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1 Introduction

1.1 Groups

Definition 1.1. A semigroup is a non-empty set G together with a binary operation (“multiplication”) which is
associative ((ab)c = a(be) Va, b, c € G)

A monoid is a semigroup G which contains an element e € G such that ae = ea = aVa € G.

A group is a monoid such that Ya € G 3a~! such that aa™! 1

=a a=e.
Note. Many authors say “semigroup” for monoid. e.g. N={0,1,...} is called a semigroup.
Example (Semigroups that are not monoids). e A proper ideal in a ring under multiplication
o (N\{0},+)
e (2Z, %)
o (M,(27), x)
e (R, min)
Example (Monoids that are not groups). o (N,+)
e Polynomials in 1 variable under composition
e Rings with identity that has non-invertible elements under multiplication
e (RU oo, min)
Exercise. e In a monoid, identities are unique

e In a group, inverses are unique.

Definition 1.2. Let G and H be semigroups. A function f : G — H is a homomorphism of semigroups if
flab) = f(a)f(b) Va,b € G

If it is a bijection, it is called an isomorphism.

Let G and H be monoids. A monoid homomorphism is a semigroup homomorphism with f(eq) = eqn

A group homomorphism between groups G, H is a semigroup homomorphism between the underlying semigroups.

Group homomorphisms are automatically monoid homomorphisms: f: G — H, f(eg) = f(egec) = fleq) f(eq).
Multiply by f(eg)~! then we get eg = f(eg) f(eq) = fleq) flea)f(eq) = enflec) = f(eq).

Example (Important example of a group: Permutation Group). Let X be a non-empty set. Let P(X) be the set
of all bijection f: X — X. P(X) is a group under function composition that is fg: X — X is fog: X — X.

e This is associative because function composition is

e The identity is id (the identity map)

e The inverse of f is f~1: X — X. (Which exists since f is a bijection
If | X| = n then P(X) = S, (the symmetric group on n elements)

Definition 1.3. A sub{group, monoid, semigroup} of a {group, monoid, semigroup} G is a subset H C G that is
a {group, monoid, semigroup} under the operation of G.
Let ¢ : G — H be a group homomorphism, the kernel of ¢ is ker ¢ = {a € G|p(a) = eny}

Note. The kernel of ¢ is a subgroup of G. In fact it is normal (i.e., Vg € G, ghg™ € H = ker ¢ for all h € H}
Definition 1.4. A group G is abelian if ab = ba for all ab € G

Exercise. Find ¢ : G — H (G, H monoid) that is a semigroup homomorphism but not a monoid homomorphism

(®,)  OL(®). ) by o) =+ ()



1.2 Rings

Definition 1.5. A ring R is a non-empty set R together with binary operations +, x such that
1. (R,+) is an abelian group (write identity as 0)
2. a(bc) = (ab)c (multiplication is associative, so (R, X) is a semigroup)
3. a(b+c¢) = ab+ ac and (a + b)c = ac + be (distributivity)

If there is 1z € R such that 1gra = alg = aVa € R then R is a ring with identity
R is commutative if ab = baVa,b € R.
Let R, S be rings. A ring homomorphism ¢ : R — S is a function ¢ such that :

1. ¢(r+s) = ¢(r) + ¢(s) (group homomorphism)
2. ¢(rs) = ¢(r)o(s) (semigroup homomorphism)
Note. We do not require that if R, S have identities, that ¢(1r) = 1g (e.g., ¢(a) = 0g Va is OK)

Definition 1.6. Let R be a ring with identity. An element a € R is left (respectively right) invertible if 3b € R
(respectively ¢ € R) such that ba = 1 (respectively ac = 1R)

If a is left and right invertible then a is called invertible, or a unit.

A ring with identity 1p # Opr in which every non-zero element is a unit is a division ring. A commutative
division ring is a field.

A field homomorphism is a ring homomorphism ¢ of the underlying rings.
Example (Useful example of a ring: Group rings). Let R be a commutative ring with 1. Let G be a group. The
group ring R|[G] has entries {dec Tgg T € R} “formal sums” (all but finitely many ry = 0). This is a ring under
coordinate wise addition, and multiplication is induced from (g1)(g2) = (g192)-

e.g.: R=C,G =Z then C[Z] = C[t,t~1]. C[Z/3Z] = C[t]/(t3)

Definition 1.7. Let R be a ring. A (left) R-module is an abelian group M (write additively) together with a
function R x M — M such that

1. r(m+m') = rm+rm/

2. (r+s)ym=rm+sm

3. r(sm) = (rs)m

If R is a field an R-module is a vector space. If R has 1p we usually ask 1pm = m for all m € M.

Definition 1.8. An R-module homomorphism is a group homomorphism ¢ : M — M’ such that ¢(rm) = ré(m).



2 Category Theory

Definition 2.1. A category is a class Ob(%) of objects (write A, B, C,...) together with:

1. a class, mor(%), of disjoint sets hom(A, B). one for each pair of objects in Ob(%). An element f of hom(A, B)
is called a morphism from A to B. (write f: A — B)

2. For each triple (A, B, C) of objects: a function hom(B, C) x hom(A, B) — hom(A, C) (write (f,g) — fog)
“composition of morphism satisfying:

(a) associativity: ho(go f) = (hog)o f with f € hom(A, B), g € hom(B,C) and h € hom(C, D)
(b) Identity: For each B €Ob(%) there exists 1p : B — B such that Vf € hom(A,B) 1o f = f and
Vg € hom(B,C) golg =g

Example.

Sets: Objects: the class of all sets. Morphisms hom(A, B) is the set of all functions f: A — B
Groups: Objects: Groups. Morphisms: group homomorphism.

Semigroups: Object: semigroups. Morphisms: semigroup homomorphism

Monoids: Object: monoids. Morphisms: monoid homomorphism.

Rings: Objects: Rings. Morphisms: ring homomorphism

Ab: Objects: abelian groups. Morphisms: group homomorphism
Vecty: Objects: Vector spaces over (a field) k. Morphisms: linear transformations.
Top: Objects: Topological spaces. Morphisms: Continuous functions.

Manifolds: Objects: Manifolds. Morphisms: Continuous maps.
Diff: Objects: Differentiable manifolds. Morphisms: differentiable maps

Point Let G be a group. Object: one point. Morphisms: hom(pt, pt) = G (composition is multiplication)
Note. Vf € hom(pt, pt) there exists g such that fog = 1, = go f. (This example is useful for Groupoid)

Open Sets Fix a topological space X. The category of open set on X: Objects: Open sets. Morphisms: inclusions.
(i.e., hom(A, B) is empty or has size one) (This example is useful for sheaves)

R-module Fix a ring R. Objects: are R-modules. Morphisms: R-module homomorphism ¢(rm) = ré(m)

Definition 2.2. In a category a morphism f € hom(A, B) is called an equivalence if there exists g € hom(B, A)
such that go f =14 and fog=1p.
If f € hom(A, B) is an equivalence then A and B are said to be equivalent.

Example. Groups Equivalence is isomorphism
Top Equivalence is homeomorphism
Set Equivalence is bijection.

Definition 2.3. Let & be a category and {A, : @ € I} be a family of objects of €. A product for the family is
an object P of & together with a family of morphisms {m, : P — A, : @ € I} such that for any object B with
morphisms ¢, : B — A, 3¢ : B — P such that ¢, 0 ¢ = ¢ Vo

Example. |I| =2

B
|
(=1
\
P1 P P2
A1 A2



Warning: Products don’t always exists, but when they do, we often recognize them
Example.
Set: Products is Cartesian product.
Groups  Product is direct product.
Open sets of X Interior (NA,).

Lemma 2.4. If (P,7,) and (Q,%,) are both products of the family {Ay,a € I} then P and Q are equivalent
(isomorphic).

Proof. Since @ is a product 3!'f : P — @ such that 7, = %, o f. Since P is a product Jlg : @ — P such that
Yo = Ta0g. So go f: P — P satisfies m, = my0(go f) Va. Since P is a product 3'h : P — P such that 7, = 7w, 0h.
Since h = 1p satisfies this, we must have go f = 1p. Similarly fog:Q — @ equals 1g. So f is an equivalence. [

Definition 2.5. An object [ in a category % is universal (or initial) if for all objects C' € Ob(%’) there is an unique
morphism I — C. J is couniversal (or terminal) if for all object C there is a unique morphism C — J.
Example.

Sets () initial, {z} terminal.

Groups  Trivial group, initial and terminal.

Open sets () is initial. X is terminal

Example. Pointed topological spaces: Objects: Pairs (X, p) where X is a non-empty topological space, p € X.
Morphisms: Continuous maps f : (X,p) — (Y, q) with f(p) = ¢. ({p},p) is terminal and initial.

Theorem 2.6. Any two initial (terminal) objects in a category are equivalent.

Proof. Let I,J be two initial objects in 4. Since [ is initial 3!f : I — J. Since J is initial J!g : J — I. Since [
is initial, 1; is the only morphism I — I, so go f = 1;. Similarly, f o g = I; so f is an equivalence. For terminal
objects the proof is the same with the arrows reversed. O

Why is the lemma a special case of the theorem. Let {A, : @ € I'} be a family of objects in a category €. Define
a category & whose objects are all pairs (B, f, : « € I) where f, : B — A,. The morphisms are morphisms
(B, fa) — (C, go) are morphisms h : B — C such that f, = g, o h.

Check:

e [Ip: B — B induces I(B,fin &
e Composition of morphisms is still ok (These first two checks that & is a category)
e h is an equivalence in & implies h is an equivalence in %. (This will help us show what we wanted)
If a product of {A,} exists, it is terminal in &. We just showed terminal objects are unique (up to equivalence) so
products are unique (up to equivalence).
Note. Not every category has products. (for example finite groups)
Definition 2.7. A coproduct of {A,} in € is “a product with the arrows reversed”, i.e., Q with 7, : A, — @ such

that YO with ¢a : Ay — C, 3f : Q — C such that ¢, = f o7,
Al A2

Example. The coproduct of sets is a disjoint union.

For the pointed topological space we have the product is (] X4, ][] pa). The coproduct is the wedge product,
that is, (in the case of the coproduct of two object) X [[Y/p ~ q.

For abelian groups the coproduct is direct sum, i.e., ;G4 3 (go : @ € I,go € G,) and all but finitely many

o = €G-



2.1 Functors

Definition 2.8. Let ¢ and 2 be categories. A covariant functor T from € to 2 is a pair of functions (both
denoted by T'):

1. An object function: T : Ob(%) — Ob(2)
2. A morphism function T : mor(%) — mor(2) with f: A — B+~ T(f) : T(A) — T(B) such that

(a) T(lc) = 1T(C)VO S Ob(%)
(b) T(go f) =T(g) o T(f) for all f,g € mor(%) where composition is defined

Example. o The “forgetful functor” from Groups to Sets. T'(G) =underlying set and T'(f) = f (i.e. same
functions, thought of as a map of sets)

e hom(G, —) :Groups—Sets. Let G be a fixed group. Let T be the functor that takes a group H to the set
hom(G, H). If f: H — H’ is a group homomorphism, then T'(f) : T(H) — T(H') is given by T'(f)(g) = fog.
Check:

~T(g)(g) =1lgog=gso T(lg) = lrim
—T(gof)(h)=(gof)oh=go(foh)=T(g)(foh)=T)T(f)(h))=(T(g)oT(f))(h)
Definition 2.9. Let ¢ and 2 be categories. A contravariant functor T from € to 2 is a pair of functions (both
denoted by T'):
1. An object function: T : Ob(%) — Ob(2)
2. A morphism function T : mor(%) — mor(2) with f: A — B~ T(f): T(B) — T(A) such that

(a) T(lc) = 1T(C)VO S Ob(%)
(b) T(go f) =T(f)oT(g) for all f,g € mor(€¢) where composition is defined

Example. hom(—, G) :Groups—Sets. Let G be a fixed group. Let T be the functor that takes a group H to the
set hom(H,G). If f : H — H' is a group homomorphism, then T'(f) : T(H') — T(H') is given by T(f)(g9) = go f.
Definition 2.10. Let ¥ be a category. The opposite category €°P has object Ob(%) and homgor (A, B) =

home (B, A). (“reverse the arrows”)

One can see that this is a category with g°P o f°P = (f o g)°P.
If T:¢ — 2 is a contravariant functor then T°P : €°? — & defined by T°P(C) = T'(C') and T°P(f) = T(f) is
covariant.

2.2 Some natural occurring functors

1. Fundamental group (ref: Hatcher “Algebraic Topology”)
m1 : Pointed topological spaces —Groups. (X, p) =homotopy classes of maps f : [0,1] — X such that
f(0) = f(1) = p. This is a group under concatenation of loops. fog : [0,1] = X with fog(t) =
g(2t) 0<t<3
fet—1) <<t
get an induced map 71 (X, z) = 71 (Y,y) by (f :[0,1] = X) — (6(f) : [0,1] = Y) by &(f)(t) = p o f(t).
Check:

L) = f(1—t). If ¢ : (X, 2) — (Y,y) is a continuous map with ¢(z) = y, then we

(a) This is a group homomorphism
(b) 771(1(X,x)) = 17r1(X,m)
(¢) mi(poy) =m(e)om(y)

Recall: A group is a category with one object where all morphisms are isomorphisms (have inverses). A
groupoid is a category where all morphisms are isomorphisms.

2. Consider the category % (X) of open sets on X with morphisms inclusion T : % —Sets, T(U) = {continuous
functions from U to R}. If V- C U then T(V) < T'(U) (by restriction). Good easy exercise is to finish checking
that this is a functor. This is an example of a presheaf.



2.3 Natural Transformations

Definition 2.11. Let ¥ and Z be categories and let S and T be covariant functors from % to 2. A natural
transformation « from S to T is a collection {a, : ¢ € Ob(%)} in mor(2), where o, : S(C) — T(C) such that if
f:C — C'is a morphism in & then

Qe

commutes.
Example. ¥ =groups, Z =sets. S = hom(G, —) and 7' = hom(H, —). Let ¢ : H — G be a group homomorphism.
Given a group A, we construct ay : hom(G, A) — hom(H, A) by g+~ go ¢ (where ¢ : H - G). Let f : A— B
hom(G, A) il hom(H, A)
ngogi lg/'—n‘og/

hom(G, B) <7%°% hom(H, B)

Definition 2.12. A natural transformation where all «. are isomorphism is called a natural isomorphism.

Example. Let ¥ = 2 =n-dimensional vector space over k. Let S =idand T : V — V** (ie. T(V) = V**if
f:V = W,w* — kthen T(f) : V** = W*, T(f)(B) € W** we have T'(f)(8)(¢)) =B o f) € k

We claim T and S are naturally isomorphic. For V €Vect® let a,, be the linear transformation V — V** given
by v — ¢y where ¢y (1p) = ¢ (v). Then for f:V - W

Vv v Vo

S(H=f iT(f)

%% aw W

T(f)lav@)() = T(f)(év)(¥)
= ¢v(of)
= Yo f(v)
= ¢ (¥)

Since ay, o f(v) = ¢y(») means the diagram commutes. Since each ay is an isomorphism (exercise that this uses
finite dimension), T is naturally isomorphic to S.

Definition. Two categories ¢ and & are equivalent if there are functors f: ¢ — Z and g : 2 — € such that fog
is natural isomorphic to 1 : Z — 2, g o f is naturally isomorphic to 1¢ : € — €.



3 Free Groups

Intuitive idea: Group formed by “words” in an alphabet. Multiplication is concatenation, e.g. Fy =words in x and

y for example zyz 'y ta3y?
Construction

Input: A set X (might be infinite)

1) Choose a set X! disjoint from X with |X !/ =|X| and a bijection
X —- X', 2+ 27!, Choose an element 1¢ XU X!

2) A word on X is a sequence (ai,az,...) with a; € X UX 1 U{l} such that there
exists N such that a, =1¥n>N. (1,1,1,...) is the empty word and written
as 1

3) A word is reduced if:

1. V€ X, = and z~! are never adjacent (i.e., if ap =z then
ak—1,0k41 # 21)
2. ap=1=a;,=1Vi >k

A non-empty reduced word has the form (xi‘l,xg‘z, conapn 11,00)) with 2 € X
and \; = +1. Write this as z}'@)2...z\".

4) Our group F(X) as a set is the set of reduced words.
Naive attempt at defining multiplication: Define (z}'...z))(y%...y0m) to
be :ci\l .. .:cf‘L"yfl coyOm

Problem: This product might not be reduced
Solution: Reduce it:

Formally: if a= (z}'...2))(y>...y0") (and suppose that m <n). Let

N m

K = maxo<p<n{k: z:‘n@}j = y;f{+1 for all 0 <j<k—1}. Then define
mi\l .. x;\n’"_’k’“yz’ﬂl ol k<m

ab = yﬁ;”ﬁf ... 00 k=m < n (and analogously if m > n)

1 E=m=n
This define a multiplication F'(X) x F(X) — F(X).
Claim: This is a group
e 1 is the identity

A1

e The inverse of ] Am

. -\ -1
R A R o

e For associativity see Lemma [3.1]

Lemma 3.1. The multiplication F(X) x F(X) — F(X) is associative.
Proof. For each z € X and § = +1 let |2%| : F(X) — F(X) be the map given by:

o 10
5,01 on o —01
20zt oxdr x #
o 0.t x?...mf{l x‘szml_517n>1
1 nzl,m‘S:x_‘sl

Note that this map is a bijection, since |2°|[z%| = 1 = |27%||2°|. Let A(X) be the group of all permutations of
F(X). Consider the map ¢ : F(X) — A(X) given by

o 1— 1A(X)

o 20t s 28|29 |adn
since |231| ... %] : 1+ 25 ... 20" we have ¢ is injective. Note that if wy, wy € F(X), then ¢(wiws) = ¢(w1)d(ws).
Since A(X) is a group, the multiplication is associative, so the multiplication in F(X) is associative. O

Example. e X ={z}, F(X) 2 Z (reduced words are 1,z™,x~")



o X ={x,y}. F(X)="wordsin z,y,v7 1,57, e.g. zyx~ly~!isreduced. So F(X) is not abelian as zyz~ly~! #
1 so xy # yx.

Note. There is an inclusion i : X — F(X).

Lemma 3.2. If G is a group and f : X — G is a map of sets then 3! homomorphism f: F(X) — G such that
fi=f.

Proof. Define f(1) = e € G. Tt 2% ... 20" is anon-empty reduced word on X, set f(z5* ... 2%) = f(x1)% ... f(z,)o".

j— L n
Then f is a group homomorphism with fi = f by construction and it is unique by the homomorphism requirement.

O

This says the free group is a free object in the category of group. If ¢ is a concrete category (there exists a forgetful
functor F : € —Sets) and i : X — F(X), where X is a set and A € Ob(%), is a function, then A is free on X if for
all j: X — F(B) 3! ¢: A— B such that ¢oi = j. (Note B € Ob(%) and ¢ € mor(%)).

Compare:

e Vector Spaces
o Commutative k-algebra
e R-modules
Corollary 3.3. FEvery group G is the homomorphic image of the a free group.
Proof. Let X be a set of generators of G.The inclusion f : X — G gives a map f : F(X) — G. The map f is

Tr—x

surjective since X is a set of generators. So G = F(X)/ker(f). O

Definition 3.4. Let G be a group and let Y be a subset of G. The normal subgroup N = N(Y') of G generated by
Y is the intersection of all normal subgroups of G containing Y.

Check that it is well defined. (That is check N(Y) is non-empty, it relies on the fact G is normal)

Definition 3.5. Let X be a set and let Y be a set of (reduced) words on X. A group G is said to be defined by
generators X and relations w =e forw € Y it G =2 F(X)/N(Y). (We say (X|Y) is a presentation of G)

Example. (z|2%) =~ Z/67Z
(z,y|z*, y?, (zy)?) = Dy (or Dg depending of your notation)

Note. Presentations are not unique, e.g., (z,yl|2®,y? zyz~ty™') = Z/6Z = Z/2Z x L/3ZL, {x,ylzy™®) = Z,
(z,yla?,y?, (zy)*) = Dy (the Coveter presentation)

Given a presentation G = (X|R) & F(X)/N(R). The word problem asks if a given word w € F(X) equals the
identity of G. This is undecidable! [Novikav 1955].

Example. Burnside groups, B(m,n) = (x1, ..., Ty |w™ for any word w). Question (Burnside 1902) Is B(n,m) finite?
In the case B(1,n) 2 Z/nZ and B(m,2) = (Z/2Z)™.

Question: What are free objects in the category of abelian groups? @, .y Z.



4 Tensor Product

We’ll work in the category of R-modules (no assumptions are made on R, including whether it has 1 or not).
(Cross-reference this whole chapter with Commutative Algebra Chapter 2)

Recall M isaleft R-module if Rx M — M with (r,m) — rm and r(s(m)) = (rs)m. And M is a right R-module
if Rx M — M with (r,m) — mr and (mr)s = m(rs)

Example. R = M, (C) and M = C" is left (M is columns vectors) or right (M is row vectors) R-module

If R is commutative a left R-module structure gives rise to a right R-module structure, i.e., we define
mr =rm. M is an S — R bimodule if M is a left S-module and a right R-module and (sm)r = s(mr),
e.g., C" is a M,,(C) — C bimodule.

Suppose we have f : A® B — C such that f(a; + a2,b) = f(a1,b) + f(az2,b), f(a,b1 +b2) = f(a,b1) + f(a,b2) and
f(ar,b) = f(a,rb). We show Ax B—- A®r B — C.

Example. f:R2@R? -5 R, f <(Z> , (ccl)) = dac + bc + ad + 4bd. (Easy to check the above relations holds)

Definition 4.1. Let A be a right R-module and B a left R-module. Let F' be the free abelian group on the set
A x B. Let K be the subgroup generated by all elements:

1. (a+d',b) — (a,b) — (d’,b)
2. (a,b+ V) —(a,b) — (a,b)
3. (ar,b) — (a,rd)

for all a,a’ € A,b,b' € B and r € R. The quotient F/K is called the tensor product of A and B and is written
A®pg B. Note: (a,b) + K is written a ® b and (0,0) + K is written 0. This is an abelian group.

Warning: Not every element of A ®g B has the form a ® b. A general element is (finite) > n;(a; ® b;) with
n; € 7.

We have relations (a1 +a2) @b = a1 @b+as®b, a® (by +b2) = a®b; +a®bs and ar®@b=a®rb. f AisaS—R
bimodule then A ® B is a left S-module since F' is an S-module by s(a,b) = (sa,b) and K is an S-submodule.

Example. Z/27 ® Z/27 = Z/27Z. (c.f. Commutative Algebra)

There is a function 7 : A x B — A ®g B defined by (a,b) — a ® b. Note: 7 is not a group homomorphism
as (a1 + ag,b1 +b2) — a1 @ by + a1 ® by + a2 ® by + as ® by. However ww(ay + az,b) = 7w(a1,b) + m(az,b) and
m(a,by + b)) = 7w(a,b1) + 7(a,bz) and w(ar,b) = w(a,rd). (Call these relations “middle linear”)

The universal property of Tensor Product . Let Ar,r B be R-module and C' an abelian group. If g: AxB — C
is “middle linear” then 3'g: A®r B — C such that gm = g.

Ax B

|

A®RB*§I*>C

If Ais an S — R bimodule and C' is an S-module then g is a S-module homomorphism.

Proof. Let F be the free abelian group on A x B. There is a unique group homomorphism g; : F — C determined
by (a,b) — g(a,b). Since g is “middle linear”, g1((a + @’,b) — (a,b) — (a/,b)) = g(a + a’,b) — g(a,b) — g(a’,b) = 0.
Similarly, the other generators of Klive in ker g1, so we get an induced map g: A ® g B — C. Note that gla ®b) =
—F/K
9:((a,0)) = g(a,b) so gm = g.
If h: A® B — C'is a group homomorphism with hw = g then h(a®b) = hr(a,b) = g(a,b) = g(7(a, b)) = gla®Dd).
So h and g agree on generators a @ b of A ®r B, so h =73. O
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Example. R=72,A=7Z/4AZ®Z, B=Q. Then A®r B =Q.

To prove this, define f : Z/4Z &7 x Q — Q by f((a,b),¢) = be. Then f((a1,b1) + (az,b2),¢) = bic+ bac =
f((a1,b1),¢) + f((az,b02),¢), f((a,b),c1 + c2) = blcr + c2) = bey + bez, f((a,b)n,c) = f((na,ndb),c) = nbc =
f((a,b),nc). So f is “middle linear”, so by the proposition there exists a unique f: A® B — Q with f((a,b) ® ¢) =
be. We have that f is surjective since f((0,1) ® ¢) = ¢ for all ¢ € Q. Now consider d = Y n;(a;,b;) @ ¢; in
ker(f). So f(d) = Y- nibic; = 0. Now (a,b) @ ¢ = (a,b)4® ¢ = (0,4b) ® ¢ = (0,1)4b® ¢ = (0,1) ® be. Hence

Tensor products of vector spaces. If V is a vector space over k with basis eq,...,e, and W is a vector space
over k with basis fi,..., fm, then V ®; W is a vector space with basis {e; ® f;} (so dimension is nm)

To prove this, let U be a vector space with basis {g;; : 1 < i <n,1 <j <m}. Leth:V xW — U be
given by (3" aie;, Y bjfj) — > a;bjg;;. Check: h is “middle-linear”. So by the proposition there exists a unique
h:V ®, W — U. The k-module homomorphism A is surjective since E(ei ® f;) = gij. Note that if a = > aze; and
b= ijfj7 then a ® b = (Z aiei) ® (Z bjfj) = Zaibj(ei ® fJ) So if h(Znijei X fJ) = 0, then Znijgij =0 so
n;; = 0 for all 4, j, hence Y n;;(e; ® f;) = 0 so h is injective.

Consider R ®g V. Since R is a R — Q bimodule, this is a left R-module, so a vector space.
Exercise. If {¢;} is a basis for V, then {1 ® e;} is a basis for R ®g V as a R-vector space.
Lemma 4.2. Let R be a ring with 1 and A be a unitary left R-module. Then R®r A= A as a left R-module.

Proof. The map f : R x A — A defined by (r,a) — ra is “middle-linear” (check!), so 3!'f : R ®r A — A with
f(r®@a)=ra. Since r(r' @ a) =rr' ®a. So f(r(r ®a)) =rr'a=rf(r'®a), so f is an R-module homomorphism.
Since 1 ® a — a, f is surjective. Note that r ® a = 1 ® ra, so if f(>_n;(r; ®r b;)) = 0 then since we have

Zni(ri ® b;) an(l ® 1ib;)

we find f(3 ni(r; @ b;)) =Y nirib; = 0,50 Y. ni(r; @b;) =1 ®0=0. So f is injective. O

In general, if M is a left R-module, and ¢ : R — S a ring homomorphism, then S ®r M is a left S-module.
This is often called extension of scalars or sometime base change. If R, S are fields then S ®p M is a vector space
with the same dimension of M.

Exercise. K C L fields, L ® x K[x1,...,2,] = L[z, ...,2,] (as vector spaces)

4.1 Functoriality

Suppose ¢ : Mg — Ng and ¢ :g M’ —r N’ are R-module homomorphisms. We will now construct ¢ ® 1 :
M @g M’ — N ®r N’ as follows: The map f : M x M’ — N ®gr N’ given by (m,m’) — ¢(m) ® ¥(m’) is
“middle-linear”. Check this yourself but we can see that

(m14+my,m') = ¢(my +ma) @Y(m') = (dp(m1) + d(ma)) @ p(m”)
= ¢(m1) @P(m') + ¢p(ma) @ (m')
= f(mi,m') + f(mg,m)

This gives an induced map f = ¢ ®¢ : M @g M’ — N @ N’ defined by ¢ @ ¥(m @ m') = ¢(m) @ ¥(m’)

If M, N are S — R bimodules and ¢ is a bimodule homomorphism then ¢ ® v is an S-module homomorphism.

Then, given a right R-module A, we get a functor A ® — :kMod—Groups, it act on objects by B — A ®r B
and on morphisms it acts by (f: B—>C) = (1® f: A B — A® (). Similarly, a left R-module B gives a functor
— ®p B :Modgr —Groups.

If Ais an S — R bimodule, we replace Groups by sMod.

Theorem 4.3. Let R, S be rings, let A be a right R-module, B an R — S bimodule, and C a right S-module. Then
homg(A ®g B,C) = hompg(A, homg(B,(C)).
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Note. e Write F for the functor —®B and G for the functor hom (B, —). Then the theorem says homg(F(A),C) =
homp(A, G(C)). When we have such a situation for a pair of functors F' is called left adjoint to G and G is
right adjoint to F

e If Bis an R — S bimodule and C is a right S module, then homg(B, C) is a right R-module, under the map
r € homg(B, () is given by (¢r)(b) = 1(rb). Check: (¢r)s = 1p(rs) since ((1r)s)(b) = (¢r)(sb) = ¢ (rsb) =
P(rs)(b).

e homg(B,C) is an abelian group (¢ + ©)(b) = ¢(b) + 1(b). Identity: ¢(b) = 0Vb € B.

Example. R =5 =C = K then (A® B)°? = hom(A4, B°P)

of Theorem[[-3 Given ¢ : A® B — C, define ¥(¢) =9 : A — homg (B, C) by 9(a)(b) = ¢(a ®b). We check:
1. For each a,(a) € homg(B,C),

P(@)(b+V) = ¢la®(b+1))
= ¢laxb+a®l)
= ¢la®b)+pa®b)
= Y(a)(b) +¢(a)(¥)
Y(a)(bs) = ¢(a®bs)

= ¢((a®b)s)

= ¢(a ® b)ssince ¢ is an S—module homomorphism

= Y(a)(b)s

2. 1 is an R-module homomorphism:

dlata)(b) = é(la+d)®D)
b—l—a ®b)
b)+ ¢(a’ ®D)

a)(b) + ¢(a’) (b) Vb

I
< S
e e
Q@/‘\

So ¢(a+a') =(a) + ¢¥(a') € homg(B,C)
Y(ar)(b) = ¢lar®b)

I
<
—~

S
~—
<
=
~—

So Y(ar) = Y(a)r.
3. ¥ is a group homomorphism
V(g+ N (a)b) = (0+¢)ax)d)
= ¢a®b)+¢'(a®b)
= U(¢)(a)(b) + ¥(¢)(a)(b)
This is true for all a,b so V(¢ + ¢') = ¥(¢) + ¥(¢'). Hence V¥ is a group homomorphism.

For the inverse, given an R-module homomorphism ¢ : A — homg(B,C) define the function f : A x B — C by
f(a,b) = ¢(a)(b). This is “middle linear” (Check!). So f defines ¢ : A ®r B — C with ¢(a ® b) = ¢(a)(b). This
gives an inverse to W. O

Example. Of Adjoints. Let F' :Sets—Groups defined by X — F(X) (the free group) and G :Groups—Sets the
forgetful functor. Then homgroups(FX, H) = homgets (X, GH).

The point of all this is: if F' is a left adjoint functor, then F' preserves coproduct.
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Example. — ® B preserves direct sums of modules. (A®B)@C = (ARC)& (B®C).

Proposition 4.4. Let A be a right R-module, B an R— S bimodule and C a left S-module. Then (A®rB)®gC =
A®g (B®s C).

Proof. Sketch 1 Fix C, define A® B -+ A® (B® C) and define a ® b — a ® (b ® ¢). This means that the map
(A B)xC - A® (B®C) given by (a®b,¢) =a® (b® c) is well define and “middle linear”. Then do
the same thing for the other direction and we have an isomorphism.

Sketch 2 We construct A®r B® C by F(A x B x C)/R where R is a set of relations. (For example (a+a’,b,¢) =
(a,b,¢) + (a’,b,¢) or (ar,b,c) = (a,rb,¢) or (a,bs,c) = (a,b, sc) etc.) Then use universal properties of
categories.

O

Definition 4.5. Let R be a commutative ring with identity. An R-algebra is a ring A with identity and a ring
homomorphism f : R — A mapping 1 to 14 such that f(R) is in the centre of A (f(r)a = af(r)Vr € R,a € A).
This makes A a left and right R -module.

Example. R =k a field, A = k[xy, ..., 2,]
K C Lfields, R=K,A=1L
R=K, A= M,(K)

Definition. An R-algebra morphism is a ring homomorphism ¢ : A — B with ¢(14) = 15 that is also an R-module
homomorphism. So ¢(ra) = r¢(a).

Proposition 4.6. Let R be a commutative ring with 1, and let A, B be R-algebras. Then A ® g B is an R-algebra
with multiplication induced from (a ® b)(a’ ® b') = aa’ ® bb'.

Proof. Once we have shown that the multiplication is well-defined, then 1 ® 1 is the identity and we have f: R —
A® B given by f(r) =r®1=1®r. This satisfies (r @ 1)(a®b) =ra®@b=ar b= (a®b)(r ® 1).

To show that the multiplication is well-defined and distributive we can construct a homomorphism A® B® A ®
B — A®B by a®b®d’ @V — aa’@bb’. We construct this map in stages: fix a’, b’ and construct ¢q p : AQB — ARQB.
Use ¢y pyto construct ¢, : A® B® A - A® B and thus the above map. This homomorphism is induced by a
“middle linear” map f: A® BXx A® B — A® B defined by (a ® b,a’ @) — (aa’,bb’) which is our multiplication.
The “middle-linearity” shows distributivity. O

4.2 Tensor Algebras

Let R be a commutative ring with 1 and let M be an R-module

Definition 4.7. For each k > 1, set TF*(M) = M @g M ®r --- ®@r M. So T°(M) = R. Define T(M) = R® M &

k
(M®M)& - =@,—, T*(M). By construction this is a left and right R-module.

Theorem 4.8. T(M) is an R-algebra containing M defined by (m1 @ ---@m;)(m) ®---@mf)) =m @ - @m; ®
my ®---@m); and extend via distributivity. For this multiplication, T*(M)T? (M) C T** (M). If A is any R-algebra
and ¢ : M — A is a R-module homomorphism, then there exists a unique R-algebra homomorphism ® : T(M) — A
such that ®|p = ¢.

Proof. The map T*(M)xT7 (M) — T*+3(M) defined by (m;®- - -@m;, mi®- - -@m};) = (m1®- - -@m;@m) @- - -@m;)
is “middle-linear” (check that this is well-defined.) So multiplication is defined and distributive. Suppose A is an
R-algebra and ¢ : M — A is an R-module homomorphism. Then M x M — A defined by (my,ms) — ¢(m1)p(ms)
is middle linear. So it defines an R-module homomorphism M ® M — A. (Exercise: check actually we get
T*(M) — A). We thus get a R-module homomorphism ® : T(M) — A with ®|,; = ¢. This respect multiplication,

so is a ring homomorphism. Now ®(1) = 1 by construction, so we have a R-algebra homomorphism. Since
&(m) = ¢(m) for all m € M, if ¥ : T (M) — A were another such R-algebra homomorphism, ¥(m; ® --- ® m;) =
QW (my)... ¥(m;) = ¢(m1)...¢(m;) = (M1 @ - ®@m;), so ¥ = . O

13



Example. R = K a field, M = V a d dimensional vector space with basis ej,...,eq. T7(M) is a vector space
with basis e;; ® -+ ® e;; and hence has dimension d’. Multiplication is concatenation, so T(M) consists of “non-
commutative polynomials” in the variables eq,...,eq. This is either called the “non-commutative polynomial al-
gebra” or “free associative algebra’.

R=Zand M =Z/6Z. Now T/ (M) 2 Z/6Z,s0 T(M) 2 Z S ZL/6ZBL/6ZS ...~ Lz]/ (6z).

We work outT(Q/Z). Now Q/Z ®7 Q/Z =0, to see this ¢ ® £ =22 = (4)hR 1S =a® 5 =00 5 =0.
SoT(Q/Z) =7 ¢ Q/Z.

Definition 4.9. A ring S'is (N)-graded if S =2 Sy&S51®- - - = Br>0Sk (as groups) with S;5; C S;1; and S;5; C S,
Vi,j > 0. The elements of S; are called homogeneous of degree i. A homomorphism ¢ : S — T of graded rings is
graded if ¢(Sy) C Ty, for all k.

Example. S = k[z1,...,z,] or S = TF(M)

Note. SpSo € Sp, so Sy is a subring. Also SpS; C S;, so each S; is an Sp-module. If S has an identity 1, it lives in
So. (ifnot 1 =¢x+e,e€ @?i&Sj, fors€ S1,s=1-s=(ex +e)s =ers+es — exs =0). If Sy is in the centre of
S, then S is an Sp-algebra.

4.3 Symmetric and Exterior Algebras

Definition 4.10. The symmetric algebra of an R-module M is S(M) =T(M)/C(M) where
C(M) = (m1 @mg —mg @my : my,mg € M) (two-sided ideal generated by).

Since T'(M) is generated as an R-algebra by T and M, and the images of m; @ ma and mg ® m; agrees in S(M),
we have S(M) is a commutative ring. (Exercise: think about universal properties)

Example. V is a d-dimensional vector space over k, spanned by eq,...,eq. Then S(V) = k[zq,...,z,].

Definition 4.11. The exterior algebra of an R-module M is the R-algebra A(M) = T(M)/A(M) where A(M) =
(m®m :m € M). The image of mq ®---®m, in AM is written ms Ama A---Am; . Multiplication is called ezterior
or wedge product.

Example. M = V a d-dimensional vector space over k (of characteristic not 2), spanned by ej,...,eq. Then
AM = T(M)/A(M) = {non-commutative polynomials}/(I*) where | = 3" a;e;. We see that this forces z;z; =
—zjx; (consider (z; + x;)?). So in this case AV =k (z1,...,2;) / (z;x; + xj2;). In characteristic 2, we have that
iy & (w25 + x52;)

Write A¥M for the image of T*(M) in A(M)
Exercise. This is a graded component, i.e., A(M) = & AF (M).

If feAFM,ge A'M then fg = (—1)*gf. This is referred as “graded commutative”

4.4 Summary

What we should remember/understand
o Z/mZ Qg L/nZ
o LR K[xy,..., 2]
o V ®, W where V, W are vector-space over k

e APV where V is a vector-space over k.
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5 Homological Algebra

Definition 5.1. A sequence --- My o Mo o2 M; o My -+ of groups/R-modules/. .. is a complex
if piy100=0,1ie., ¢; Cker(diy1)-
Tt is ezxact if ker(¢; 1) = im(¢;) Vi.
é »

A short ezxact sequence is 0 A B C 0 . This means:
1. ¢ is injective

2. im ¢ = ker ¢

3. ® is surjective

A morphism of complexes

Git1 Git2

&
A —— A1 Aigo

fzi fH—l\L fi+2l

i Hit1
- —— B, —— B4 Bito

Hit2

is a sequences of maps f; : A; — B; such that the diagram

04
Aj—— A

fi \L fi+1 \L
Hi
B; —— Bii1
commutes. If all the f; are isomorphism then the complexes are isomorphic.

Short 5-lemma. Let

0 A B c 0
b
0 At 0

be morphism of short exact sequences of groups.
e If a and 7y are injective so is [3.
o If a and vy is surjective so is 8
o If a and 7y are isomorphism so is 3

Proof. Suppose that « and v are injective, and B(b) = 0 for some b € B’. Then ¢'8(b) = 0 = v¢(b). Since 7 is
injective, ¢(b) = 0, so b € ker ¢, hence there exists a € A such that b = ¢ (a). So 8(b) = B¢¥(a) = ¥'a(a) = 0. Since
¢’ is injective, a(a) = 0, but « is also injective, so & = 0. So b = ¢(a) = 0 and thus § is injective.

Suppose « and «y are surjective and consider b’ € B’. Since 7 is surjective, there exists ¢ € C' with y(c) = ¢/(¥).
Since ¢ is surjective, there exists b € B with ¢(b) =0, so v¢(b) = ¢'5(b) = ¢/(b'). Thus B(b) = b € ker ¢’ = im¢)’.
So there exists a’ € A’ with ¢/(a’) = 5(b) — V. Since « is surjective, there exists a € A such that a(a) = o/, so

Y'a(a) = B(b) —b'. Thus B(a) = B(b) — b, s0 b = B(b—(a)) € im }S. O
Question: Given A,C what can you say about B with 0 - A — B — C' — 0 exact? One obvious answer is
0— A a'_i?’o) A®C — C — 0is always exact.

(a,c)—c
Definition 5.2. Let R be a ring and let 0 A v B ¢ C 0 be a short exact sequence of R-modules.
The sequence is said to split (or be split) if there exists an R-submodule D C B such that B = D + ¢(A) with
Dny(A) ={0} (i.e., B= D ®1(A)). “There exists R-module complement of ¢(A) in B”

Equivalently 0 A B C 0 is an isomorphism of complexes.
0 A AeC C 0
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Lemma 5.3. The short exact sequence 0 A v B ¢ C 0 splits if and only if there exists u: C — B

(called a section) such that ¢ o p = id¢, if and only if there exists X\ : B — A such that Ao =ida

Note. If there exists an R-module complement D to ¢(A) in B, then D = B/(A) = C

Proof of Note. Consider ¢ : B — C. Note that ¢|p is injective, since D Ny (A) = {0) (as ¥(A) = ker ¢). Since ¢
is surjective, for any ¢ € C, there exists b € B with ¢(b) = ¢. Write b = d + ¢(a) for some d € D,a € A. But then

o(b) = ¢(d+(a)) = ¢(d) + ¢(¢(a)) = ¢(d), so ¢|p is surjective. O

Proof of Lemma. If the sequence splits, there exists an R-module complement D for ¢(A). By above, D & C, so
let 4 : C — D be the isomorphism (u = ¢~1). By construction ¢(u(c)) = cso ¢ o u = id,.

Conversely, if there exists u : C — B such that ¢ o p = ide, let D = p(C). We need to show that D is an
R-module complement for 1)(A). Let b € D Ny(A). Then b = p(c), so ¢(B) = ¢(u(c)) = ¢, but since b = 9(a)
for some a, we have ¢(b) = ¢(v(a)) = 0, so ¢ = 0 and thus b = p(0) = 0. Given b € B, let d = u(p(b)). Then
P(b—d) = d(b— pup(b)) = ¢p(b) — pup(b) = ¢(b) — p(b) =0, so b—d € ker ¢ = imp. So there exists a € A such that
b=d+ ¢(a),so B=D+y(A) O
Example. Given A and letting C = Z, what are the options for B with 0 A i B ¢ c 0? In this
case, B> AP Z, since the map p: C 27 — B, given by p: 1 — b where b is a fixed choice of b € B with ¢(b) =1
is a splitting. As ¢ o u(n) = ¢(nb) =np(b) =n-1=n.

Recall that hompg(D, —) is a functor, f : A — B,f : homg(D, A) — hompg(D, B) defined by ¢ — f o ¢.

Given 0 A B ¢ C 0, we can apply hompg (D, —) to it:

0 —> homp(D, A) > homp(D, B) —> homp(D, C) —= 0

. WARNING: no claims this is a complex yet.
Claim: 0 — A % B is exact, then 0 — hompg(D, A) 4 hompg (D, B) is exact.

Proof. Consider f € hompg(D, A). If f # 0, then there exists d € D with f(d) = a # 0. Then ¢(f)(d) = ¢(f(d)) =
¢(a) # 0 since ¢ is injective. So @(f)|neq0 , so hompg(D, A) 4 homp(D, B) is injective. O

Claim: If 0 — A % B % (' is exact then hompg(D, A) % hompg(D, B) — homR(D () is exact

Proof. Let f € hompg(D,A). Then for all d € D, ¢ o (f)(d) = ¢(W(f(d)) = 0, so $ ot : homg(D,A) —
hompg(D,C) = 0 (i.e., this is a complex). Now consider f € hompg(D, B) with ¢(f ) = 0. Then for any d € D,
o(f(d)) =0, so f(d) € ker¢ , and thus there exists a € A with ¢(a) = f(d). The choice of a is forced since ) is
injective.

Define g : D — A by g(d) = a. We now check this is an R-module homomorphism. Then ¢g = f, so f € im .

Suppose g(d) = a,g(d') = o', then ¢(a) = f(d), ¥ (a’) = f(d'). Sop(a+a’) =p(a)+v(a’) = f(d)+f(d) = f(d+d').
So we must have (since ¢ is injective) g(d + d’') = a +a’ = g(d) + g(d’). (Check g(rd) = rg(d)) O

However if 0 -+ A — B — C' — 0 we do not necessarily have homg(D, B) — homg(D,C) — 0 is exact.

Example. 0 > Z 237 — 7/27 — 0, and D = 7,/27.

Definition 5.4. We say that hompg (D, —) is a left exact functor.

If F'is a covariant functor, F' : R-module — R-module, then F' is left exact if 0 A B C 0
implies 0 — F(A) — F(B) — F(C) .

It is right exact if 0 A B C 0 implies F(A) F(B) F(C) 0

Hence it is ezact if 0 A B C 0 implies 0 — F(A) — F(B) — F(C) —=0
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Question: For which D is hompg(D, —) exact? Let D = R (aring with identity) If 0 A B C 0
is exact then 0 — hompg(R, A) — homp(R, B) — hom(R,(C) —= 0 is exact because homp(R, A) = A by
¢+ ¢(1) and
P

£(1) T—HT v f(1)
f homR(Rv A) - homR(Rv A) Z/}f

f———2f
commutes.

Definition 5.5. An R-module P is projective if for any surjection ¢ : M — N of R-modules and an R-module
map [ : P — N such that there exists g : P — M such that f = ¢og

P
g,
s
-
M—N——0
Example. P = R" for some n
Proposition 5.6. Let P be an R-module. The following are equivalent:
1. P 1is projective
2. For all short exact sequence 0 A 4 B ¢ C 0 we have

0 —= hompg(P, A) — hompg(P, B) — homg(P,C) — 0 is exact. (That is homg (P, —) is an exact func-
tor)

3. There exist an R-module QQ and set S such that P ® Q= ®sR. “P is a direct summand of a free module”

Note. If R=7,R = k[z1,...,x,] then all projective modules are free. (The second is Serre’s conjecture and proven
by Quillen-Suslin)

Proof. 1 =2 Let 0 A i B ¢ C 0 be a short exact sequence. Then we know

0 —= hompg(P, A) — hompg (P, B) — hompg(P, C) is exact. Now given f € hompg(P,C) we have

P
/
.,
=
B—(C—0

so there exists a unique g : P — B such that f = ¢og, i.e., f = ¢(g). Thus ¢ : homg(P, B) — hompg(P,C)
is surjective.

2=3 Suppose hompg (P, —) is exact. Write P = @;csR/K as a quotient of a free module. Then 0 - K —
®R 5 P — 0 is exact. Since homg(P, ®R) — hompg (P, P) is surjective, there exists y : P — @R such
that m(u) =id: P — P, i.e., for all p € P we have wo u(p) = p. Thus DR P K.

3=>1 Suppose P ® Q = F (where F is a free R-module, i.e., FF = ®4csR, S a set and let i : S — F') and

P
lf
M- N—=0
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Let m : F' — P for the projection map. Then f on € hom(F,N). For each s € 5, let ns be f(m(i(s)).
Choose my € M with ¢(ms) = ns. By the universal property there exists a unique g : F' — M such that
¢og= fom. So we have the following commutative diagram

Y

M—= N——=0

So define h : P — M by h(p) = g(p,0). Check: This is an R-module homomorphism. Then ¢(h(p)) =

#(g9(p,0)) = f(7(p,0)) = f(p)- So poh = f and so P is projective.
O

Question: What about other functors? For example hom(—, D) or A ® —7?

Example. 0 —> Z 27— 7./27 — 0 and apply hom(—,Z/27Z). Then applying hom(—,Z/27), we get
0 727 727 727 0, but this is not exact. To see this note that we must have

Z/27 0 d 727 0 , showing the failure of surjectivity.

7.)2Z

Lemma 5.7. Lety : A — B, ¢ : B — C be R-module homomorphism. If 0 — hom(C, D) — hom(B, C') — hom(A, D)

is exact for all R-modules D, then A v B ¢ C 0 is ezact.

Proof. We need to show:

1. ¢ is surjective, use D = C/im ¢
Set D = C/¢(B), let ¢1 : C — D be the projection map. Then m o ¢ : B — C/¢(B) is the zero map
by construction. So ¢(m1) = 0 € hom(B, D). Since hom(C, D) — hom(B, D) is injective, m = 0, so the
projection C' — C/¢(B) is the zero map. So C/¢(B) = 0 and thus ¢(B) = C so it is surjective.

2. imy Ckergp,use D=C,id: C —- C

Exercise

3. ker(¢) C imw, use D = B/im .

Exercise

Proposition 5.8. Let 0 A v B ¢ C 0 be an exact sequence of R-modules. Then

D®A@>D®B@>D®C’—>O is exact.

Proof. Recall hom(F ® G, H) = hom(F,hom(G, H)). Now by left exactness of hom(—, E), for any E we have
0 — hom(C, E) — hom(B, E) — hom(A4, E) . Then for all D

0 — hom(D, hom(C, E)) — hom(D, hom(B, E)) — hom(D, hom(A4, E))

So 0 —=hom(D ® C, F) — hom(D ® B, E) —hom(D ® A, E)) is exact. So by the lemma D ® A —
D® B — D®C — 0 is exact (Check the maps are what you think they are) O

Oit1 O142

Recall: M* : ... — Mi—1 2 ppi 24 prita
0; =0 for all j

Mi+2 ... is a complex (or cochain complex) if 9,41 o

Definition 5.9. Given a (cochain) complex M, the n'® cohomology group is H"(M) = ker 9,,,1/im 9,

. Oit1 9; Qi1 . . .
Notation. If My ...—= M;\q M; M;_1 M;_o ... is a (chain) complex, we write H, (M) =

ker 9,,/im 0,,4+1 and call this the nth homology group.
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Definition 5.10. Let A be an R-module. A projective resolution of A is an exact sequence &

such that each P; is a projective module.

Example. 0 - Z 27— 7/27 — 0 is a projective resolution of the Z-module Z/27Z

Note. For R-module, we can actually ask that the P; be free R-modules. These always exists for R-modules

Let F : R-modules— R-modules be a covariant right exact functor or a contravariant left exact functor. Then

applying F to P, = P,—1 — -+ — Py — 0 (forget A) gives a complex F(Z?). Then the nth derived functor of F
is H"(F(2))

Example. F is hom(—, D). Then F(2) is, 0 —> hom(Py, D) —2> hom(Py, D) — = hom(Ps, D)

Definition 5.11. With the above setting Ext" (A, D) = ker d,,,1/imd,, for n > 1. Ext’(A, D) = ker 9,

0=0: id

Example. 0 — Z X3 7 — Z/2Z — 0, what is Ext"(Z/2Z,Z/27)? 0 2 727 Z/2Z 727 0. So:
o Ext’(Z/27,7./27) = ker 8; = 7./27.
o Ext'(Z/27,7./27) = ker 9,/ im 8; = 7./27

o Ext"(Z/2Z,Z/27Z) =0 for n > 2

Theorem 5.12. Ext"(A, D) does not depend on the choice of projective resolution

Remark. Ext}{(C, A) is in bijection with the equivalence classes of B such that 0 A B C 0 is
exact. “Extension of C' by A”

01 ) O3

Example. D® —. Let & be a projective resolution of A: 0 A< P,

to? 0<~— DR Der, X2 pepr,% . .4

P .... Apply D®—

Definition 5.13. The n® derived functor of D ® — is called Tor®(D, —). So Tor®(D, A) = kerd,/imd,,; and
Torf(D,A) = D ® Py/imd
Example. R=7Z, A=7Z/7Z and 0 A Ay 0 and D =Z/7Z. So we get

0<~—Z/TZ &z ZL="7)72 93 Z<—0 , but Z/7Z @3 Z = Z/7Z. So

o Torl(2)72,7/7Z) = (Z)TZ)] im &, = Z)T7
o Tor(Z)72,7/TZ) = (Z/TZ)/0 = Z.]TZ

Remark. If A is a Z-module (abelian group) then A is torsion free if and only if Tor; (A, B) = 0 for every abelian
group.

®

B € 0 is a set oh homomorphism

Definition 5.14. A short exact sequence of complexes 0 ol

19



of complexes such that 0 A, B, Ch 0 is exact for every n.
0 0 0
An+1 An An_l < ...
PYnt1 Pn Yn—1
B’I’LJrl Bn Bn71 - ...
Pnt1 Pn Pn—1
Cn—i—l Cn On—l < ...
0 0 0

This diagrams commutes, the rows are complexes and the columns are exacts.

¥ ¢

B

Theorem 5.15 (Long exact sequence of cohomology). Let 0 o € 0 be a short exact se-

quence of complexes. Then there is a long exact sequence

O o) — ...

0 —= HO(e/) —= HYB) —= H(€) > H' (/) —= H'(%) — H'(7)
What are the maps? Given

On On41
Anfl —_— An —_—> AnJrl

wn—1l dinl dm-ml

Bn—l ,un; Bn P«nilBTH_l

We want H"(«/) — H"(%#). Let a € ker 0, 41. Then ¥,11 0 Opy1(a) = 0, 80 i1 © Yp(a) = 0, hence ¥, (a) €
ker iy +1. We want ker 0p,41/1m 9, — ker pip, 41/ 1im p,,. It suffices to check ¢(im9,) C im(u,). If a € A,_; then
Y, 0 Op(a) = fin, 0 Yp—1(a)im(py,). So we get a map H" (o) — H"(H) and similarly H"(#) — H"(¥)

For the other map, we use the Snake Lemma

Snake Lemma. Let

At B o

oo

0—A"— B —(C'
w/ ’

¢

be a commutative diagram with ezact rows. Then there is an evact sequence

ker f ker g ker h Soker f=2 A'/im f — coker g —= coker h

Proof. Define 6: kerh — coker f. Let ¢ € kerh. Then there is b € B with ¢(b) = ¢ since ¢ is surjective. By
commutativity 0 = h(c) = ho ¢(b) = ¢ o g(b). So g(b) € kerty)’. By exactness there exists a’ € A’ such that
Y'(a’) = g(b). Set O(c) = o' +1im f € coker f.

We need to show that O is well defined. Given another choice b with ¢(g) = ¢, the difference b—b € ker ¢ =im.
So there exists a € A such that ¥ (a) = b — b. But then gu(a)’ = g(b) — g(b) = ¢/ f(a). So g(b) = ¢'(a’ — f(a)). We
then would set 9(¢c) =a’ — f(a) +im f =a' +im f. O
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6 Representation Theory

Check in this chapter whether each proposition or lemma rely on the fact that rings need to have 1.

6.1 Ring Theory for Representation Theory

Recall: Let G be a group. The group algebra R[G] = {} ag9: a4 € R,g € G} = ®yccR.
Representation theory is the study of modules over R[G]

Definition 6.1. An R-module M # {0} is simple if M has no proper submodules, i.e., N C M then N = M or
N = {0}

Proposition 6.2. Let M and M’ be simple left R-modules. Then every R-module homomorphism f: M — M’ is
either 0 or an isomorphism.

Proof. Suppose f is not zero. Then ker(f) is a submodule of M that is not equal to M, so it must be the 0 module,
i.e., f is injective. Similarly im f is a submodule of M’ that is not the zero module, so im f = M’ and thus f is
surjective. So f is an isomorphism. O

A ring R is simple if g R is a simple R-module, e.g, R = k a field
Definition 6.3. A left R-module is semi-simple if it is the direct sum of simple modules.

Definition 6.4. A left ideal I C R is minimal if there exists no left ideal J of R such that 0 C J C I.

*
Example. R = M, (k). I = [: 0] is a minimal left ideal.

*

Definition 6.5. A ring R is (left) semisimple if it is isomorphic as an R-module to a direct sum of minimal left
ideals. (i.e. rR is a semisimple R-module)

Example. M, (K) = &}_yI; where [; = | 0 0

*
§*B-column

Proposition 6.6. A left R-module M is semisimple if and only if every submodule of M is a direct summand.

Proof. =) Suppose M is semisimple, so M = @;c;5;. For any subset I C J, define S; = ®,¢15;. Let B be a
submodule of M. Then by Zorn’s lemma, there is K C J maximal with respect to the property that Sx N B = {0}.
(Suppose K1 € Ko C ... with S, N B = {0}. Set K’ = UK; and consider Sk+. If b € Sx» N B then b € ®jckS;,
sob=s; +---+sj.,5;, €S5j,. There is K, with ji,...,j, € K, , so B € Sk, N B which is a contradiction)

We claim M = B @ Sk, we just need to show that m € M = m = b+ s; for b € b, s, € Sk. If j € K, then
S; € B+ Sk.

If j ¢ K, then by maximality, (Sx +S;) N B 3 b # 0. So there exists sx € Sk, s; € S; such that sx +s; =,
sos; =b—sg € S;N(B+Sk)#0since s; # 0 as b ¢ Sk. Thus all S; are contained in B + Sk, so M C B+ Sk.

<) Suppose every submodule of M is a direct summand. We first show that every non-zero submodule B of M
contains a simple summand.

Fix b # 0 with b € B. By Zorn’s lemma there exists a submodule C' of B maximal with respect to b ¢ C. If
C = {0}, then B = Rb and B must be simple (otherwise any proper non-zero submodule would not contain b).
Otherwise write M = C & C’, then B =C & (C’' N B). (Since CN(C'NB)={0}and be B=b=c+c for

D

ce C,d e (' since b,c € B, ¢ € B.) We claim that the non-zero submodule D is simple. If not by the above
argument we can write, D = D’ @& D" where D’, D" are non-zero submodules of D. We claim that we do not have
be (CeD)Nn(CaD"). If we did, we could write b =c+d' = +d" for ¢,/ € C and d' € D', d”" € D”. But then
c—cd=d"-deCnD={0},s0od =d’" € D'nD" ={0}, hence ¢ = ¢/ = b contradicting b ¢ C. But this means
one of C'@® D’ and C & D" does not contain b, contradicting the choice of C. Thus B = C' @ D contains the simple
summand D.
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We now show that M is semisimple. By Zorn’s lemma there is a family {S; : j € I} of simple submodules of M
maximal with respect to the property that the submodule U that they generated is their direct sum. By hypothesis,
M=UeV.IfV ={0}, M is a direct sum of simple modules, so we are done. Otherwise V" has a non-zero simple
summand S, V =2 S@V’'. Then UNS = {0}, s0 Y. S; +5 = &S; & S contradicting the maximality of U. So
V = {0} and M is the direct sum of simple submodules. O

Maschke’s Theorem. If G is a finite group and k a field with char(K) 1 |G|, then k[G] is semisimple. (i.e. k[G]
is a direct sum of simple k|G]|-modules)

Proof. It suffices to show that every submodule (ideal) I of kG is a direct summand. We have

0—1 kG —— coker —= 0
A

so it suffices to construct A : kG — I such that A o7 = id;. Since both kG and I are vector space over k, there
exists V' C kG such that kG = I @V as vector space. Let 7 : kG — I be the projection map (it is a linear map).
Define A : kG — kG by A(u) = \%I > geq 9m(g~ u). Note that A\(u) € I, since (g~ 'u) € I and gn(g~'u) € Tas T
is a left ideal. Note also that if b € I then A(b) = b. Indeed A\(b) = ﬁ > gec gr(g~tb) = ﬁ > ogea gg b= %b =b.
Finally we check that X is a kG-module homomorphism. It is straightforward to check that A is a k-linear map,
since 7 is. Also for h € G,

Alhu) = ﬁ Z gm(g~ hu)

geG

h _ -
= @Zh gm(g~ hu)

geG
h ,
= €] Z gm(¢"'u) where g =h"lg
g’ €eG
= hA(u)
so A is a kG-module homomorphism with A oi =id;. So [ is a direct summand. O

Example. C[Z/2Z] = {a(0) +b(1) :a,be C}= C((0)+ (1)) & C((0)— (1))

={a(0)+a(1):aeC} ={a(0)—a(1):acC}

Definition 6.7. Let G be a group. A representation of G is a group homomorphism, ¢ : G — GL(V') where V is
a vector space. It is finite dimensional if V is a finite dimensional vector space. V is a simple kG-module if V' has
no G-invariant subspace.

Point: If V is a vector space over k, then V is a kG-module, via g - v = ¢(g) - v.

010
Example. Let G = S3 and ¢ : S5 — GL3(C) send a permutation to its permutation matrix. ¢((1,2)) =1 0 0
0 0 1

0 0 1
and ¢((1,2,3)) = [1 0 0. This makes C? into a C[Ss]-module. Is it simple? The answer is no because we
010

1 1
notice that | 1| is a common subspace to both matrix. So we have C3 clsy) span (1| &V, where V is a
1 1
0 1 1 0 1
2-dimensional submodule. In fact V' = span 11,10 .Inthebasis |[1],| 1 |,| O | for V we have
-1 -1 1 -1 -1
1 00 1 0 0
(L,2)—=(0 0 1},(1,2,3)—= (0 © 1
01 0 0 -1 -1
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Example. C[Z/2Z], F3][Z/2Z] and let V = C((0) + (1)) and W = F2((0) + (1)). Maschke’s theorem tells us
that C[Z/2Z)] is a direct summand (see previous example) but nothing about F3[Z/2Z]. In fact we can not write
Fo|Z/2Z) = W?.

Proposition 6.8. 1. Every submodule and every quotient of a semisimple module is semisimple

2. If R is semisimple, then every left R-module M is semisimple.

Proof. 1. Let B be a submodule of M. Every submodule C of B is a submodule of M, so M = C & D for some
D. Let m: M — C be the projection map and let A : B — C be given by A = w|. Then

%

0—C B —— coker —= 0

A

so B 2 C @ coker. So every submodule of B is a direct summand so B is semisimple.

Let M/H be a quotient of M. Since M is semisimple we have M = H @ H’ for some submodule H'. By the
first part H' is semisimple so M/H = H' is semisimple.

2. Suppose R is semisimple. Then any free R-module is semisimple. (R & ®M; so ®R = & & M, ) But every
R-module is a quotient of a free module, so every R-module is semisimple.
O

Corollary 6.9. Let G be a finite group and k a field with chark 1 |G|. Then every kG-module is a direct sum of
simple kG-modules, so every representation is a direct sum of irreducible representation.

Proposition 6.10. Let R = ®;c1 M; be a semisimple ring, where the M; are simple modules and let B be a simple
R-module. Then B = M; for some i.

Proof. We have 0 # B = Hompg(R, B) & ®;c; Homg(M;, B). However by Schur’s Lemma Hompg(M;, B) = 0 unless
M, = B. 0

Corollary 6.11. Let G be a finite group and k a field with chark 1 |G|. Then there are only a finite number of
simple kG-modules up to isomorphism, and thus only a finite number of irreducible representation of G.

Example. Let G = Ss.
® ¢1:G — C*, ¢1(g9) = 1 for all g. This corresponds to the C[S3] submodule C(3_ . 9)-

® $3: G — C*, ¢2(g) = sgn(g)

1 g is even .
{_1 Jis odd ° This corresponds to the C[S5] submodule C (dess Sgn(g)g).

e 631G = GL(C), ¢s((1,2)) = (‘1) (1)) and ¢5((1,2,3)) = (‘1) j)

Exercise:

a Check that this is an irreducible representation

b Find a two dimensional submodule of C[S3] that this is isomorphic to.
SoC[S3]2 C & C & C? o C?
¢ HPp  HPs s

Question: What are the possibilities for semisimple rings?
e.g.: k[G], G finite, good characteristic. M, (k). M, (D) where D is a division ring. From these we can create
more for example M, (D1) x --- x M, (D).

Theorem 6.12 (Wedderburn-Artin). A ring R (with 1) is semisimple if and only if R is isomorphic to a direct
sum/product of matrix rings over division rings. R = M, (D1) X -+- x M, (D,). The n; , D; are unique up to
permutation.
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Proof. We’ve just discuss “if”

Suppose R is semisimple, so R =p @;erM;. We first note that |I| < oo, since 1 € R, 1 = m;, + --- + m;, for
some m;; € M;;. So R=R1C M;, @ ---® M;, C R, so we have equality. After reordering, we may assume that
M; 2 Mj for i # j, 1 < 4,5 < rand for all j < r there exists i < r with M; = M;. Write B; = ®n;~n, M, s0
R=B1 @ @ B,.

We have R°° =~ Homp(R, R) (as a ring) with the map f(1) < f, then f(r) = f(r-1) = rf(l) and
fog(l)=f(g(1)) =g(1)f(1) <+ fog So R°* = Homp(R, R) = Homp(®i_, Bi, ®i_, Bi) = &; ;_, Homg(B;, B;).
Now Hompg(B;, Bj) = Hompg (", M;, @Zile) =@, @Z;l Hompg(M;, M;) = 0 if i # j by Schur’s Lemma. Since
every non-zero function in Hompg(M;, M;) is an isomorphism by Schur’s lemma Hompg(M;, M;) is a division ring
with multiplication being function composition. Call this D;”. Then Hompg(B;, B;) = @y D7? Ch%ck M, (D;®). So

ROP 2 M, (DIP) x -+ x M,, (DS), hence R = M, (D{*)°P X -+ x M, (D) = M, (D1) x -+ x M, (D,).

Proof omits uniqueness. O

Exercise. M, (D°P)°P = M, (D)

Corollary 6.13 (Molien). If G is a finite group, and k is algebraically closed, with chark t |G|, then k[G]
My, (k) x -+ x M, (k) and thus > n? = |G]|.

Example. C[Z/3Z] = M,,(C) x --- x M,, (C). Now 3 = n? + --- +n?2 implies r = 3 and n; = nz = n3 = 1. So
Clz/3Z) = C x C x C.

Let us look at the irreducible representation. We always have the “trivial representation”, ¢, : Z/3Z — C*
defined by ¢;1(g) = 1 for all g.

We then have ¢2((0)) = 1,$2((1)) = w and ¢2((2)) = w? where w = ¢, similarly we also get ¢5((0)) = 1,
¢3((1)) = w?* and ¢3((2 )) =w

So then C[Z/3Z] = C((0) +

1%

(1) + (2)) x C((0) + w?(1) + w(2)) x C((0) + w(1) + w?(2)) . Check that this is a

é1 P2 @3

ring isomorphism e.g. ((0) + (1) + (2))((0) + w(1) + w?(2)) = 0.
Proof of Corollary. By Maschke’s theorem k[G] is semisimple, so by Wedderburn-Artin theorem k[G] & M, (D;) X

- x My, (D,) where D; & Homgg(M;, M;)°P for simple kG-module M;. First note that & C Hom(M;, M;)°P,
for a € k, u € M; we set a(u) = au. Then a(gu) = agu = g(au) so this is kG-homomorphism. Consider any
f € D{®, since f is a kG-homomorphism it is a linear transformation, so f(au) = af(u), i.e., (af)(u) = (fa)(u), so
f commutes with any a € k. Let k(f) be the smallest sub division ring of D7” that contains k¥ and f. The division
ring k(f) is a finite dimensional vector space over k.

Thus 1, f, f2, f3,... are linearly dependent over k, so there exists g € k[X] with g(f) = 0. Take g with minimal
degree. But then {ag + a1f + - + a, f38@)~1 . g4; € k} is closed under addition, multiplication. Also g is an
irreducible polynomial, since otherwise g = g1g> would imply g1(f)g2(f) = 0 in the division ring D;®. We show

——A——

#0  #0
that this is closed under division. Given h = Y a; f*, the elements 1, h, h%, h3, ... are linearly dependant over k. So
there exists b; € k with )} —i>0 b;h' = 0, where we may assume that b; =1, then B = = 2i—js1 bih' 77" and this
can be written as >_;_ ¢;f*. Then the multiplication in k(f) is commutative (smce k commutes with f), so k(f)
is a field containing k. Since f is algebraic over the algebraically closed field k, f € k. O

Question: We now have (for good k) kG = M, (k) x --- x My, (k). What is »?

Answer: It is the number of conjugacy class of G

Recall: A conjugacy class of a group G is a set Cj, = {ghg™' : g € G} of all conjugates of an element of h. The
class sum corresponding to Cp, is zp, = > g'. The centre of aring Ris Z(R) ={a € R:ab=baVb € R}. e.g.
The centre of M, (k) is {A\]: X € k}

Lemma 6.14. Let G be a finite group. Then the class sum zp, form a k-basis for Z(k[G])
Proof. First consider zp, = >

-1

g'eCy

g'=ghg—1 9 € k[G]. For any g € G we have

gan=Y_, 99 = D (@9)9(g7'T )G =2ng
g'=ghg~1! g'=ghg~1!

since if g1 # g2 € C, then §g1g # gg2g. Hence z, € Z(K[G])
Now suppose z € > aqg € Z(k[G]). Then for all g € G, gzg~' =Y ay999 " = Y agg, s0 agy5-1 = ag and thus
the coefficients of z are constant on conjugacy classes. So z is a linear combination of class sums. O
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Corollary 6.15. Let G be a finite group and k a field with k = k and charK {|G|. Then kG = M,,, (k) x---x M, (k)
where r = number of conjugacy class of G.

Proof. The centre of M, (k) x --- x M, (k) has dimension r over k, so r = number of conjugacy classes. O

Definition 6.16. Let ¢ : G — GL(V) be a representation of G. The character of ¢ is x¢ : G = k, x4(9) = Tr ¢(g).
(Note TI(A) = Zaii)

Warning: This is not a group homomorphism unless dim V' = 1.

Note. x(ghg™") = Tr¢(ghg™"') = Tr(¢(g)p(h)¢(9)~") = Tr(d(h)p(g)d(g) ') = Trp(h) = x4(h), so characters are
constant on conjugacy classes.

Definition 6.17. The character table of a finite group G is the r x r table (where r is the number of conjugacy
classes) with columns indexed by conjugacy classes and rows indexed by irreducible representation recording the
character.

Example. G = 53

(1) ] (1,2),(1,3),(2,3) | (1,2,3),(1,3,2)
o1 | 1 1 1
¢2 | 1 -1 1
b3 2 0 -1
G=17/3Z
) [ @) (2
1 1 1 1
w 1 w w?
w? 1 w? w
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7 Galois Theory

Definition 7.1. A field extension L of a field K is a field L containing K. We'll write L/K or L : K. Given a
subset X of L the intersection of all subfields of L containing K and X is denoted K(X).

Example. K =Q,L =R and X = {V/2} then K(v/2) = {a +bv2:a € Q}.
X =7, K(m) = set of all rational functions of =

Definition 7.2. An extension field L/K is simple if L = K(«) for some o € L

Example. L = Q(i,v/5) = Q(i + v/5). The inclusion one way is clear. For the other way notice that (i 4+ /5)? =
4+2v5ie L=+5ieL Also —V5+5i€L=6ic Lsoic L.

Definition 7.3. An element o € L is algebraic over K if there exists a monic polynomial g € K[z] with g(«) = 0.
The g of lowest degree is called the minimal polynomial. If o is not algebraic, it is said to be transcendental.

Example. Q = the algebraic closure of Q = the set of all algebraic number over Q. This is countable. (So
transcendental elements of C exists)

Definition 7.4. An extension L/K is algebraic if every element of L is algebraic.

In general if « is algebraic over Q with a minimal polynomial f of degree d and S is algebraic over Q with a
minimal polynomial g of degree e, what can you say about o + 87

Definition 7.5. The degree of L/K written [L : K] is the dimension of L as a vector space over K.

Note. If L = K(a) for a algebraic with minimal polynomial g then [L : K] = degg since {1,a,a?,...,a%8971} is
a basis. If « is transcendental then L = K(¢) and [L : K| = co (define ¢ : K(t) — K(a),t — «)

The Tower Law. Let K, L, M be fields with K C L C M. Then [M : K] =[M : L|[L : K]

Proof. Let {zq : o € I} be a basis for L/K and let {ys : §: J} be a basis for M/L. Define z,3 = zoyg € M. We
claim that {z,3} is a basis for M/K.

We show that they are linearly independent. If Zm 5 @apZap =0 with finitely many a3 € K non-zero. Then
>_5(2_q @apTa)ys = 0, since the ys are linearly independent over L we have ) aaprq = 0 for all 3. Since the z,,
are linearly independent over K we have an,g = 0 for all a, 3.

We show spanning. If z € M, then z =} Agyg for Ag € L. Foreach \g = " aapZa. Sox =3 53", @ap®a)ys =
D0,p GapTals = D dapTap.

So {zap} is a basis for M over K, so [M : K] =[M : L|[L : K] O

Example. [Q(i,v/5) : Q] = [Q(i,+/5) : Q(i)][Q(i) : Q] = 2 x 2 = 4. The minimal polynomial of i + /5 over Q is
x* — 8x% + 36. (Note that this is not (22 + 1)(z% — 5))

Definition 7.6. An automorphism of L is a field isomorphism ¢ : L — L (so ¢(0) = 0 and ¢(1) = 1). We say ¢
fizres K if ¢(a) = a for all a € K.

Example. ¢ : C — C. ¢(a + bi) = a — bi complex conjugation.
¢ : Q(V5,1) — Q(\/5,i) defined by ¢(a + b5 + ci + dv/5i) = a — bV/5 + ¢i — dv/5i. Note ¢ fixes Q(i) but not
Q(V5).

Definition 7.7. The Galois group Gal(L/K) of L/K is the group of all automorphisms of L fixing K.

Example. Using the ¢ defined in the second part of the previous example, we have ¢ € Gal(Q(v/5,)/Q(i)) but

not in Gal(Q(v/5,1)/Q(V/5)).
Gal(C/R) = Z/27 (generated by complex conjugation) (Because ¢(a+bi) = a+bg(i) and ¢(i)? = ¢(—1) = —1)

Note that Gal(L/K) is a group under function composition. ¢ : L — L,v : L — L, ¢(a) = 1p(a) = a for a € K.
¢o1: L — L is an isomorphism and ¢i(a) = ¢(¢(a)) = ¢p(a) = a for a € K

Example. Gal(Q(v/5,7)/Q) = Z/2Z x 7./27.
Gal(Q(V2)/Q) =1, [Q(V2): Q] =3

Definition 7.8. For a subgroup H of Gal(L/K) we denote by L the set L = {a € L: ¢(a) = a for all « € H}.
This is a subfield of L called the fized field of H
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Example. H = Gal(C/R), CH =R.

Gal(Q(V5,1)/Q) = (¢1, ¢2) where ¢1(i) = —i,¢1(v/5) = V5 and ¢a(i) = i,¢02(vV/5) = —v/5. Let H; = (¢;).
Then Q(v53,i)™ = Q(i),Q(V5,i)"> = Q(/5),Q(V5,0)58 = Q. Define Hy = (¢3), where ¢3(i) = —i and
$3(v/5) = —V/5.

Gal Q(\/gui) = @(\/gai)l

N

Hl H3 2
\ / QWVE) = QWA )™ QvE) =Q(VE )T Qi) = Q(VE, i)™
1

Note. For any subgroup H of Gal(L/K) we have K C L C L and H < Gal(L/L") < Gal(L/K)
Definition 7.9. A polynomial f € K|[z| splits over K if f = al_[?zl(m —b;), a,by,...,bg € K

2mi

3 . So we see that f

Example. ef = 23 — 2 splits over C Note f = (v — v/2)(z — V2w)(z — V/2w?) where w = e
does not split over Q(¥/2)

Definition 7.10. A field L is a splitting field for a polynomial f € K|z] if K C L and
1. f splits over L
2. If K € M C L and splits over M then M = L

(Equivalently L = K(o1,...,04) where o1,...,04 are the roots of f in L)

These always exist, and are unique up to isomorphism. The proof uses induction on deg f, where we use the
intermediate field M = K{z]/(f).

Example. Q(¥/2, V2w, ¥/2w?) = Q(V/2,w) is a splitting field for f = 23 — 2 (where w = e°%")

Definition 7.11. An extension L/K is normal if every irreducible polynomial f over K which has at least one
root in L splits over L.

Example. C/R is normal
Q(¥/2)/Q is not normal.

Definition 7.12. An irreducible polynomial f € Klx] is separable over K if it has no multiple zeros in a splitting
field, (i.e, the b; are distinct). Otherwise it is inseparable

Example. 2 4 22 + 22 4+ x + 1 is separable, its roots are w’, j = 1,...,4 where w® =1

K =TFy(x), f(t) = t* + x is inseparable. K C L where y € L satisfies f(y) = 0. f(y) =y*> +2 =0, z = y?, so
f=0+y?=(t+y)?
Proposition 7.13. If K is a field of characteristic 0, then every irreducible polynomial is separable over K.

If K has characteristic p > 0, then f is separable unless f = g(aP).

Recall: A polynomial f € K[z] has a double root if and only if f and f’ (the formal derivative) have a common
factor. If f had a double root and f’ # 0, f and f’ would have a common factor in K[z] (by the Euclidean
algorithm). But since deg(f’) < deg(f), this factor is not f, contradicting f being irreducible, unless f’ = 0. We
only have f' =0 if charK = p and f = g(aP).

Definition 7.14. An algebraic extension L/K is separable if for a € L, its minimal polynomial is separable over
K.

Theorem 7.15 (Fundamental Theorem of Galois Theory). Let L/K be a finite separable normal field extension
with [L : K| =n and Gal(L/K) = G then
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1. |G|=n

2. For K C M C L we have M = LE/M) qnd H = Gal(L/L™), so H — L' is an order reversing bijection
between the poset of subgroups of G and subfields K C M C L

3. If K C M C L then [L: M] = |Gal(L/M)| and [M : K] = |G|/|Gal(L/M)|

4. M/K is normal if and only if Gal(L/M) is a normal subgroup of Gal(L/K). In that case Gal(M/K)
G/Gal(L/M)

1

Corollary 7.16. 1. If L/K is finite, normal, separable then there are only finitely many fields M with K C
M C L.

2. If Gal(L/K) is abelian, then for any K C M C L we have M /K normal.

We see from this that Gal(Q(3/2,w)/Q) = S3 since Q(¥/2)/Q is not normal (exercise: show this directly by
writing down 6 automorphism)

Galois’ Application: Gal(L/K) simple implies no intermediate normal M /K, This in terns implies no highest
degree polynomial “solved by radicals”

Proof of the Fundamental Theorem of Galois Theory (in ideas).

Lemma 7.17. If ¢; : M — L, i =1,...,r are distinct inclusion of fields, then the ¢; are linearly independent over
L, i.e, > a;¢;(m) = 0Vm then a; = OVi.

We apply this to M = L. For H a subgroup of Gal(L/K) we use the lemma to show that [L : L¥] = |H|.
({¢ € H} are linearly independent ¢ : L — L). So [L¥ : K] = [L: K]/|H|. Next we use the following propositions

Proposition 7.18. If L/K is normal and K C M C L has M/K normal then for all ¢ € Gal(L/K),p(M) = M

We use twice. Once for 4. and first to show that the [L : K] maps L — N (where N is a bigger field)
we construct by hand have image in L. Use this to show |Gal(L/K)| = [L : K], thus LG*(E/K) = K| because
[L: LGL/E) = |G| = [L: K]. O

Example. e K =Q, L = splitting field of 23 — 2, that is L = Q(V/2, V2w, V2w?) = Q(V/2,w) where w = e’5
Now K < L if finite, separable (characteristic 0) and normal. What is Gal(L/K) = G?7 Any elements of G
permutes v/2, V/2w, ¥/2w?. So G C S, but since G is of order 6 = [L : K], we must have G = Ss.

L \ {id}
. 2 2
7 Q(V3w?) 2 Q(V2w) Q(V2) y <(212)>X ((13)) ((23))
Q(w) 3 y 5 ((123)) 3 3 :
\ . \ ]

e Let K = Q and L be the splitting field of 2 —3z—1 = (z —a)(x — 8)(z —v). Then Q < L = Q(v, 3,7). What
is Gal(L/K) =7 So G C S3. Using the fact about discriminant (see below) we have that no transposition is
in G. (Since (a — B)(a —v)(8 —7) = £9. ) Hence we have |G| = 3 so G = Z/3Z.

Z/3Z A(f) is a square in Q

Fact. If L is the splitting field of a cubic then Gal(L/K) = i
S3 otherwise

Definition 7.19. The discriminant of a polynomial f with roots ay, s, ..., ay is A(f) = Hi<j(ai —a;)?

Fact. You can express A(f) as a polynomial on the coefficients of f
Example. If f = 23 — ax? + bx — ¢, A(f) = a?b? + 18abc — 27¢% — 4ac — 4b°
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