MA3E1 Groups and Representations Assignment 1 Deadline: Friday 19 October 2012, 3pm

Write your name and student number on your solution sheet. Mention your department if it is not mathematics.

(1.1) We say that a square matrix *X* is upper triangular, if all entries below the main diagonal in *X* are zero. For example $\begin{pmatrix} 2i & 1 \\ 0 & -3 \end{pmatrix}$ is upper triangular. Let B_n be the set of upper triangular matrices in $GL(n, \mathbb{C})$. Prove that B_n is a subgroup of $GL(n, \mathbb{C})$.

(1.2) Let $\rho: G \to GL(n, \mathbb{C})$ be a representation of a group *G*, and let $\sigma: G \to GL(n, \mathbb{C})$ be given by $\sigma(x) = \rho(x)^2$ for all $x \in G$.

- (a) Prove that σ is again a representation if *G* is abelian.
- (b) Prove that σ is again a representation if n = 1.
- (c) Give an example showing that, in general, σ is not again a representation.
- (d) Give an example where σ is again a representation but not equivalent to ρ .

(1.3) Let *A* be a subset of a group *G* and $B = \{gag^{-1} \mid g \in G, a \in A\}$. Prove that $\langle\!\langle A \rangle\!\rangle = \langle B \rangle$.

(1.4) Let *G*, *H* be groups. Suppose we have a map $H \times G \to H$: $(x, a) \mapsto x^a$ which is an **action** (that is, $x^{ab} = (x^a)^b$ and $x^1 = x$ for all $x \in H$, $a, b \in G$) by **group automorphisms** (that is, $(xy)^a = x^a y^a$ for all $x, y \in H$, $a \in G$). On the set $G \times H$ we define the binary operation

$$(a, x)(b, y) := (ab, xby).$$

(a) Prove that this binary operation makes $G \times H$ into a group. It is called an **external semi-direct product** and written $G \ltimes H$.

Let *G*, *H* be subgroups of a group *P* and write $GH := \{gh \mid g \in G, h \in H\}$. We say that *P* is an **internal semi-direct product** of *G*, *H* if $H \leq P$, $G \cap H =$

- 1, P = GH. We also say that (P, G, H) is an internal semi-direct product.
- (b) Prove that an external semi-direct product $G \ltimes H$ is an internal semidirect product of two subgroups, one isomorphic to *G*, one to *H*.
- (c) (Not for credit). Prove the following converse. Let (P, G, H) be an internal semi-direct product. Then there exists an action by automorphisms $H \times G \rightarrow H$: $(x, a) \mapsto x^a$ such that $G \ltimes H \cong P$.
- (d) Let *G*, *H* be subgroups of a finite group *P*. Suppose $H \leq P$ and $G \cap H = 1$. Prove that (P, G, H) is an internal semi-direct product if and only if $\#P = \#G \cdot \#H$.
- (e) Give an example where the group $G \ltimes H$ (internal or external as you prefer) is not isomorphic to $G \times H$.
- (f) (Not for credit). Let *G* be a group. We define an action by automorphisms $G \times G \to G$: $(x, a) \mapsto x^a := a^{-1} x a$. Prove that $G \ltimes G \cong G \times G$ as groups.