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4 Foundations of Galois theory

4.1 Closure correspondences

In this subsection, we fix two disjoint sets A, B and a subset R ⊂ A× B, often

known as a binary relation. For all X ⊂ A and Y ⊂ B we define

X† := {b ∈ B | (a, b) ∈ R for all a ∈ X},

Y∗ := {a ∈ A | (a, b) ∈ R for all b ∈ Y}.
(66)

Let P(A) be the power set, that is, the set of subsets of A. We have thus two

maps †: P(A) → P(B) and ∗: P(B) → P(A).

Remark 67. A better but somewhat pedantic approach is to replace P(A) by

P(A) × {1} and P(B) by P(B) × {2}. Here 1 and 2 are labels indicating

whether we’re thinking of a subset of A or one of B. The empty set is a

subset of both A and B, but that’s the only ambiguity not ruled out by our

assumption that A and B are disjoint.

Proposition 68.

(a) For all X ⊂ A, we have X ⊂ X†∗.

(b) For all Y ⊂ B, we have Y ⊂ Y∗†.

(c) For all X1 ⊂ X2 ⊂ A, we have X†
1
⊃ X†

2
.

(d) For all Y1 ⊂ Y2 ⊂ B, we have Y∗
1
⊃ Y∗

2
.

(e) For all X ⊂ A, we have X† = X†∗†, or briefly, †∗† = †.
(f) For all Y ⊂ B, we have Y∗ = Y∗†∗, or briefly, ∗†∗ = ∗.

Proof. These are almost trivial as we shall see. We write out the proofs in

detail.

Proof of (a). Let a ∈ X and b ∈ X†. Then (a, b) ∈ R by definition of †. As

this is true for all such b, it implies that a ∈ X†∗ by definition of ∗.

Proof of (c). Let b ∈ X†
2
. Then (a, b) ∈ R for all a ∈ X2, by definition of

†. So (a, b) ∈ R for all a ∈ X1 (because X1 ⊂ X2). This means that b ∈ X†
1

as

required.

Proof of (e). By (a) we have X ⊂ X†∗. Applying (c) with X1 = X and

X2 = X†∗ gives X† ⊃ X†∗†. In order to prove the reverse inclusion, let

b ∈ X†. By definition of ∗ then, (a, b) ∈ R for all a ∈ X†∗. In other words,

b ∈ X†∗†.
The remaining three parts follow by interchanging (A, †) and (B, ∗). �

The (A, †)–(B, ∗) symmetry mentioned in the above proof is often useful.

We call a subset X ⊂ A closed if and only if it is of the form Y∗. This is

equivalent to saying that X = X†∗, by proposition 68f. Closed subsets of B
are defined likewise.

Proposition 69. There is a bijection from the set of closed subsets of A to the

set of closed subsets of B, given by X 7→ X†, and whose inverse is Y 7→ Y∗.
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Proof. Almost immediate from proposition 68. �

Of course, X† is defined for all subsets X of A. But the formula X 7→ X†

in proposition 69 assumes that X is closed.

Let us call the bijection given by proposition 69 the closure correspon-

dence. Each time we have two sets A, B and a subset R ⊂ A × B, there is a

closure correspondence.

There are lots of closure correspondences in mathematics, and we touch

upon some of them in exercises 4.2–4.4. But the most famous of all is a

particular closure correspondence called the Galois correspondence which is

at the centre of Galois theory.

Exercises

(4.1) Use the notation of this subsection.

(a) Prove that A is closed. Is ∅ ⊂ A necessarily closed?

(b) Prove that if X1, X2 ⊂ A are closed, then so is X1 ∩ X2. What about

any number of Xi?

(c) Give an example where X1, X2 ⊂ A are closed but X1 ∪ X2 is not.

— ∼ —

To get a feel for closure correspondences in general, we look at a few exam-

ples not used later on in the lectures.

(4.2) [Standard representation of GL(n)]. Let K be a field of at least 3

elements. Let V = Kn, G = GL(n, K) and consider the binary relation R =
{(v, g) ∈ V × G | g(v) = v}. Prove that the closed subsets of V are precisely

the vector subspaces of V. If K has 2 elements, describe the closed subsets of

V in similar terms.

(4.3) [Downsets]. Let (P,≤) be an ordered set. (Some people say partially

ordered set when we say ordered set). Let A = B = P and let R ⊂ A × B
be the binary relation given by R = {(a, b) ∈ A × B | a < b}. Prove that a

subset X ⊂ A is closed if and only if for all x, y ∈ A, if y ∈ X and x ≤ y then

x ∈ X. Also, if X ⊂ A is closed, then X† equals the complement P r X.

(4.4) [Affine varieties]. Let A = Cn and let B = C[X1, . . . , Xn] be the ring

of polynomials in n variables. If a = (a1 , . . . , an) ∈ A and f ∈ B, we can

evaluate f at a to obtain a complex number f (a) = f (a1 , . . . , an). Consider

the binary relation R = {(a, f ) ∈ A × B | f (a) = 0}. Prove that if a subset

I ⊂ B is closed, then it is a radical ideal (an ideal J in a ring S is said to be

radical if for all f ∈ S and all n > 0, if f n ∈ J then f ∈ J).

The converse is also true and known as Hilbert’s Nullstellensatz: see the

book Undergraduate algebraic geometry by Miles Reid for a one-page proof.



MA3D5 Galois Theory 33

4.2 The Galois correspondence

Definition 70. Let K ⊂ M be fields. The Galois group Gal(M/K) is the

group of field automorphisms of M which fix every element of K.

It is not hard to show that Gal(M/K) is a group under composition.

Example 71. Here are some examples of Galois groups Gal(M/K).
(a). If K = M then the Galois group is trivial.

(b). Suppose K = R, M = C. Then the Galois group has order 2, and

consists of the trivial element and complex conjugation.

(c). Suppose K = Q, M = Q(
√

2) ⊂ R. Again the Galois group has order

2 as we proved in example 51.

(d). Suppose K = Q and M = Q(α) where α = 21/3 is the real cube root

of 2. We claim that Gal(M/K) is trivial. Let s ∈ Gal(M/K). Then s(α) is a

cube root of 2 and is in R becaus M ⊂ R. But α is the only cube root of 2 in

R so s(α) = α. It follows that s = 1 because M is generated by α.

(e). Let n ≥ 1. Then the Galois group Gal(C(X)/C(Xn)) is cyclic of order

n and generated by s: X 7→ exp(2π i/n) X.

(f). Let K be a field. It can be shown that Gal(K(X)/K) consists of those

K-automorphisms of K(X) taking X to a rational function of the form

aX + b

cX + d

with a, b, c, d ∈ K, ad − bc 6= 0. This group is usually denoted PGL(2, K).

For the rest of this section, we fix a field extension N/K and write G =
Gal(N/K). We now introduce some notation that we use nearly always when

considering a field extension.

We define a binary relation R ⊂ G × N by

R = {(g, x) ∈ G × N | g(x) = x}.

Let †: P(G) → P(N) and ∗: P(N) → P(G) be the maps as in (66). Explicitly:

for H ⊂ G and L ⊂ N we define

H† := {x ∈ N | g(x) = x for all g ∈ H},

L∗ := {g ∈ G | g(x) = x for all x ∈ L}.

Definition 72. As in section 4.1, we can talk about closed subsets of G and

closed subsets of N. Let F denote the set of closed subsets of N and G the set

of closed subsets of G.

As a particular case of proposition 69 we get:

Proposition 73. There exists a bijection F → G given by H 7→ H† and whose

inverse is L 7→ L∗. �

Of course, proposition 73 is virtually worthless unless we can determine

which subsets of G or N are closed. Two easy restrictions are as follows:
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Exercise (4.5) Prove that every element of G is a subgroup of G. Prove that

every element of F is a subfield of N containing K.

Because of exercise 4.5, an element of G (that is, a closed subset of G)

is called a closed subgroup of G. Also, an element of F is called a closed
intermediate field. In general, if P ⊂ Q ⊂ R are fields then we say that Q
is an intermediate field of the extension P ⊂ R.

4.3 The closed fields and subgroups

Proposition 74. Let K ⊂ L ⊂ M ⊂ N be fields. If [M : L] = n < ∞ then

[L∗ : M∗] ≤ n.

Proof. Induction on n, the case n = 1 being trivial. If there exists a field

L0 properly between L and M, then the induction hypothesis tells us that

[L∗ : L∗
0] ≤ [L0 : L] and [L∗

0 : M∗] ≤ [M : L0]. Therefore

[L∗ : M∗] = [L∗ : L∗
0][L

∗
0 : M∗] ≤ [L0 : L][M : L0] = [M : L].

So suppose now that there are no fields between L and M. Then M is of the

form L(α) for some α ∈ M. Let f ∈ L[X] be the minimum polynomial for

α over L. By proposition 56 we have deg( f ) = [M : L] = n. Consider the

set Y of roots of f in M. Then #Y ≤ n. We define a map E: L∗/M∗ → N
(evaluation at α) by

E(gM∗) := g(α).

We need to show that this is well-defined, that is, if gM∗ = hM∗ then g(α) =
h(α). Indeed, if g = hk with k ∈ M∗, then E(g) = E(hk) = hk(α) =
h(k(α)) = h(α) = E(h) and we have shown that E is well-defined.

For all g ∈ L∗ we have

0 = g(0) because g is a field automorphism

= g( f (α)) because f (α) = 0

= f (g(α)) because g ∈ L∗ and f ∈ L[X]

which proves that E takes values only in Y. If we can prove that E: L∗/M∗ →
Y is injective , then it follows that [L∗ : M∗] = #(L∗/M∗) ≤ #Y ≤ n and we

will be done.

In order to prove that E is injective, assume that E(gM∗) = E(hM∗), that

is, g(α) = h(α). Then g−1h(α) = α. Now g−1h preserves L pointwise (as

both g and h do) and it preserves α, so it preserves L(α) = M pointwise.

So g−1h ∈ M∗, that is, gM∗ = hM∗. This proves that E is injective and the

proof is finished. �

Proposition 75. Let G = Gal(N/K) and let J ⊂ H ⊂ G be subgroups such

that [H : J] = n < ∞. Then [J† : H†] ≤ n.

Proof. Let g ∈ H and x ∈ J†. Then g(x) depends only on the coset C := gJ
(and x) and we shall write C(x) := g(x) in the proof that follows.
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Let u0, . . . , un ∈ J†. We need to prove that u0, . . . , un are H†-dependent,

that is, we need to find a0 , . . . , an ∈ H†, not all zero, such that ∑i ai ui = 0.

Write H/J = {C1, . . . , Cn}. Consider the equations

n

Σ
i=0

ai · C j(ui) = 0 for all j ∈ {1, . . . , n}. (76)

These are n linear equations (with coefficients in J†) in n + 1 unknowns ai

which for the moment are allowed to be in J†. By linear algebra, there is a

nonzero solution (ai)i to (76). Pick a nonzero solution with #{i | ai = 0}
maximal. After rescaling and renumbering we may suppose that a0 = 1. The

proof will be finished by proving that ai ∈ H† for all i. To this end, let g ∈ H.

We need to show that g(ai) = ai for all i.
Applying g to (76) gives

n

Σ
i=0

g(ai) · g(C j(ui)) = 0 for all j ∈ {1, . . . , n}.

Now {gC1, . . . , gCn} = {C1, . . . , Cn}; only the order may be different. So

n

Σ
i=0

g(ai) · C j(ui) = 0 for all j ∈ {1, . . . , n}.

This means that (g(ai))i is another solution to (76). Put bi := g(ai) − ai.

Then (bi)i is a solution to (76) with more zero entries than (ai)i because

b0 = g(a0) − a0 = g(1) − 1 = 1 − 1 = 0 (and bi = 0 whenever ai = 0). But

we took {i | ai = 0} to be maximal, so bi = 0 for all i. So g(ai) = ai for all i
and the proof is finished. �

4.4 The main theorem of Galois theory

For a group G acting on a field M we write

MG := {x ∈ M | g(x) = x for all g ∈ G}.

The automorphism group of a field M is written Aut(M).

Definition 77. The field extension M/K is said to be a Galois extension if

there exists a subgroup G ⊂ Aut(M) such that K = MG. We also say that M
is Galois over K in this case.

Let us repeat this important definition in different words. The exten-

sion M/K is Galois if and only if, for all x ∈ M not in K, there exists

g ∈ Gal(M/K) such that g(x) 6= x. Also, M/K is Galois if and only if K
is a closed intermediate field of the extension M/K.

Theorem 78. Let M/K be a finite Galois extension and let G, F, G, †, ∗ be as

usual, as explained in section 4.2.

(a) The set of subgroups of G is precisely G. The set of intermediate fields

of M/K is precisely F.
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(b) (Main theorem of Galois theory). There exists a bijection from the set

of subgroups of G to the set of intermediate fields of M/K given by

H 7→ H† and whose inverse is L 7→ L∗.

(c) Let H ⊂ J ⊂ G be subgroups. Then [J : H] = [H† : J†].

Proof. Proof of (a). Recall that every element of F is an intermediate field of

M/K by exercise 4.5. In order to prove the converse, let L be a subfield of

M containing K. Note that K = K∗† because M/K is Galois. Therefore

[L∗† : K] = [L∗† : K∗†]
≤ [L : K∗] by proposition 75

≤ [L : K] by proposition 74.

Also, L ⊂ L∗† by proposition 68b and [L : K] < ∞. Therefore L = L∗†

and L ∈ F. The proof that every subgroup of G is closed is similar. This

finishes the proof of (a). Part (b) follows immediately from part (a) and

proposition 73. Part (c) is an exercise. �

Remark 79. Theorem 78 can be extended to infinite field extensions but this

is not on our syllabus. It turns out that again all intermediate fields are

closed, but the subgroups of G are not necessarily closed. Instead, G becomes

a topological group and a subgroup of G is closed in our sense if and only if

it is closed in the topological sense.

There are three ways to obtain examples of field extensions M/K:

(a) Let M be a known field and let G be a subgroup of Aut(M). Then put

K = MG.

(b) Let N be a known field, for example C. Define M, K ⊂ N by specifying

generators.

(c) Let K be a known field. Let M be obtained by adjoining a root of a

specified irreducible polynomial in K[X] as can be done in an essentially

unique way by proposition 60. Make a tower of fields if necessary by

repeating the process.

The techniques provided by this chapter suffice to deal with examples as in

(a). Examples of (b) and (c) (which are essentially equivalent to each other)

are best dealt with after the next two chapters though we shall already work

out one such example in the next subsection.

4.5 Examples

Example 80: Subgroups of S3. If you deal with a Galois extension whose

Galois group isomorphic to S3, the symmetric group on 3 objects, it may be

useful to know its subgroups and some more properties which we collect

here without proof.

Let G be a group generated by s, t and suppose that s, t have order 2

and st has order 3. Then G is isomorphic to S3. An isomorphism is given by
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φ: G → S3, φ(s) = (12), φ(t) = (23). Here are all subgroups of S3.

1

〈s〉 〈t〉 〈sts〉 〈st〉

S3

Example 81. Let K = C(X) be the field of rational functions in z over C. Let

ω = exp(2π i/3). Define s, t ∈ Gal(K/C) by

s(X) = X−1, t(X) = ω X−1.

Put G := 〈s, t〉, the group generated by s and t. By theorem 78b, there exists

a bijection between the subgroups of G and the fields between K and KG:

the intermediate field corresponding to a subgroup H of G is KH.

(a) Prove K〈s〉 = C(X + X−1).

(b) Prove G ∼= S3.

(c) List the subgroups of G and the corresponding fields between K, KG.

Warning. The symbols s, t are not functions of one variable. If they were

then one would have, for example,

s(1 + X) = (1 + X)−1 (???)

which is wrong. Correct is

s(1 + X) = s(1) + s(X) = 1 + X−1

because s is a field automorphism.

Solution. (a). Write u = X + X−1. We have C(u) ⊂ K〈s〉 because

s(u) = s(X + X−1) = s(X) + s(X−1) = X−1 + X = u.

By theorem 78c we have [K : K〈s〉] = #〈s〉 = 2. On writing d = [K : C(u)]
we have d ≤ 2 because X is a root of the degree 2 polynomial

Y2 − uY + 1

in C(u)[Y]. By the tower law we must have d = 2 and K〈s〉 = C(u).

C(X) = K

K〈s〉

C(w)

d

2

(b). We have st(X) = s(ωX−1) = ωX so st has order 3. Now G is

generated by s, t and the orders of s, t, st are 2, 2, 3, so G ∼= S3.
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(c). The subgroups of G were listed in example 80. Each subgroup H ⊂ G
corresponds to an intermediate field KH by theorem 78. We claim that each

intermediate fields is generated over C by a single function f as follows.

subgroup 1 〈s〉 〈t〉 〈sts〉 〈st〉 G

f X X + X−1 X +ωX−1 X + ω2X−1 X3 X3 + X−3

Let us explain how one finds KH by the example of H = G. We immediately

see that C ⊂ KG. But KG is bigger than C and we need to find more elements

in KG.

Step 1. Choose any element α of K. Let us choose α = X.

Step 2. Compute the orbit A = {h(α) | h ∈ H}. In our case, this is

{

X, ω X, ω2 X, X−1, ω X−1, ω2 X−1
}

.

Step 3. Choose a symmetric function f in #A variables and substitute the

elements of the orbit A for those variables. The result is an element of KH.

In our example, let us choose f = U1 + · · · + U6, the sum of six variables.

Plugging the elements of A in gives f (A) = 0.

Step 4. Find out if KH is generated by the element(s) we found. Well, KG

is not generated by C∪ {0}.

In unsuccesful cases like this we go back to step 3 and repeat. Let us next

take f to be the sum of the squares. The sum of the squares of the elements of

A is again 0. Still no luck! But the sum of the cubes is 3(X3 + X3). Therefore

we have C(X3 + X−3) ⊂ KG. In fact, these fields are equal. In part (a) we

saw an example how to prove that two fields like this are equal. �

Example 82. Here is a baby example of things discussed at length in chap-

ter 6. Let L/K be an extension of degree 2 and suppose that K has charac-

teristic 6= 2. Prove that L/K is Galois and that its Galois group is of order 2.

Solution. Let α be an element of L but not of K. Then L = K(α) (by the tower

law for example). Let f ∈ K[X] be the minimum polynomial of α over K.

Then deg f = 2 by proposition 56. Since X −α divides f in L[X] there exists

β ∈ L such that f = (X −α)(X − β). Therefore the minimum polynomial

of β is also f . By uniqueness of field extensions (proposition 60b) there

exists h ∈ Gal(L/K) such that h(α) = β. We have α 6= β because otherwise

K[X] ∋ f = (X −α)2 = X2 − 2α +α2 so α ∈ K because 2 is invertible in K,

a contradiction. It follows that L/K is Galois. The Galois group is of order 2

by theorem 78c. �

4.6 Exercises

(4.6) In this exercise you will fill some gaps in example 81.

(1) Prove that K〈st〉 = C(X3).

(2) Prove that KG = C(v) where v = X3 + X−3.

(3) Compute the minimum polynomial of u = X + X−1 over C(v).
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(4.7) Let K be a field and M = K(Z) the field of rational functions in a

variable Z. Let G ⊂ Gal(M/K) be the subgroup generated by

s: Z 7→ 1 − Z and t: Z 7→ Z−1

and L = MG.

(a) Prove that the orders of (respectively) s, t, st are (respectively) 2, 2, 3.

[It follows that there is an isomorphism G → S3, s 7→ (12), t 7→ (23),
don’t prove this.]

(b) Write

y =
Z3 − 3Z + 1

Z(Z − 1)
.

Prove M〈st〉 = K(y).

(c) Prove y + s(y) = 3.

(d) Deduce from (c) that L = K(w) where w = y s(y). [This can be done

without many calculations.]

(e) List all subgroups of G (by group generators) and the corresponding

intermediate fields (by field generators). Proofs are not necessary.

(f) Let P ⊂ Q be fields. Let a ∈ P and write

f = (X3 − 3X + 1)− a X(X − 1) ∈ P[X].

Suppose that f has a root u ∈ Q. Prove that there are v, w ∈ Q such

that f = (X − u)(X − v)(X − w). Prove also that if char P 6= 3 then

Q/P is Galois.

(4.8) Finish the proof of theorem 78a, that is, prove that every subgroup of

G is closed.

(4.9) Prove theorem 78c, that is, [J : H] = [H† : J†].

(4.10) Let M/K be an extension of degree d < ∞. Suppose that Gal(M/K)
has t elements. Prove that t ≤ d. Prove that t = d if and only if M/K is

Galois.

(4.11) Let n ≥ 1. Prove that the extension C(X)/C(Xn) is Galois. Prove

that Q(X)/Q(X3) is not.

(4.12) In this exercise you prove that every finite group is (isomorphic to) a

Galois group. Let G be a finite group.

(a) Suppose that G acts faithfully on a field M (recall that faithful means

that if g ∈ G is such that g(x) = x for all x ∈ M then g = 1). Let

K = MG := {x ∈ M | g(x) = x for all g ∈ G}. Prove that M/K is

Galois and that Gal(M/K) ∼= G.

(b) Prove that there exists a field M and a faithful G-action on it. Hint: Let

G act on Q(X1, . . . , Xn) for appropriate n by permuting the variables.

(4.13) Let K ⊂ N be fields and write G = Gal(N/K).
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(a) Suppose that K ⊂ L ⊂ M ⊂ N are fields. Suppose that L is closed and

that [M : L] = n < ∞. Then M is also closed, and [L∗ : M∗] = n

(b) Let H ⊂ J ⊂ G be subgroups. Suppose that H is closed and that

[J : H] = n < ∞. Then J is also closed, and [H† : J†] = n.

(4.14) Let K ⊂ M be fields and write G = Gal(M/K).

(a) Prove that all finite subgroups of G are closed.

(b) Suppose that M/K is Galois and let L be an intermediate field of M/K
with [L : K] finite. Prove that M/L is Galois.

(4.15) Let K be an infinite field, M = K(X), G = Gal(M/K).

(a) Prove that M is Galois over K.

(b) Prove that the only closed subgroups of G are the finite subgroups and

G itself.

(4.16) Consider the field extension Q(X)/Q. Prove that the intermediate

field Q(X2) is closed but Q(X3) is not.

(4.17) Let K ⊂ L ⊂ M be fields with L/K and M/L Galois. Assume that

any automorphism of L/K can be extended to M. Prove that M/K is Galois.

(4.18) Let M/K be a finite extension and let G, F, G, †, ∗ be as usual. Prove

that all subgroups of G are closed. Describe all closed intermediate fields.

(4.19) Let K be a field and n ≥ 1. Let GL(n, K) be the group of invertible

n× n matrices or equivalently, the group of invertible K-linear maps from Kn

to itself.

(a) Prove that there exists a GL(2, K)-action on the field K(X) by K-auto-

morphisms, defined by
(

a b
c d

)

(X) =
aX + b

cX + d
.

(b) Prove that an element of GL(2, K) acts trivally on K(X) if and only if it

is scalar. Notation: we let H denote the group of scalar elements and

put

PGL(2, K) := GL(2, K)/H.

We have shown that PGL(2, K) is a subgroup of Gal(K(X), K).

(c) Prove that PGL(2, K) = Gal(K(X)/K). Notation: as usual, PGL(2, K)
acts on the set of 1-dimensional linear subspaces of K2. Instead of the

subspaces

K(a
1
), respectively, K(1

0
)

where a ∈ K we simply write a, respectively, ∞. Thus we obtain a

Gal(K(X)/K)-action on K ∪ {∞}. Roughly, it is given by
(

a b
c d

)

(t) =
at + b

ct + d

for all t ∈ K ∪ {∞}.
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(4.20) Let K be a field. The degree of a rational function r ∈ K(X) is defined

to be max(deg p, deg q) where p, q ∈ K[X] are any coprime polynomials such

that p/q = r.

(a) Prove that if r ∈ K(X) is not in K then [K(X) : K(r)] is the degree of r
in the above sense.

(b) Deduce that if r, s ∈ K(X) then deg(r ◦ s) = deg(r) deg(s) where ◦
denotes composition (s substituted for X in r).

(4.21) Let K be a field of characteristic 6= 3 and write L = K(X). Let α ∈ K
be a primitive cube root of unity. Define s, t ∈ Gal(K(X)/K) by

s(X) = αX, t(X) =
−X + 1

2X + 1

and write G = 〈s, t〉. (You may wish to skip parts (a) and (b) and instead

simply assume that G has 12 elements).

(a) Prove: G preserves {0, 1,α,α2} where we use the Gal(K(X)/K)-action

on K ∪ {∞} constructed in exercise 4.19.

(b) Prove that G is isomorphic to the alternating group A4.

(c) Find p, q ∈ K[X] of degree at most 12 such that r := p/q is in LG but

not in K. Hint: why does the G-orbit of X3 have at most 4 elements?

(d) Deduce that L = K(r).

(4.22) Let K be a finite field of q elements. Recall that G := Gal(K(X)/K)
consists of the elements taking X to

aX + b

cX + d

for some a, b, c, d ∈ K with ad − bc 6= 0. Define s ∈ G by s(X) = X + 1 and

H ⊂ G by

H =
{

X 7→ aX + b
∣

∣ a, b ∈ K, a 6= 0
}

.

(a) Prove K(X)〈s〉 = K( f ) where f = Xq − X. Hint: either use that the

characteristic of K is a prime number dividing q, or that Xq − X =
∏a∈K(X − a).

(b) Prove K(X)H = K( f q−1).

(c) Find g such that K(X)G = K(g).


