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Abstract 22

Turbulence closure for the weakly nonlinear stochastic waves requires, besides weak nonlinearity, randomness in bSth the
phases and the amplitudes of the Fourier modes. This ramefssn once present initially, must remain over the nonlinegf
evolution time. Finding out to what extent is this true is the main goal of the present Letter. For this analysis we deri¢e an
evolution equation for the full probability density function (PDF) of the wave field. We will show that, for any statistics2®f
the amplitudes, phases tend to stay random if they were ramutadly. If in addition the initial amplitudes are independent 27
variables they will remain independent in a coarse-grained sense, i.e., when considered in small subsets which are meeh less

than the total set of modes. 29
0 2004 Published by Elsevier B.V. 20
31
32
1. Introduction 33

The theory of stochastic wavefields in weakly nonlinear dispersive media has a long and exciting history \&}ich
started in 1929 when Peierls derived his kinetic equation for phonons in $d]id&pplications of these ideas
appeared in the physics of the ocean and atmosgBe83, laboratory and astrophysical plasnfa6-12] Bose
condensates and nonlinear optjitd], anharmonic crystalg,15,16] Any attempt to give a fair historical review ,,
would be doomed in such a short Letter and we refer an interested reader for further references to[thid badk
a more recent reviefd8]. The common name that has arisen for aéisé approaches is wave turbulence (WT).

WT closure requires, besides weak nonlinearity, rand@simeboth the phases and the amplitudes of the Fourigr
modes. Namely, all the phases and all the amplitudestre statistically independent of each other, in somg

sense, and the phases must be uniformly disieduSuch an approach was recently formulatefi®21]as ,,
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a generalization of the random phase approximation (RR4gh loved by the physicists which, in its traditionalt
form, ignores the amplitude randomn¢$g]. We even kept the same acronym RPA but now read it as “Randem
Phases and Amplitudes”. Below, in Secti2ri, we define explicitly what we mean by RPA. RPA does not fig
the shape of the probability densities of the individual mode amplitudes and, therefore, it allows one to consider
wavefields with non-decaying correlatis which is helpful because such long correlations tend to arise naturally
in WT systems. 1§19], we used RPA to describe the arbitrary-order moments of the wave amplitude, [@idl in 6
we extended this approach to describing the one-mode probability density function (PDF) and considered solutions
for this PDF corresponding to intermittency. In these works, however, RPA was assumed (but not proven) t@ hold
over the nonlinear time. 9
Such a proof is the main goal of the present Letter. We shall consider initial fields of the RPA type, and wewill
prove that the RPA properties are preserved (i.e., ne@baamplitude correlations are generated with accuracy
sufficient for the WT closure) over the nonlinear evolution time. In order to do this we shall derive an evolution
equation for the full multi-mode PDF which will turn out to be the Zaslavskii—-Sagdeev (ZS) eqya8pia 13
WT cousin of the Brout—Prigogine equation for anharmonic cry$1&sl 6]). We will show that, for any statistics 14
of the amplitudes, phases tend to stay random if they wermitially. If, in addition, the initial amplitudes are 15
independent variables they will remairdiependentin a coarse-grained sense, i.e., when considered in small subsets
which are much smaller than the total set of modes. 17
The original paper by Z§13] was also devoted to the study of the applicability of the WT closure and, there-
fore, it is appropriate here to mention in which way our approach is different. First, ZS consider the nonlinear
interaction arising from the potential energy only (i.e., the interaction Hamiltonian involves coordinates butnot
momenta). This restriction leaves out the capillary water waves, Alfvén, internal and Rossby waves, as wall as
many other interesting WT systems. In our work we remove this restriction by considering the most general three-
wave Hamiltonian equatiofl1) and we show that the multi-mode PDF still obeys the ZS equation in this caze.
Secondly, ZS studied the phase statistics only, wheveasvork considers both the phases and the amplitudes
because the amplitude statistics is as important for the RPA closure as the phase statistics. Thirdly, ZS presented
an argument that the nonlinear frequency correctiororea the need for the initial phase randomness, whereas
we only state the preservation of the initial phase rand@sirtéowever, the ZS criterion for phase randomizatio#
was obtained from a rather non-rigorous (although highly intuitive) physical argument whereas our results fedlow
from a systematic asymptotic exp@&msoutlined in this Letteand the details of which will be published in a moreze
extended papdR0]. 30
The validation of the RPA properties gives this technique the status of a well-justified approach which, dete to
the simplicity of its premises, is a winning tool for thetdive theory of non-Gaussidy of WT, its intermittency 32

and interactions with coherent structures. 33
34

35
2. Statistical setup 36
37
Let us consider a wavefieldx, r) in a periodic cube of with sidé and let the Fourier transform of this field bess
a;(t) where index € 29 marks the mode with wavenumbigr= 2r//L on the grid in thel/-dimensional Fourier 3o
space. For simplicity let us assumatlthere is a maximum wavenumbekax (fixed, e.g., by dissipation) so that 4o
no modes with wave numbers greater than this maximum value can be excited. In this case, the total numier of
modes iSN = (kmax/7 L)“. Correspondingly, indekwill only take values in a finite boX,e By ¢ Z¢ which is 42
centered at 0 and all sides of which are equahtg/7 L = N/3. To consider homogeneous turbulence, the large
box limit N — oo will have to be taker. a4
45

- . . . . - . ) 46

1 Itis easy to extend the analysis to the infinite Fourier spaggx = co. In this case, the full joint PDF would still have to be defined as a
N — oo limit of an N-particle PDF, but this limit would have to be taken in such a way that bgx and the density of the Fourier modes 4
tend to infinity simultaneously. 48
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Let us write the complex; asa; = A;y; whereA; is a real positive amplitude anf} is a phase factor which 1
takes values o881, a unit circle centered at zero in the complex plane. Let us defin® tparticle joint PDFP™Y) 2
as the probability for the wave intensitiﬂf to be in the rangés;, s; + ds;) and for the phase factory to be on 3
the unit-circle segment betweénandg; + d&; for all [ € By . In terms of this PDF, taking the averages will involves
integration over all the real positivg's and along all the complex unit circles of glIs,

<f{A2,1/f})=( 11 /dszjﬁ|da|)7><N>{s,5}f{s,s}, @)

ZEBNR+

o N o O

9

where the notatiornf{A2, v} means thatf depends on alt?'s and ally;'s in the set{A?, y;;1 € By} (simi- 10
larly, {s, &} meang(s;, ¥;; [ € By}, etc.). The full PDF that contains the complete statistical information about the

wavefielda (X, t) in the infinitex-space can be understood as a large-box limit 12

'P{ _ | (N) 13

Sk, 5k} = Ninoop {s, &}, "

15

16

17

(£{A2. w})=st 35 IDEIPLs. ) /(5. £). @ *

19

i.e., itis a functional acting on theoatinuous functions of the wavenumberandé. In the large-box limit there
is a path-integral version @t.),

The full PDF defined above involves all modes (for either finiteV or in the N — oo limit). By integrating out  2°
all the arguments except for chosen few, one can have reduced statistical distributions. For example, by mte@*ratmg

over all the angles and over all but amplitudes, we have anVf-particle” amplitude PDF,
23

Pit.joseeins = ( I1 /dsl ygldém )P(N){s £}, k)

T 25
I 1,25 I gy + meBy g1
26

which depends only on th®f amplitudes marked by labejs, jo, ..., ju € By. 27
Statistical derivations are greatly facilitated by the introduction of a generating functional 28
1 ) 29

(N) _ MAZ
20010 = G| T o), @ =
IGBN 31

32
33

PO, £} = Z<1‘[ —A%)w,‘“s,“f> 1Z(z<Num1‘[s ‘“) 6 *

leBy leBy

where{i, u} = {A;, ui; 1 € By} is a set of parameters; € R andu; € Z.

where{u} = {u; € Z;1 € By} is a set of indices enumerating the angular harmonicsCz;rerstands for the inverse 37
Laplace transform with respect to ajl. 38

2.1. Definition of an essentially RPA field 40
41
A pure RPA fields can be defined as one in which all the phases and amplitudes of the Fourier modes miake a
set of 2V statistically independent variables and in which all phase fagtoase uniformly distributed on their 43
respective unit circles. In such pure form RPA never survives except for in the uninteresting state of complete
thermodynamic equilibrium. However, WT closure ongguires an approximate RPA which holds up to certairs
orderin smalk and /N and only in a coarse-grained sense, i.e., for the reditgxhrticle objects with «< N. 46
Below we give a relaxed definition of an (essentially) RPA property which, on one hand, is sufficient for theAWT
closure and, on the other hand, is preserved over the nonlinear time. 48
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Definition. We will say that the field: is of anessentially RPAype if:
(1) The phase factors are statistically independent and uniformly distributed variablesup?ocorrections,
ie.,
1
(V) _ (N,a) 2
PWNis &) = WP DisH1+ 0(€9)]. (6)
where
PNDs) =( [1 fum)?w’{s,s}, @
]EBNS]_

is the N-particleamplitudePDF. In terms of the generating functional

Z(N){)\.,M} = Z(N’a){k} 1_[ 3(#1)[1+ 0(62)]’ ©
leBy
where
Z(N,a){)\'}:< 1_[ EAIA]2>:Z(N){)‘"M}|/L=0 (9)
leBy

is an N -particle generating function for the amplitude statistics.
(2) The amplitude variables are independentdoarse-grainegense, i.e., foreadd < N modes the// -particle
amplitude PDF is equal to the product of the one-particle PDF’s up(tf /N) and O (¢?) corrections,

(M,a) _ pla) p(a) (a) 2
JLJ2eeim le sz “.PjM [1+ OM/N) + O(E )] (10)

© 0 N o g b~ W N P
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26

As afirst step in validating the RPA property we will haegprove that the generating functional remains of the

form (8) over the nonlinear time provided it has this fornr at 0.

3. Weak-nonlinearity expansion

Consider weakly nonlinear dispersive waves in a periodic box with a dispersion relatiwhich allow three-
wave interactions. Example of such systems includes surface capillary {2a¥vg&Rossby wavef9] and internal
waves in the oceal8]. In Fourier space, we have the following Hamiltonian equations,

o0
iaq=c¢ Z (Vrflnamaneiwf77"t8lln+n 4 2\7I’zéname_iw%’6fjrn), (12)
m,n=1
wherea; = a(k;) is the complex wave amplitude in the interaction representatjoa,2rl/L is the wavevector,
L is the box side Iengthuﬁ,m = wy, — wi,, — Wk, W] =y, IS the wave frequency, < 1 is a formal nonlinearity
parameter. Here, the interaction coefficiéiff, is obviously symmetric with respect to andn but we do not
assume any further symmetries.

2 Some additional symmetries involving partations of the upper and lower indices arisey., in solids due to the fact that nonlinearity
is purely due to the potential energy which is a function of the displacement but not the rate of the displacemefit3 RBf$6]imposed

28
29
30
31
32

such symmetries which immediately rule out the capillary, internalather waves in fluids for which such properties do not hold. Additionaf’

symmetries also arise if the action variable is a Fourier transform of a real quantity, e.g., in the RossH@lwaves

48
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In order to filter out fast oscillations at the wave period, let us seek for the solution aT'tsneh that 2 /o <« 1
T « 1/we?. The second condition ensures thats a lot less than the nonlinear evolution time. Now let us useza
perturbation expansion in small 3

a(T) =a® +ea® + %a®. (12) .

Substituting this expansion if11) we get in the zeroth orderlo)(T) = q;(0), i.e., the zeroth order term is time ©
independent. This corresponds to the fhet in the interaction representati wave amplitudes are constant in the
linear approximation. For simplicity, we will writel(o) (0) = a;, understanding that a quantity is takerfa& 0 if  ®

its time argument is not mentioned explicitly. The first order is given by o
10

o0
1 . - - 7 11
aP (1) = =i Y (Vhaman Ay, 80,1, + 2V anan ApS)',)., (13)
m,n=1
13
! . .
wherea!, = OT e!mnt dt = (e""mnT 1)/iw!,,. Iterating one more time we get 14
0 15
2 l [ = lv I [ 16
a,”(T) = Z [Zan(—V;TUanaMavE[wnw, ), — 2V anayuay E o O @ 180 ) 8t .
m,n, L,V

+ 2\_/1';11(—Vm &nauayE[wZ‘v, —w,n] Vv 2V anaM&vE[—wifvl, a)ln](Sﬁ,L,Jrv)(Sl”_j_n

_ - !
+ 2Vln ( /LvamaMaV‘SZJrvE[_wl’?/w _wln] + 2V amaMaVE[w{fm, _wlrﬁ]‘sﬁ+v}‘slm+ni|’ 2(1)
(14) 2
where we introduced (x, y) = fOT A(x — y)e dr. 23
24
25
4. Evolution of the generating functional and multi-particle PDF 26

Let us first derive an evolution equation for the generating functi@ial .} exploiting the separation of the 2s
linear and nonlinear time scalslo do this, we have to calculaté at the intermediate time= T based on 29
its value atr = 0. The derivation, although standard for WT, is quite lengthy and will have to be publishedoin
a longer paper. Here, we will only outline the main stepd give the result. First, we need to substitute ¢he 31
expansion of: from (12) into the expression.ﬂ:,*.f|".f‘2 andx/fj.” = %(In %)l‘.i. Second, the phase averaging shoul@z
be done. Note that, because, we assumeitiitil phase factors are independent at 0 with required accuracy,

we can do such phase averaging independently of the amplitude averaging (which we do not do yet). Thirdl, we

take N — oo limit followed by T ~ 1/ — oo (this order of the limits is essential!). Taking into account that®
liM7_ o0 E0,x) =T (w8(x) + iP(xl)), and limy_ o |A(x)|? = 27 T8(x) and, replacind Z(T) — Z(0))/T by Z 3

(because the nonlinear timel/e2 > T) we have 87
38

' . , 5 } . " 822 39
7 =A4ne / b ish; N[ Vit |8 (@) 8114 + 2| V]38 (T, )‘Sﬁ”]ax 8 40
M

S ) 1) VA
+ 22 |:—|V,,]m| 5(wmn)3,£,+n Sh |Vm| 3( )8’;:_”(% — ST)}E 42
43
532 44

+2)Lj)hm[ 2|Vr{m| 3m+n (w’]"”)—i_’

2 818 )]W}dkjdkmdkn. (15) 45

46
47
3 Hereafter we omit superscripiV) in the N-particle objects if it does not lead to a confusion. 48
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Here variational derivatives appearedtigad of partial derivatives because of thie-> oo limit. This expression 1
is valid up to the[1 + O(e?)] factor. Eq.(15) does not contaimn dependence which means that these variables
separate from.’s and the solution is a purely-amplitudetimes an arbitrary function of’s which is goingto 3
be stationary in time. The latter corresponds to preservation of the if[ti}t;) dependence by E¢15) which 4

means that no angular harmonics of the PDF higher than zeroth will be excited. In the other words, all the phases

will remain statistically independent and uniformly distributed3rwith the accuracy of Eq15)integrated over 6
the nonlinear time A€, i.e., with theO (¢?) accuracy. This proves the first of the “essential RPA” properties. m
fact, this result was adady obtained before i15] for a narrower class of 3-wave systems (Es#note 2. Note 8
that we still have not used any assumption about the statistidssaind, therefore(15) could be used in future o

for studying systems with random s but correlated amplitudes. 10
Taking the inverse Laplace transform(@b) we have the following equation for the PDF, 1
. S8F; 12
P=— [ L ax;, (16) 1
s 14
whereF; is a flux of probability in the space of the amplitude 15
16
F. - . . P SP
e = / {(]v,jm] () an + 2V PO )8 ) 5 .
18
2 i 12¢(  \eJ
+ 27)(|V]"1m’ S(w?m)5?+m - ’Vﬁ/m’ 5(60',/,[,1)8,]”+n)sm 19
20
2 - ; i 8P
2|V (3(08,0)8) 1 = 2Via P35 an =
m 22

This equation is identical to the Zaslavskii—Sagdeev (Z3) equation (Brout—Prigogine in the physics of crystalss
context[15,16]). Note that ZS equation was originally derived[#8] for a much narrower class of systems, sees
footnote 2 whereas the result above indicates that it is aldiol wathe most general case of 3-wave systems. Herg
we should again emphasize the importance of the order of livits; oo first ande — 0 second. Physically this 26
means that the frequency resonance is broad enougbver @ great many modes. Some authors, e.g., ZS apd
BP leave the sum notation in the PDF equation even aftet theO limit taken giving8(a);?m). One has to be 2s
careful interpreting such a formulabause formally the RHS is null in miosf the cases because there may be ng
exact resonances between the disckateodes (as it is the case, e.qg., for the capillary waves). Thus, our functiogal

integral notation is a more ac@te way to write the result. 31
32

33

5. In what sense arethe amplitudesindependent? 34
35

Obviously, the variables; do not separate in the above equation for the PDF. Substituting 36
(N.a) _ p@) pla)  pla) 37

P - le sz PjN (18) a8

(compare with(10)) into the discrete version @fl7) we see that it turns into zero on the thermodynamic solutiomn

with P;“) = w; eXp(—w;js;). However, itis not zero for the one-mode PIB;@) corresponding to the cascade-type

Kolmogorov—Zakharov (KZ) spectrunf?, i.e., P\* = (1/nl;z) exp(—s,-/n’;.z) (see next section), nor it is likely to **

be zero for any other PDF of for(@8). This means that, even if initially independent, the amplitudes will correlate
with each other at the nonlinear time. Dabss mean that the existing WT tbey, and in particular the kinetic “
equation, is invalid? “

To answer to this question let us differentiate the discrete version ¢iLEjwith respect ta.'s to get equations
for the amplitude moments. We can easily see that

45
46
47

0,((42 A2) — (42 AZ)) = O(¢")  (jr. j2€Bw) (19)



© 00 N o g B W N P

A OB A A B B A D D WOW W W W W W WWWNNRNDNNRNDNDNNRNIDNEREEREPR B P BB R
® N o 0 R W N B O © © N o a0 b8 ®N P O © © N o 00 5 ®WN P O © ©® N 0 00~ W N B O

50375-9601(04)01347-7/SC0  AID:13834 Vol.eee(eee) [DTD5] P.7 (1-9)
PLA:m3 v 1.27 Prn:5/10/2004; 8:36 p|a13834 by:PS p. 7

Y. Choi et al. / Physics Lettersdae (eo0e) coe—osee 7

if (AflAsz2 ) = <A§1)(A§z)(A§3) (with the same accuracy) at= 0. Similarly, in terms of PDF’s

8 (P29 (sjy.57) — P\ (sj) P (5;)) = O(€®)  (ju. ja € Bw) (20)

; (4,a) (a) (a) (a) (a) (4,a)
if P iaia St Sias Sjz Sja) = Py (sj) Py (sp) P’ (sjs) Py, (sj,) att = 0. HereP]l inv iz ja S Sj2s Sjzs Sja)y

P/(1 Z)(sjl, sj,) and P;“)(sj) are the four-particle, two-particle and one-particle PDF’s obtained ffoby inte-

grating out all but 4, 2 or 1 arguments, pestively. One can see that, with accuraéy the Fourier modes will 8
remain independent of each other imygpair over the nonlinear time if they were independent in every triplet at
t=0.

Similarly, one can show that the modes will remain independent over the nonlinear time in any sulfset\6f
modes with accuracy//N (ande?) if they were initially independent in every subset of side+- 1. Namely

N o g~ WN P

10
11

M, o . 13
P (S SipraSiy) = P ) PR (55) -+ PLY (sjy) = OM/N) + O(€%)  (jn, jor - jm €BN)
(21) 5
16

it pMALao = p@p@. p@ atr=0.

,,,,,

The mlsmatcm (lM/N) arlses %rom some terms in the ZS equation with coinciding indic&®r M = 2 there
is only one such term in th&/-sum and, therefore, the corresponding erro®id,/N) which is much less than
0(€?) (due to the order of the limits itV ande). However, the number of such terms growstasand the error
accumulates t@ (M/N) which can greatly excee@ (¢2) for sufficiently largeM.

We see that the accuracy with which the modes renralependent in a subset is worse for larger subsets and
that the independence property is completely lost for subsets approaching in size the emtire 9ét,One should .
not worry too much about this loss becauges the biggest parameter in the problem (size of the box) and tE14e
modes will be independent in all-subsets no matter how large. Thus, the statistical objects involvingjratey
number of particles are factorisable as products of the one-particle objects and, therefore, the WT theory r%duces
to considering the one-particle objects. This results explains why we re-defined RPA in its relaxed “essentiaIzI;QPA”
form. Indeed, in this form RPA is sufficient for the WT closure and, on the other hand, it remains valid Qyer
the nonlinear time. In particular, only propei}Q) is needed, as far as the amplitude statistics is concerned, igr
deriving the three-wave kinetic equation, and this fact validates this equation and all of its solutions, incIudinS% the
KZ spectrum which plays an important role in WT.

The situation where modes can be considered as independent when taken in relatively small sets but should
be treated as dependent in the context of much larger sets is not so unusual in physics. Consider for ex,oample
a distribution of electrons and ions in plasma. The fHparticle distribution function in this case satisfies the4
Louville equation which is, in general, not a separable equation. In other word$;plagticle distribution function s
cannot be written as a product &f one-particle distribution functions. However, afrparticle distribution can
indeed be represented as a produaiobne-particle distributions ilf < Np whereNp is the number of particles
in the Debye sphere. We see an interesting transition from an individual to collective behavior when the nurﬁnber
of particles approachesy. In the special case of the one-particle function we have here the famous mean—zlgeld
Vlasov equation which is valid up t0 (1/Np) corrections (representing particle collisions).

20

40
2
42
43

44
We have established above that the one-point statistics are at the heart of WT theory. All one-point statjgtical

6. One-particle statistics

objects can be derived from the one-point amplitude generating function, 6
42 47
Za(hj) =(e"17), w
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which can be obtained from thé-point Z by taking alli’s and alli’s, except for ;, equal to zero. Substituting 1

such values int¢15) we get the following equation fat,,, 2
3

7, 2 024
szjnjza+(kjnj—A,-y,-)aTj, (22) ‘51
where, 6
7

. .
0 = dme? / (V2 Pl (wh,) + 2|V 2Sma (@) nin dis i, (23)
9
2

s =8re? [V, 280,5(0h, ) + |V P30} o = ) b (24)
11
Correspondingly, for the one particle PO (s;) we have 12
P, OF '
‘ +—= Ov (25) 14
at aSj 15
with F is a probability flux in the s-space, 16
(SP 17
F_—s]<yP —|—17](3 ) (26) 18

19
Eqgs.(22) and (25)where prewously obtained and studied24] in for four-wave systems. The only difference forzo
the four-wave case was different expressionsjfandy . For the three-wave case, the equation for the PDF was
not considered before, but equations for its moments were derived and sofd&].im particular, the equation 22
for the first moment is nothing but the familiar kinetic equatios —yn + n which givesy = yn for any steady 23
state. This, in turn means that in the steady state With 0 we haveP;“) = (1/nj)exp(—s;j/n;) wheren; can 24
be any steady state solution of th kinetic equation including the KZ spectrum which plays the central role iredVT

[2,17]. However, it was shown if21] that there also exist solutions with# 0 which describe WT intermittency. 26
27

28
7. Discussion 29

30

In the present Letter, we considered the evolution of theNuparticle objects such as the generating functional
and the probability density function for all the wave amplitudes and their phase factors. We proved that the phase
factors, being statistically independent and uniformS3rinitially, remain so over th@onlinear evolution time. 33
This result does not rely on any assumptions about thdiarde statistics and, therefore, can be used in futura
for studying systems with correlated amplitudes (lartdom phases). If in addition the initial amplitudes ares
independent too, then they remain so over the nonlinear time in a coarse-grained sense. Namely, all joint ®DF'’s
for the number of modeaf « N split into products of the one-particle densities witiM /N) accuracy. Thus, 37
the full N-particle PDF does not get factorized as a producNobne-particle densities and the Fourier modess
in the set considered as a whole are not independent. However, the wave turbulence closure only deals with the
joint objects of the finite sizé/ of variables while taking théy — oo limit. These objects do get factorized into4o
products and, for the WT purposes, the Fourier modes cartémpirted as statistically independent. These resuks
reduce the WT problem to the study of the one-particle amplitude PDF’s and they validate the generalizedRPA
technique introduced ifi.9,21] Such a study of the one-particle PDF and the high-order momenta of the weve
amplitudes was done [19,21]and the reader is referred to these papers for the discussion of WT intermitteney.
Finally, we would like to mention the role of quasi-resonant interactions which, as we saw, do not producesany

long-term effect at the? order considered in this Letter. However, these interactions do modify statistiés ats
order as was shown [22]. Thee? correction can be important for the resplace correlators which have Gaussiaa?
values at the? order for any (not necessarily Rayleigh) amplitude distributions. 48
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