center part

connecting point

It is revealed through the analyses of actual data that the minimal
structure of PDF having fat tail should have at least two parts, i.e,
® one is the tail part, and
® the other the center part.
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Structure of PDFs with the range [0,)

It is also shown that the minimal structure of PDF for energy
dissipation rates should have at least two parts, i.e,

® one is the tail part, and Cog  Oa 1 f
_— — x
® the other the center part. 2 3
. IKHnl'.-‘rIa d;’m ! :"rrmrg.]'y dis?iipﬁlilt':n rale Kaneda data ' energy dissipation rate
10F o k-ortaves o E ok K-omeves e

log scale linear scale

center part

(%3]
T

107%

/

[ tail part connecting point |
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¢t =0/l, (0,=27")
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Parameters

The parameters are determined in order that the zooming
increment An = n'- n coincides with the incrementr-r'
corresponding to the process how one extracted the series of

PDFs by changing the consecutive distancesr=1 and r’' =1 .
between two observing points, i.e.,

n = —logs(r/n) +logs(to/n)

The tail part of PDF is determined mainly by the intermittency
exponent 1 and the multifractal depth n (or, equivalently, the
distance I.), and the central part by the entropy index q' and 6.

Note that the values of parameters a,, X and q are determined
as functions of , self-consistently.
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Wind tunnel 1/3

The graph shows the time dependence of the quantity
closely related to the energy dissipation rates ¢, obtained
from the time-series data of rough-wall turbulence measured
at boundary-layer in a wind tunnel.

(Mouri et al., Phys.Rev.E, 2004)

The Reynolds number for this experiment is Re, = 1258.

jutumm . M%M

0 €«» 003
<+—> averaging domains

Figure 4: The time dependence of the quantity proportional to vu’ 2 (em? /sec?).
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Wind tunnel 2/3

Closed circles
PDF of energy dissipation rates Experimental PDFs by Mouri
r/n from top to bottom:
32.6, 65.1, 130, 260, 521, 1040

3

-i

Mouri data

Mouri data

_ boundary layer turbulence 1 _;} boundary layer turbulence with n= 0.106 mm
e energy dissipationrate 1 <) SR —— Inertial range: 67.3< r/7 <642
:': transverse 1 transverse
4=0.230 (=0.368) i 2 #=0.230 (9=0.368) 1 Lines
1 Theoretical PDF with g = 0.368
] =
swed (#=0.230) by A&A model

(n, q’,0) from top to bottom:
1 (10.1, 1.88, 1.50), (9.00, 1.81, 1.60),

] (8.18, 1.76, 1.45), (7.20, 1.54, 1.65),
s, 1 (6.20, 1.35, 1.90), (5.20, 1.10, 2.40)
; \ \ ol o
o 55 I &b 35 3 Connection pts. £ * from top to bottom:

Sn on 0.835, 0.844, 0.856, 0.899, 0.992,
112 (o= 0.948)
&,maxfrom top to bottom:
571, 283, 169, 94.3, 54.5, 32.2

For better visibility, the left PDF is

. _ shifted by -1 unit along the vertical
n = —0.994 ltlf;'g r/n—+ 15.1 axis.

2006/7/15-21 U of Warwick 06 26




Wind tunnel 3/3

Generalized dimension 1w

— , .

generalized dimension (theory)

20m/s
u =0.230

-------- generalized dimension (data) by
separating those contributions
violating the scaling invariance,
and by complementing a rack of
extremely rare events data in
actual PDF by theoretical PDF in
the analysis of positive higher
moments.

........ generalized dimension (data) by
ol— ' ' : - separating those contributions

q violating the scaling invariance,
but without the complement.

A e =R / dr,, T, ,,,”.:r. () = i."_l__iijjf - (l — .r."li__lr_!l:) O gm r\::r "
- ' Gg=1—(1—-¢q)Dg, (=00 <g< )
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DNS 4096° 1/3

We will analyze the PDFs of energy transfer rates and of
energy dissipation rates measured in the DNS on 40963
mesh size by Kaneda's group.

(Aoyama et al., J.Phys.Soc.Japan, 2005)

The Reynolds number for this DNS is Re, = 1132,

The observed PDFs of energy transfer rates are made
symmetric by averaging the data on the left and the right
hand sides.
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DNS 40962 2/3

PDFs of energy transfer rates (symmetrized)

. . Closed circles
" energy transfer rate energy transfer rate|  Experimental PDFs by Kaneda
Kaneda-data  mu-0.32 1 .Kamda__dam o032 r/17 from top to bottom:
e L R 1 137,784,449
S . with 77 = 5.12 x 104
Inertial range: 62.8< r/1n <224

b Lines
' Theoretical PDF with g = 0.534
R (#= 0.320) by A&A model
ok e SN (n, g’) from top to bottom:
Sy Aba s (9.00, 1.75), (6.50, 1.70), (3.80, 1.50)

=10 L L L L P L L 1 , ,
107 50 100 0 1 3 Connection pts. & * from top to bottom:

} 2

Tisigmar T/sigmar 0.477, 0.637, 0.882 (o= 0.928)
& maxfrom top to bottom:
1400, 203, 25.7

n=—1.04 109;2 -}‘/:.-;; + 13.0, For better visibility, the left and right
= ' PDFs are respectively shifted by -1 and
by - 0.1 unit along the vertical axis.
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DNS 40962 3/3

PDFs of energy dissipation rates Experimental PDFs by Kaneda
r/ 7 from top to bottom:

IKannlrIa d;lita I energy dissipation rale | & Kaneda tl’.iata n““rﬂ}’ld'ﬁﬁ'm"“” rate 1.3'7’ 78'11 449
) mu0.35 mu=0.35 with n= 5.12 x 10#

e Inertial range: 62.8< r/1 <224

2 141F el

i 1 Lines
Theoretical PDF with g = 0.568
(1 =0.345) by A&A model
G e (n, q’,0) from top to bottom:
e, (7.35, 1.59, 1.30), (4.90, 1.10, 1.70),
LI - (2.35,1.10, 4.10)

° e, : Connection pts. & * from top to bottom:
— SRV Y| S - Lo 584 05970839153 (0= 0.922)
0 50 100 O 1 2 3 .
epsiron  /sigma epsiron, /sigma é,;saj ggr;’tzzg) bottom:

- ) For better visibility, the left PDF is
n = —0.995 I )Co 1"/ 1) + 11.1. shifted by -1 unit along the vertical
axis.
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Summary and prospects 1/2

It has been revealed that there exist two main contributions to
PDFs of those variables representing intermittent large
deviations.

The tail part of the PDFs is determined mainly by the global
structure of turbulence representing its intermittent character,
which is the outcome of the multifractal distribution of
singularities in real space.

The shape of the central part is
a reflection of local structure
of flow fields representing a
wave and oscillation of vortex
due to the interaction between
vortices and so on.
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Summary and prospects 2/2

We expect that MPDFA can be a clue to search for the
fundamental process of intermittency, i.e., the origin of
singularities and the reason why the singularities distribute
themselves multifractal way, etc., which may provide us with a
fruitful insight to produce something for the dynamical
approach.

It is one of the attractive future problems to find out two
different dynamics, i.e., the one determines the tail part of
PDF, and the other the central part of PDF.

When the underlying dynamics of MPDFA is revealed by
starting the consideration with N-S equation, it may provide us
with new route to extract intermittency from the dynamical
point of view, e.g., an appropriate RG pathway to intermittency.
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Thank you for your attention.
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