A Garside type structure on the Torelli group

Daan Krammer
Warwick University, UK
Banff, 25 April 2007
Garside structures on B_n

Garside structures on B_n

- Late 1990’s, Dehornoy. Defines *Garside groups*.
Garside structures on B_n

- Late 1990’s, Dehornoy. Defines *Garside groups*.
Garside structures on B_n

- Late 1990’s, Dehornoy. Defines *Garside groups*.
- Recently, weak versions of “Garside groups” were considered. We shall weaken much further.
Plan of the talk:

- BKL Garside structure.
- Simple example.
- Crash course on Torelli groups.
- General set-up.
- Why does it generalise BKL?
Definition. A \textit{(BKL) simple braid} is a braid like the following example:
Birman, Ko, Lee’s structure on B_n

Definition.

1. $\Omega := \{\text{simple braids}\}$.
2. $B_n^+ := \text{submonoid } \langle \Omega \rangle \text{ of } B_n$.
3. \leq ordering on B_n: $x \leq xy \leftrightarrow y \in B_n^+$.
Birman, Ko, Lee’s structure on B_n

Definition.

1. $\Omega := \{\text{simple braids}\}$.
2. $B_n^+ := \text{submonoid } \langle \Omega \rangle \text{ of } B_n$.
3. \leq ordering on B_n: $x \leq xy \iff y \in B_n^+$.

Definition. A lattice is an ordered set such that for all $x, y \in L$ there is a least common upper bound or join $x \lor y$ and a greatest common lower bound or meet $x \land y$.
Birman, Ko, Lee’s structure on B_n

Definition.
1. $\Omega := \{\text{simple braids}\}$.
2. $B_n^+ := \text{submonoid } \langle \Omega \rangle \text{ of } B_n$.
3. \leq ordering on B_n: $x \leq xy \iff y \in B_n^+$.

Definition. A lattice is an ordered set such that for all $x, y \in L$ there is a least common upper bound or join $x \lor y$ and a greatest common lower bound or meet $x \land y$.

Theorem. (B_n, \leq) is a lattice.
Birman, Ko, Lee’s structure on B_n 6

Theorem. Every $x \in B_n$ can uniquely be written in the **symmetric normal form** $x_k^{-1} \cdots x_1^{-1} y_1 \cdots y_\ell$ defined by the following properties:

1. x_i and y_j are nontrivial simple braids.
2. The greatest simple braid $\cdot x_i x_i + 1$ (which always exists) equals x_i. Same for $y_i y_i + 1$.
3. $x_1^{-1} y_1 = 1$.

Can we understand the symmetric normal form globally? Yes! B_n is automatic (Thurston, 80’s). Better than automaticity: Grid property to be explained next.
Birman, Ko, Lee’s structure on B_n

Theorem. Every $x \in B_n$ can uniquely be written in the symmetric normal form $x_{k_1}^{-1} \cdots x_1^{-1} y_1 \cdots y_\ell$ defined by the following properties:

1. x_i and y_j are nontrivial simple braids.
2. The greatest simple braid $\leq x_i x_{i+1}$ (which always exists) equals x_i. Same for y_i, y_{i+1}.
3. $x_1 \wedge y_1 = 1$. \hfill \square
Birman, Ko, Lee’s structure on B_n

Theorem. Every $x \in B_n$ can uniquely be written in the **symmetric normal form** $x_k^{-1} \cdots x_1^{-1} y_1 \cdots y_\ell$ defined by the following properties:

1. x_i and y_j are nontrivial simple braids.
2. The greatest simple braid $\leq x_i x_{i+1}$ (which always exists) equals x_i. Same for y_i, y_{i+1}.
3. $x_1 \land y_1 = 1$. □

Can we understand the symmetric normal form *globally*? Yes!

Birman, Ko, Lee’s structure on B_n

Theorem. Every $x \in B_n$ can uniquely be written in the **symmetric normal form** $x_k^{-1} \cdots x_1^{-1} y_1 \cdots y_\ell$ defined by the following properties:

1. x_i and y_j are nontrivial simple braids.
2. The greatest simple braid $\preceq x_i x_{i+1}$ (which always exists) equals x_i. Same for y_i, y_{i+1}.
3. $x_1 \wedge y_1 = 1$. □

Can we understand the symmetric normal form **globally**?
Yes!

- B_n is automatic (Thurston, 80’s).
Birman, Ko, Lee’s structure on B_n

Theorem. Every $x \in B_n$ can uniquely be written in the symmetric normal form $x_k^{-1} \cdots x_1^{-1} y_1 \cdots y_\ell$ defined by the following properties:

1. x_i and y_j are nontrivial simple braids.
2. The greatest simple braid $\preceq x_i x_{i+1}$ (which always exists) equals x_i. Same for y_i, y_{i+1}.
3. $x_1 \land y_1 = 1$. □

Can we understand the symmetric normal form *globally*? Yes!

- B_n is automatic (Thurston, 80’s).
- Better than automaticity: Grid property to be explained next.
Definition. Let $a, b \in B_n$. The *distinguished path* from a to b is $\{a_0, \ldots, a_r\} \subset B_n$ defined by:

1. $a_0 = a$, $a_r = b$.

2. There exists a symmetric normal form (x_1, \ldots, x_r) such that $a_{i-1} x_i = a_i$ for all i.
Definition. Let $a, b \in B_n$. The **distinguished path** from a to b is $\{a_0, \ldots, a_r\} \subset B_n$ defined by:

1. $a_0 = a$, $a_r = b$.

2. There exists a symmetric normal form (x_1, \ldots, x_r) such that $a_{i-1} x_i = a_i$ for all i.

Definition. A subset of B_n is **convex** if it contains an entire distinguished path as soon as it contains its endpoints.
Birman, Ko, Lee’s structure on B_n

Definition. Let $a, b \in B_n$. The *distinguished path* from a to b is $\{a_0, \ldots, a_r\} \subset B_n$ defined by:

1. $a_0 = a$, $a_r = b$.
2. There exists a symmetric normal form (x_1, \ldots, x_r) such that $a_{i-1} x_i = a_i$ for all i.

Definition. A subset of B_n is *convex* if it contains an entire distinguished path as soon as it contains its endpoints.

Definition. The *Cayley graph* is the graph with vertex set B_n and edges $\{a, ax\}$ whenever $a \in B_n$ and x is a simple braid.
Birman, Ko, Lee’s structure on B_n

Theorem (Grid property, K–Dehornoy). The convex hull of three points in B_n is a planar graph. (This can and should be made more precise).
Theorem (Grid property, K–Dehornoy). The convex hull of three points in B_n is a planar graph. (This can and should be made more precise).

- The grid property is analogous to convex sets in \mathbb{R}^n.
Birman, Ko, Lee’s structure on B_n

Theorem (Grid property, K–Dehornoy). The convex hull of three points in B_n is a planar graph. (This can and should be made more precise).

- The grid property is analogous to convex sets in \mathbb{R}^n.

- The grid property is the best advertisement for Garside groups.
Theorem (Grid property, K–Dehornoy). The convex hull of three points in B_n is a planar graph. (This can and should be made more precise).

- The grid property is analogous to convex sets in \mathbb{R}^n.
- The grid property is the best advertisement for Garside groups.

We say that BKL discovered a Garside structure on B_n. All of the above properties are true for all Garside groups.
A simple example

Definition. Let $f : \mathbb{C} \to \mathbb{C}$ be a polynomial. If $f'(\alpha) = 0$ then α is called a *critical point* and $f(\alpha)$ a *critical value.*
A simple example

Definition. Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial. If $f'(\alpha) = 0$ then α is called a **critical point** and $f(\alpha)$ a **critical value**.

Definition. We define K to be the set of polynomials $f: \mathbb{C} \to \mathbb{C}$ of degree n such that all critical values are real, modulo $f \sim g$ if $f(x) = g(ax + b)$.
Definition. Let $f: \mathbb{C} \to \mathbb{C}$ be a polynomial. If $f'(\alpha) = 0$ then α is called a *critical point* and $f(\alpha)$ a *critical value*.

Definition. We define K to be the set of polynomials $f: \mathbb{C} \to \mathbb{C}$ of degree n such that all critical values are real, modulo $f \sim g$ if $f(x) = g(ax + b)$.
A simple example

Definition. The ordering \leq on K is generated by moving one critical value to the right by some amount (but not further than its right neighbour).
A simple example

Definition. The *ordering* \leq on K is generated by moving one critical value to the right by some amount (but not further than its right neighbour).

Question. What does this look like upstairs?
A simple example

Definition. The *ordering* \leq on K is generated by moving one critical value to the right by some amount (but not further than its right neighbour).

Question. What does this look like upstairs?

Answer.

\[
\begin{array}{c}
\bullet & \leftarrow & a \\
\bullet & \leftrightarrow & b \\
\bullet & \leftarrow & c \\
\bullet & \leftrightarrow & d \\
\end{array}
\]

\[\leq\]
Definition. The ordering \(\leq \) on \(K \) is generated by moving one critical value to the right by some amount (but not further than its right neighbour).

Question. What does this look like upstairs?

Answer.
A simple example

Definition. The ordering \leq on K is generated by moving one critical value to the right by some amount (but not further than its right neighbour).

Question. What does this look like upstairs?

Answer.

From now on, we will mostly work upstairs.
A simple example

Definition. The *ordering* \leq on K is generated by moving one critical value to the right by some amount (but not further than its right neighbour).

Question. What does this look like upstairs?

Answer.

![Diagram](image)

From now on, we will mostly *work upstairs*.

We will soon see examples of critical points bumping into each other or splitting.
A simple example

From now on, we mostly *work dually*. Critical points become 2-cells (called *regions*), and so on.
A simple example

From now on, we mostly *work dually*. Critical points become 2-cells (called *regions*), and so on.

Example of an element of K:

\[
\begin{align*}
\text{fixed bit} \\
\begin{array}{c}
\begin{array}{c}
\text{a} \\
\text{d} \quad \text{b} \\
\text{c} \quad \text{e}
\end{array}
\end{array}
\end{align*}
\]

\[
\begin{align*}
\begin{array}{c}
\{a, \ldots, e \in \mathbb{R} \\
\quad a \leq b \leq c \leq d \\
\quad e \leq b
\end{array}
\end{align*}
\]
A simple example

From now on, we mostly work dually. Critical points become 2-cells (called regions), and so on.

Example of an element of K:

Always modulo removing arcs between regions of equal heights:

$$
\begin{align*}
\{a, \ldots, e \in \mathbb{R} \mid a \leq b \leq c \leq d, e \leq b\}
\end{align*}
$$
A simple example

Example of a generator of the ordering:

\[
\begin{array}{ccc}
8 & 2 & 5 \\
6 & 5 & 3 \\
\end{array}
\]

\[
\begin{array}{ccc}
8 & 5 & 6 \\
5 & 3 & 6 \\
\end{array}
\]

\[
\begin{array}{ccc}
8 & 5 & 6 \\
5 & 3 & 6 \\
\end{array}
\]
A simple example

Definition. A *semi-simple pair* is a pair \((f, g) \in K \times K\) where \(g\) is obtained from \(f\) by moving some critical values to the right by the same amount, keeping the others fixed.
A simple example

Definition. A semi-simple pair is a pair \((f, g) \in K \times K\) where \(g\) is obtained from \(f\) by moving some critical values to the right by the same amount, keeping the others fixed.

Example. Example of a semi-simple pair \((x, y) = (x \to y)\). We concentrate on a single region for \(x\).
A simple example

Definition. A semi-simple pair is a pair \((f, g) \in K \times K\) where \(g\) is obtained from \(f\) by moving some critical values to the right by the same amount, keeping the others fixed.

Example. Example of a semi-simple pair \((x, y) = (x \to y)\). We concentrate on a single region for \(x\).

Example. Another example of a semi-simple pair \((x, y) = (x \to y)\), which is allowed even though \(5 > 4\):
Example. Example of a complement (relation):

\[
\begin{array}{c}
0 \\
\downarrow \\
0 \ 1 \ 0
\end{array}
\rightarrow
\begin{array}{c}
0 \\
\downarrow \\
9 \\
\downarrow \\
0
\end{array}
\]
A simple example

Example. Example of a complement (relation):
A simple example

Warning. It is not true that if $x \leq y \leq z$ and (x, z) is semi-simple, then (x, y) or (y, z) is semi-simple.
Warning. It is not true that if $x \leq y \leq z$ and (x, z) is semi-simple, then (x, y) or (y, z) is semi-simple.

Explanation. Between any two distinct real numbers there is another real number. The semi-simple pairs behave like a preferred small set of positive normal forms.
A simple example

Definition. Let \((x, y) \in K \times K\) be a semi-simple pair. Its \textit{length} is the number of moving critical values (with multiplicities) times the common amount they move by.
A simple example

Definition. Let $(x, y) \in K \times K$ be a semi-simple pair. Its *length* is the number of moving critical values (with multiplicities) times the common amount they move by.

Definition. Let $x \in K$ and $a \in \mathbb{R}$. Then $(x, x\Delta^a)$ is the semi-simple pair where all critical values move to the right by a.
A simple example

Theorem. 1. \((K, \leq)\) is a lattice.
A simple example

Theorem. 1. \((K, \leq)\) is a lattice.

2. There is a largest metric \(d\) on \(K\) extending the length \(d(x, y)\) already defined for semi-simple pairs.
A simple example

Theorem. 1. \((K, \leq)\) is a lattice.

2. There is a largest metric \(d\) on \(K\) extending the length \(d(x, y)\) already defined for semi-simple pairs.

3. Let \(x, y \in K\), \(x < y\), \(d(x, y) = a\). Consider the path from \(x\) to \(y\)

\[
\begin{align*}
[0, a] &\longrightarrow K \\
\{ \ & t \longmapsto x \Delta^t \land y. \}
\end{align*}
\]

There is a finite sequence \(x = x_0, \ldots, x_k = y\) such that \((x_i, x_{i+1})\) is semi-simple and the path passes through all \(x_i\).
A simple example

Theorem. 1. \((K, \leq)\) is a lattice.

2. There is a largest metric \(d\) on \(K\) extending the length \(d(x, y)\) already defined for semi-simple pairs.

3. Let \(x, y \in K\), \(x < y\), \(d(x, y) = a\). Consider the path from \(x\) to \(y\)

\[
\begin{cases}
[0, a] & \longrightarrow K \\
t & \longmapsto x \Delta^t \wedge y.
\end{cases}
\]

There is a finite sequence \(x = x_0, \ldots, x_k = y\) such that \((x_i, x_{i+1})\) is semi-simple and the path passes through all \(x_i\).

4. These paths satisfy a grid property. □
A simple example

Suggestion. Study *Garside spaces* instead of say CAT(0) spaces.
Definition. The mapping class group $\text{MCG}(S)$ of a surface S is H/H_0 where H is the topological group of (orientation preserving) self-homeomorphisms of S, preserving the boundary pointwise, and $H_0 \subset H$ is the connected component of 1 in H.
Definition. The *mapping class group* $\text{MCG}(S)$ of a surface S is H/H_0 where H is the topological group of (orientation preserving) self-homeomorphisms of S, preserving the boundary pointwise, and $H_0 \subset H$ is the connected component of 1 in H.

Fact 1. A compact connected oriented surface is determined by its genus and the number of boundary components. □
Crash course on Torelli group

Definition. The *mapping class group* $\text{MCG}(S)$ of a surface S is H/H_0 where H is the topological group of (orientation preserving) self-homeomorphisms of S, preserving the boundary pointwise, and $H_0 \subset H$ is the connected component of 1 in H.

Fact 1. A compact connected oriented surface is determined by its genus and the number of boundary components.

Fact 2. The mapping class group of the disk with $n + 1$ holes is essentially B_n.
Definition. The mapping class group $\text{MCG}(S)$ of a surface S is H/H_0 where H is the topological group of (orientation preserving) self-homeomorphisms of S, preserving the boundary pointwise, and $H_0 \subset H$ is the connected component of 1 in H.

Fact 1. A compact connected oriented surface is determined by its genus and the number of boundary components.

Fact 2. The mapping class group of the disk with $n + 1$ holes is essentially B_n.

Fact 3. If S is compact then $\text{MCG}(S)$ is finitely presented.
Crash course on Torelli group

Definition. The \textbf{mapping class group} $\text{MCG}(S)$ of a surface S is H/H_0 where H is the topological group of (orientation preserving) self-homeomorphisms of S, preserving the boundary pointwise, and $H_0 \subset H$ is the connected component of 1 in H.

Law 1. A compact connected oriented surface is determined by its genus and the number of boundary components.

Law 2. The mapping class group of the disk with $n + 1$ holes is essentially B_n.

Fact 3. If S is compact then $\text{MCG}(S)$ is finitely presented.

Fact 4. Let $g \geq 0$. The set of isomorphism classes of genus g Riemann surfaces can be given the structure of an algebraic orbifold (moduli space); its fundamental group is $\text{MCG}(S)$.
Definition. The **Torelli group** $I(S)$ is the group of mapping classes which act trivially on $H_1(S)$.
Definition. The Torelli group $I(S)$ is the group of mapping classes which act trivially on $H_1(S)$.

So there is an exact sequence

$$1 \longrightarrow I(S) \longrightarrow \text{MCG}(S) \longrightarrow \text{Aut} \, H_1(S).$$
Definition. The *Torelli group* $I(S)$ is the group of mapping classes which act trivially on $H_1(S)$.

So there is an exact sequence

$$1 \longrightarrow I(S) \longrightarrow \text{MCG}(S) \longrightarrow \text{Aut} \, H_1(S).$$

The quotient $\text{MCG}(S)/I(S)$ is an arithmetic group and infinite in general.
The general set-up

- S: a compact connected oriented surface with non-empty boundary.
The general set-up

- S: a compact connected oriented surface with non-empty boundary.
- Q_0, Q_1: finitely many boundary points. They meet every boundary component, and do so alternatingly. (White, respectively, black dots).
The general set-up

- S: a compact connected oriented surface with non-empty boundary.
- Q_0, Q_1: finitely many boundary points. They meet every boundary component, and do so alternatingly. (White, respectively, black dots).
- $\phi: \pi_1 S \to \mathbb{R}$ a homomorphism. If $x \in \pi_1 S$ is representable by a simple closed curve and is not in the commutator subgroup of $\pi_1 S$ then $\phi(x) \neq 0$.

Example 1. $\ker \phi = (\pi_1 S)_0$.

Example 2. $S = r f \circ \cdots \circ n g$, $\phi(\circ X) = 1 \phi_i I \circ X_i d \log(x - \circ_i)$.

So $\text{im} \phi = \mathbb{R}$.

The general set-up

- S: a compact connected oriented surface with non-empty boundary.
- Q_0, Q_1: finitely many boundary points. They meet every boundary component, and do so alternatingly. (White, respectively, black dots).
- $\phi: \pi_1 S \to \mathbb{R}$ a homomorphism. If $x \in \pi_1 S$ is representable by a simple closed curve and is not in the commutator subgroup of $\pi_1 S$ then $\phi(x) \neq 0$.

Example 1. $\ker \phi = (\pi_1 S)'$.
The general set-up

- S: a compact connected oriented surface with non-empty boundary.
- Q_0, Q_1: finitely many boundary points. They meet every boundary component, and do so alternatingly. (White, respectively, black dots).
- $\phi: \pi_1 S \to \mathbb{R}$ a homomorphism. If $x \in \pi_1 S$ is representable by a simple closed curve and is not in the commutator subgroup of $\pi_1 S$ then $\phi(x) \neq 0$.

Example 1. $\ker \phi = (\pi_1 S)'$.

Example 2. $S = \mathbb{C} \setminus \{\alpha_1, \ldots, \alpha_n\}$,

$$\phi(\gamma) = \frac{1}{2\pi i} \oint_\gamma \sum_i d\log(x - \alpha_i).$$

So $\text{im} \phi = \mathbb{Z}!$.
The general set-up

Definition. An element of K is a cell decomposition of S with $Q_0 \cup Q_1$ for vertices (as before); the height function is now a function

$$h: \left\{ \text{regions of } \tilde{S} \right\} \longrightarrow \mathbb{R}$$

such that, for all regions R and all $\gamma \in \pi_1 S$:

$$h(\gamma R) = h(R) + \phi(\gamma).$$
The general set-up

Definition. An element of K is a cell decomposition of S with $Q_0 \cup Q_1$ for vertices (as before); the height function is now a function

$$h: \left\{ \text{regions of } \tilde{S} \right\} \longrightarrow \mathbb{R}$$

such that, for all regions R and all $\gamma \in \pi_1 S$:

$$h(\gamma R) = h(R) + \phi(\gamma).$$

Equivalently:
The general set-up

Equivalent definition. An element of K is an isomorphism class of a Riemann surface S minus finitely many points and a nonzero holomorphic 1-form ω on S such that

1. The missing points of S are poles of ω.
2. For every (non-closed) path γ starting and ending in critical points of ω, one has $R\gamma \omega = \omega$.
3. For every closed path γ, we have $R\gamma \omega = \omega(\gamma)$.

Also, a universal cover eS of S and a function $f : eS \to \Omega$ such that $df = \omega$ and $f(p) = p$ for one (hence all) critical points p.
The general set-up

Equivalent definition. An element of K is an isomorphism class of a Riemann surface S minus finitely many points and a nonzero holomorphic 1-form ω on S such that

1. The missing points of S are poles of ω.
2. For every (non-closed) path γ starting and ending in critical points of ω, one has $\int_{\gamma} \omega \in \mathbb{R}$.
3. For every closed path γ we have $\int_{\gamma} \omega = \phi(\gamma)$.

Daan Krammer – p.23/25
The general set-up

Equivalent definition. An element of K is an isomorphism class of a Riemann surface S minus finitely many points and a nonzero holomorphic 1-form ω on S such that

1. The missing points of S are poles of ω.
2. For every (non-closed) path γ starting and ending in critical points of ω, one has $\int_\gamma \omega \in \mathbb{R}$.
3. For every closed path γ we have $\int_\gamma \omega = \phi(\gamma)$.

Also, a universal cover \tilde{S} of S and a function $f: \tilde{S} \to \mathbb{C}$ such that $df = \omega$ and $f(p) \in \mathbb{R}$ for one (hence all) critical points p. □
Observation. The Torelli group $I(S)$ acts on K.

The general set-up

Observation. The Torelli group $I(S)$ acts on K.

K looks a lot like Teichmüller space T (:=orbifold universal cover of moduli space=space of homotopy classes of complex structures on S); K and T are both simply connected spaces on which $I(S)$ act.
The general set-up

Observation. The Torelli group $I(S)$ acts on K.

K looks a lot like Teichmüller space T (orbifold universal cover of moduli space = space of homotopy classes of complex structures on S); K and T are both simply connected spaces on which $I(S)$ act.

Definition/Theorem. The remaining definitions and theorems are as in the special case of $S = \mathbb{C}$. □
Why did we generalise BKL?

- It may not be clear yet why our construction generalises BKL.
Why did we generalise BKL?

• It may not be clear yet why our construction generalises BKL.

• Consider the space of degree n polynomials $f \in \mathbb{C}[x]$ such that critical values have modulus 1. Its fundamental group is B_n. Write the universal cover K.

Why did we generalise BKL?

- It may not be clear yet why our construction generalises BKL.

- Consider the space of degree n polynomials $f \in \mathbb{C}[x]$ such that critical values have modulus 1. Its fundamental group is B_n. Write the universal cover K.

- The ordering on K is generated by moving critical values around the unit circle in positive direction.
Why did we generalise BKL?

• It may not be clear yet why our construction generalises BKL.

• Consider the space of degree n polynomials $f \in \mathbb{C}[x]$ such that critical values have modulus 1. Its fundamental group is B_n. Write the universal cover K.

• The ordering on K is generated by moving critical values around the unit circle in positive direction.

• We can replace \mathbb{R} by any totally ordered abelian group. In our case, $2\pi\mathbb{Z}$ suffices.