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1 Introduction

1.1 Groups

De�nition 1.1. A semigroup is a non-empty set G together with a binary operation (�multiplication�) which is
associative ((ab)c = a(bc)∀a, b, c ∈ G)

A monoid is a semigroup G which contains an element e ∈ G such that ae = ea = a∀a ∈ G.
A group is a monoid such that ∀a ∈ G∃a−1 such that aa−1 = a−1a = e.

Note. Many authors say �semigroup� for monoid. e.g. N = {0, 1, . . . } is called a semigroup.

Example (Semigroups that are not monoids). • A proper ideal in a ring under multiplication

• (N \ {0},+)

• (2Z,×)

• (Mn(2Z),×)

• (R,min)

Example (Monoids that are not groups). • (N,+)

• Polynomials in 1 variable under composition

• Rings with identity that has non-invertible elements under multiplication

• (R ∪∞,min)

Exercise. • In a monoid, identities are unique

• In a group, inverses are unique.

De�nition 1.2. Let G and H be semigroups. A function f : G → H is a homomorphism of semigroups if
f(ab) = f(a)f(b)∀a, b ∈ G

If it is a bijection, it is called an isomorphism.
Let G and H be monoids. A monoid homomorphism is a semigroup homomorphism with f(eG) = eH
A group homomorphism between groupsG,H is a semigroup homomorphism between the underlying semigroups.

Group homomorphisms are automatically monoid homomorphisms: f : G→ H, f(eG) = f(eGeG) = f(eG)f(eG).
Multiply by f(eG)−1 then we get eH = f(eG)−1f(eG) = f(eG)−1f(eG)f(eG) = eHf(eG) = f(eG).

Example (Important example of a group: Permutation Group). Let X be a non-empty set. Let P (X) be the set
of all bijection f : X → X. P (X) is a group under function composition that is fg : X → X is f ◦ g : X → X.

• This is associative because function composition is

• The identity is id (the identity map)

• The inverse of f is f−1 : X → X. (Which exists since f is a bijection

If |X| = n then P (X) ∼= Sn (the symmetric group on n elements)

De�nition 1.3. A sub{group, monoid, semigroup} of a {group, monoid, semigroup} G is a subset H ⊂ G that is
a {group, monoid, semigroup} under the operation of G.

Let φ : G→ H be a group homomorphism, the kernel of φ is kerφ = {a ∈ G|φ(a) = eH}

Note. The kernel of φ is a subgroup of G. In fact it is normal (i.e., ∀g ∈ G, ghg−1 ∈ H = kerφ for all h ∈ H}

De�nition 1.4. A group G is abelian if ab = ba for all ab ∈ G

Exercise. Find φ : G→ H (G,H monoid) that is a semigroup homomorphism but not a monoid homomorphism

(R,×)→ (M2(R),×) by φ(a) 7→
(
a 0
0 0

)
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1.2 Rings

De�nition 1.5. A ring R is a non-empty set R together with binary operations +,× such that

1. (R,+) is an abelian group (write identity as 0)

2. a(bc) = (ab)c (multiplication is associative, so (R,×) is a semigroup)

3. a(b+ c) = ab+ ac and (a+ b)c = ac+ bc (distributivity)

If there is 1R ∈ R such that 1Ra = a1R = a ∀a ∈ R then R is a ring with identity
R is commutative if ab = ba∀a, b ∈ R.
Let R,S be rings. A ring homomorphism φ : R→ S is a function φ such that :

1. φ(r + s) = φ(r) + φ(s) (group homomorphism)

2. φ(rs) = φ(r)φ(s) (semigroup homomorphism)

Note. We do not require that if R,S have identities, that φ(1R) = 1S (e.g., φ(a) = 0S ∀a is OK)

De�nition 1.6. Let R be a ring with identity. An element a ∈ R is left (respectively right) invertible if ∃b ∈ R
(respectively c ∈ R) such that ba = 1R (respectively ac = 1R)

If a is left and right invertible then a is called invertible, or a unit.
A ring with identity 1R 6= 0R in which every non-zero element is a unit is a division ring. A commutative

division ring is a �eld.
A �eld homomorphism is a ring homomorphism φ of the underlying rings.

Example (Useful example of a ring: Group rings). Let R be a commutative ring with 1. Let G be a group. The

group ring R[G] has entries
{∑

g∈G rgg : rg ∈ R
}
�formal sums� (all but �nitely many rg = 0). This is a ring under

coordinate wise addition, and multiplication is induced from (g1)(g2) = (g1g2).
e.g.: R = C, G = Z then C[Z] = C[t, t−1]. C[Z/3Z] = C[t]/(t3)

De�nition 1.7. Let R be a ring. A (left) R-module is an abelian group M (write additively) together with a
function R×M →M such that

1. r(m+m′) = rm+ rm′

2. (r + s)m = rm+ sm

3. r(sm) = (rs)m

If R is a �eld an R-module is a vector space. If R has 1R we usually ask 1Rm = m for all m ∈M .

De�nition 1.8. An R-module homomorphism is a group homomorphism φ : M →M ′ such that φ(rm) = rφ(m).
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2 Category Theory

De�nition 2.1. A category is a class Ob(C ) of objects (write A,B,C, . . . ) together with:

1. a class, mor(C ), of disjoint sets hom(A,B). one for each pair of objects in Ob(C ). An element f of hom(A,B)
is called a morphism from A to B. (write f : A→ B)

2. For each triple (A,B,C) of objects: a function hom(B,C) × hom(A,B) → hom(A,C) (write (f, g) 7→ f ◦ g)
�composition of morphism satisfying:

(a) associativity: h ◦ (g ◦ f) = (h ◦ g) ◦ f with f ∈ hom(A,B), g ∈ hom(B,C) and h ∈ hom(C,D)

(b) Identity: For each B ∈Ob(C ) there exists 1B : B → B such that ∀f ∈ hom(A,B) 1B ◦ f = f and
∀g ∈ hom(B,C) g ◦ 1B = g

Example.

Sets: Objects: the class of all sets. Morphisms hom(A,B) is the set of all functions f : A→ B

Groups: Objects: Groups. Morphisms: group homomorphism.

Semigroups: Object: semigroups. Morphisms: semigroup homomorphism

Monoids: Object: monoids. Morphisms: monoid homomorphism.

Rings: Objects: Rings. Morphisms: ring homomorphism

Ab: Objects: abelian groups. Morphisms: group homomorphism

Vectk: Objects: Vector spaces over (a �eld) k. Morphisms: linear transformations.

Top: Objects: Topological spaces. Morphisms: Continuous functions.

Manifolds: Objects: Manifolds. Morphisms: Continuous maps.

Di�: Objects: Di�erentiable manifolds. Morphisms: di�erentiable maps

Point Let G be a group. Object: one point. Morphisms: hom(pt,pt) = G (composition is multiplication)

Note. ∀f ∈ hom(pt,pt) there exists g such that f ◦g = 1pt = g ◦f . (This example is useful for Groupoid)

Open Sets Fix a topological space X. The category of open set on X: Objects: Open sets. Morphisms: inclusions.
(i.e., hom(A,B) is empty or has size one) (This example is useful for sheaves)

R-module Fix a ring R. Objects: are R-modules. Morphisms: R-module homomorphism φ(rm) = rφ(m)

De�nition 2.2. In a category a morphism f ∈ hom(A,B) is called an equivalence if there exists g ∈ hom(B,A)
such that g ◦ f = 1A and f ◦ g = 1B .

If f ∈ hom(A,B) is an equivalence then A and B are said to be equivalent.

Example. Groups Equivalence is isomorphism

Top Equivalence is homeomorphism

Set Equivalence is bijection.

De�nition 2.3. Let C be a category and {Aα : α ∈ I} be a family of objects of C . A product for the family is
an object P of C together with a family of morphisms {πα : P → Aα : α ∈ I} such that for any object B with
morphisms φα : B → Aα ∃!φ : B → P such that φα ◦ φ = φα ∀α

Example. |I| = 2

B

∃!
��

φ1

��

φ2

��

P

π2 ##
π1{{

A1 A2

4



Warning: Products don't always exists, but when they do, we often recognize them

Example.

Set: Products is Cartesian product.

Groups Product is direct product.

Open sets of X Interior (∩Aα).

Lemma 2.4. If (P, πα) and (Q,ψα) are both products of the family {Aα, α ∈ I} then P and Q are equivalent
(isomorphic).

Proof. Since Q is a product ∃!f : P → Q such that πα = ψα ◦ f . Since P is a product ∃!g : Q → P such that
ψα = πα ◦g. So g ◦f : P → P satis�es πα = πα ◦ (g ◦f)∀α. Since P is a product ∃!h : P → P such that πα = πα ◦h.
Since h = 1P satis�es this, we must have g ◦ f = 1P . Similarly f ◦ g : Q→ Q equals 1Q. So f is an equivalence.

De�nition 2.5. An object I in a category C is universal (or initial) if for all objects C ∈ Ob(C ) there is an unique
morphism I → C. J is couniversal (or terminal) if for all object C there is a unique morphism C → J .

Example.

Sets ∅ initial, {x} terminal.

Groups Trivial group, initial and terminal.

Open sets ∅ is initial. X is terminal

Example. Pointed topological spaces: Objects: Pairs (X, p) where X is a non-empty topological space, p ∈ X.
Morphisms: Continuous maps f : (X, p)→ (Y, q) with f(p) = q. ({p}, p) is terminal and initial.

Theorem 2.6. Any two initial (terminal) objects in a category are equivalent.

Proof. Let I, J be two initial objects in C . Since I is initial ∃!f : I → J . Since J is initial ∃!g : J → I. Since I
is initial, 1I is the only morphism I → I, so g ◦ f = 1I . Similarly, f ◦ g = IJ so f is an equivalence. For terminal
objects the proof is the same with the arrows reversed.

Why is the lemma a special case of the theorem. Let {Aα : α ∈ I} be a family of objects in a category C . De�ne
a category E whose objects are all pairs (B, fα : α ∈ I) where fα : B → Aα. The morphisms are morphisms
(B, fα)→ (C, gα) are morphisms h : B → C such that fα = gα ◦ h.

Check:

• IB : B → B induces 1(B,fα)in E

• Composition of morphisms is still ok (These �rst two checks that E is a category)

• h is an equivalence in E implies h is an equivalence in C . (This will help us show what we wanted)

If a product of {Aα} exists, it is terminal in E . We just showed terminal objects are unique (up to equivalence) so
products are unique (up to equivalence).

Note. Not every category has products. (for example �nite groups)

De�nition 2.7. A coproduct of {Aα} in C is �a product with the arrows reversed�, i.e., Q with πα : Aα → Q such
that ∀C with φα : Aα → C, ∃!f : Q→ C such that φα = f ◦ πα

A1

π1

##
φ1

��

A2

π2

{{
φ2

��

Q

∃!
��
C

Example. The coproduct of sets is a disjoint union.
For the pointed topological space we have the product is (

∏
Xα,

∏
pα). The coproduct is the wedge product,

that is, (in the case of the coproduct of two object) X
∐
Y/p ∼ q.

For abelian groups the coproduct is direct sum, i.e., ⊕IGα 3 (gα : α ∈ I, gα ∈ Gα) and all but �nitely many
gα = eGα .
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2.1 Functors

De�nition 2.8. Let C and D be categories. A covariant functor T from C to D is a pair of functions (both
denoted by T ):

1. An object function: T : Ob(C )→ Ob(D)

2. A morphism function T : mor(C )→ mor(D) with f : A→ B 7→ T (f) : T (A)→ T (B) such that

(a) T (1C) = 1T (C)∀C ∈ Ob(C )

(b) T (g ◦ f) = T (g) ◦ T (f) for all f, g ∈ mor(C ) where composition is de�ned

Example. • The �forgetful functor� from Groups to Sets. T (G) =underlying set and T (f) = f (i.e. same
functions, thought of as a map of sets)

• hom(G,−) :Groups→Sets. Let G be a �xed group. Let T be the functor that takes a group H to the set
hom(G,H). If f : H → H ′ is a group homomorphism, then T (f) : T (H)→ T (H ′) is given by T (f)(g) = f ◦g.
Check:

� T (1H)(g) = 1H ◦ g = g so T (1H) = 1T (H)

� T (g ◦ f)(h) = (g ◦ f) ◦ h = g ◦ (f ◦ h) = T (g)(f ◦ h) = T (g)(T (f)(h)) = (T (g) ◦ T (f))(h)

De�nition 2.9. Let C and D be categories. A contravariant functor T from C to D is a pair of functions (both
denoted by T ):

1. An object function: T : Ob(C )→ Ob(D)

2. A morphism function T : mor(C )→ mor(D) with f : A→ B 7→ T (f) : T (B)→ T (A) such that

(a) T (1C) = 1T (C)∀C ∈ Ob(C )

(b) T (g ◦ f) = T (f) ◦ T (g) for all f, g ∈ mor(C ) where composition is de�ned

Example. hom(−, G) :Groups→Sets. Let G be a �xed group. Let T be the functor that takes a group H to the
set hom(H,G). If f : H → H ′ is a group homomorphism, then T (f) : T (H ′)→ T (H ′) is given by T (f)(g) = g ◦ f .

De�nition 2.10. Let C be a category. The opposite category C op has object Ob(C ) and homC op(A,B) =
homC (B,A). (�reverse the arrows�)

One can see that this is a category with gop ◦ fop = (f ◦ g)op.
If T : C → D is a contravariant functor then T op : C op → D de�ned by T op(C) = T (C) and T op(f) = T (f) is

covariant.

2.2 Some natural occurring functors

1. Fundamental group (ref: Hatcher �Algebraic Topology�)

π1 : Pointed topological spaces →Groups. π1(X, p) =homotopy classes of maps f : [0, 1] → X such that
f(0) = f(1) = p. This is a group under concatenation of loops. f ◦ g : [0, 1] → X with f ◦ g(t) ={
g(2t) 0 ≤ t ≤ 1

2

f(2t− 1) 1
2 ≤ t ≤ 1

, f−1(t) = f(1− t). If φ : (X,x)→ (Y, y) is a continuous map with φ(x) = y, then we

get an induced map π1(X,x)→ π1(Y, y) by (f : [0, 1]→ X) 7→ (φ(f) : [0, 1]→ Y ) by φ(f)(t) = φ ◦ f(t).

Check:

(a) This is a group homomorphism

(b) π1(1(X,x)) = 1π1(X,x)

(c) π1(φ ◦ ψ) = π1(φ) ◦ π1(ψ)

Recall: A group is a category with one object where all morphisms are isomorphisms (have inverses). A
groupoid is a category where all morphisms are isomorphisms.

2. Consider the category U (X) of open sets on X with morphisms inclusion T : U →Sets, T (U) = {continuous
functions from U to R}. If V ⊆ U then T (V )← T (U) (by restriction). Good easy exercise is to �nish checking
that this is a functor. This is an example of a presheaf.
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2.3 Natural Transformations

De�nition 2.11. Let C and D be categories and let S and T be covariant functors from C to D . A natural
transformation α from S to T is a collection {αc : c ∈ Ob(C )} in mor(D), where αc : S(C) → T (C) such that if
f : C → C ′ is a morphism in C then

S(C)
αc //

S(f)

��

T (C)

T (f)

��
S(C ′)

αc′ // T (C ′)

commutes.

Example. C =groups, D =sets. S = hom(G,−) and T = hom(H,−). Let φ : H → G be a group homomorphism.
Given a group A, we construct αA : hom(G,A)→ hom(H,A) by g 7→ g ◦ φ (where φ : H → G). Let f : A→ B

hom(G,A)
g 7→g◦φ //

g 7→f◦g
��

hom(H,A)

g′ 7→f◦g′

��
hom(G,B)

g′ 7→g◦φ // hom(H,B)

De�nition 2.12. A natural transformation where all αc are isomorphism is called a natural isomorphism.

Example. Let C = D =n-dimensional vector space over k. Let S = id and T : V → V ∗∗ (i.e. T (V ) = V ∗∗ if
f : V →W,w∗ → k then T (f) : V ∗∗ →W ∗, T (f)(β) ∈W ∗∗ we have T (f)(β)(ψ) = β(ψ ◦ f) ∈ k

We claim T and S are naturally isomorphic. For V ∈Vectkn, let αv be the linear transformation V → V ∗∗ given
by v 7→ φV where φV (ψ) = ψ(v). Then for f : V →W

V
αV //

S(f)=f

��

V ∗∗

T (f)

��
W

αW // W ∗∗

T (f)(αV (v))(ψ) = T (f)(φV )(ψ)

= φV (ψ ◦ f)

= ψ ◦ f(v)

= φf(v)(ψ)

Since αw ◦ f(v) = φf(v) means the diagram commutes. Since each αV is an isomorphism (exercise that this uses
�nite dimension), T is naturally isomorphic to S.

De�nition. Two categories C and D are equivalent if there are functors f : C → D and g : D → C such that f ◦ g
is natural isomorphic to 1D : D → D , g ◦ f is naturally isomorphic to 1C : C → C .
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3 Free Groups

Intuitive idea: Group formed by �words� in an alphabet. Multiplication is concatenation, e.g. F2 =words in x and
y for example xyx−1y−1x3y2

Construction

Input: A set X (might be infinite)

1) Choose a set X−1 disjoint from X with |X−1| = |X| and a bijection

X → X−1, x 7→ x−1. Choose an element 1 /∈ X ∪X−1

2) A word on X is a sequence (a!, a2, . . . ) with ai ∈ X ∪X−1 ∪ {1} such that there

exists N such that an = 1∀n > N. (1, 1, 1, . . . ) is the empty word and written

as 1

3) A word is reduced if:

1. ∀x ∈ X, x and x−1 are never adjacent (i.e., if ak = x then

ak−1, ak+1 6= x−1)

2. ak = 1⇒ ai = 1∀i > k

A non-empty reduced word has the form (xλ1
1 , xλ2

2 , . . . , xλnn , 1, 1, . . . ) with xi ∈ X
and λi = ±1. Write this as xλ1

1 xλ2
2 . . . xλnn .

4) Our group F (X) as a set is the set of reduced words.

Naive attempt at defining multiplication: Define (xλ1
1 . . . xλnn )(yδ11 . . . yδmm ) to

be xλ1
1 . . . xλnn yδ11 . . . yδmm

Problem: This product might not be reduced

Solution: Reduce it:

Formally: if a = (xλ1
1 . . . xλmm )(yδ11 . . . yδnn ) (and suppose that m ≤ n). Let

K = max0≤k≤n{k : x
λm−j
m−j = y

−δj+1
j+1 for all 0 ≤ j ≤ k − 1}. Then define

ab =


xλ1
1 . . . x

λm−k
m−k y

δk+1

k+1 . . . y
δn
n k < m

y
δm+1

m+1 . . . δ
δn
n k = m < n

1 k = m = n

(and analogously if m > n)

This define a multiplication F (X)× F (X)→ F (X).

Claim: This is a group

• 1 is the identity

• The inverse of xλ1
1 . . . xλmm is x−λmm . . . x−λ1

1

• For associativity see Lemma 3.1

Lemma 3.1. The multiplication F (X)× F (X)→ F (X) is associative.

Proof. For each x ∈ X and δ = ±1 let |xδ| : F (X)→ F (X) be the map given by:

• 1 7→ xδ

• xδ11 . . . xδnn 7→


xδxδ11 . . . xδnn xδ 6= x−δ11

xδ22 . . . xδnn xδ = x−δ11 , n > 1

1 n = 1, xδ = x−δ1

Note that this map is a bijection, since |xδ||x−δ| = 1 = |x−δ||xδ|. Let A(X) be the group of all permutations of
F (X). Consider the map φ : F (X)→ A(X) given by

• 1 7→ 1A(X)

• xδ11 . . . xδnn 7→ |x
δ1
1 ||x

δ2
2 | . . . |xδnn |

since |xδ11 | . . . |xδnn | : 1 7→ xδ11 . . . xδnn we have φ is injective. Note that if w1, w2 ∈ F (X), then φ(w1w2) = φ(w1)φ(w2).
Since A(X) is a group, the multiplication is associative, so the multiplication in F (X) is associative.

Example. • X = {x}, F (X) ∼= Z (reduced words are 1, xn, x−n)

8



• X = {x, y}. F (X) =�words in x, y, x−1, y−1, e.g. xyx−1y−1 is reduced. So F (X) is not abelian as xyx−1y−1 6=
1 so xy 6= yx.

Note. There is an inclusion i : X → F (X).

Lemma 3.2. If G is a group and f : X → G is a map of sets then ∃! homomorphism f : F (X) → G such that
fi = f .

Proof. De�ne f(1) = e ∈ G. If xδ11 . . . xδnn is a non-empty reduced word onX, set f(xδ11 . . . xδnn ) = f(x1)δ1 . . . f(xn)δn .
Then f is a group homomorphism with fi = f by construction and it is unique by the homomorphism requirement.

This says the free group is a free object in the category of group. If C is a concrete category (there exists a forgetful
functor F : C →Sets) and i : X → F (X), where X is a set and A ∈ Ob(C ), is a function, then A is free on X if for
all j : X → F (B) ∃! φ : A→ B such that φ ◦ i = j. (Note B ∈ Ob(C ) and φ ∈ mor(C )).

Compare:

• Vector Spaces

• Commutative k-algebra

• R-modules

Corollary 3.3. Every group G is the homomorphic image of the a free group.

Proof. Let X be a set of generators of G.The inclusion f : X → G gives a map f : F (X)→ G
x 7→x

. The map f is

surjective since X is a set of generators. So G ∼= F (X)/ ker(f).

De�nition 3.4. Let G be a group and let Y be a subset of G. The normal subgroup N = N(Y ) of G generated by
Y is the intersection of all normal subgroups of G containing Y .

Check that it is well de�ned. (That is check N(Y ) is non-empty, it relies on the fact G is normal)

De�nition 3.5. Let X be a set and let Y be a set of (reduced) words on X. A group G is said to be de�ned by
generators X and relations w = e for w ∈ Y if G ∼= F (X)/N(Y ). (We say (X|Y ) is a presentation of G)

Example.
〈
x|x6

〉 ∼= Z/6Z〈
x, y|x4, y2, (xy)2

〉 ∼= D4 (or D8 depending of your notation)

Note. Presentations are not unique, e.g.,
〈
x, y|x3, y2, xyx−1y−1

〉 ∼= Z/6Z ∼= Z/2Z × Z/3Z,
〈
x, y|xy−5

〉 ∼= Z,〈
x, y|x2, y2, (xy)4

〉 ∼= D4 (the Coveter presentation)
Given a presentation G = 〈X|R〉 ∼= F (X)/N(R). The word problem asks if a given word w ∈ F (X) equals the

identity of G. This is undecidable! [Novikav 1955].

Example. Burnside groups, B(m,n) = 〈x1, . . . , xm|wn for any wordw〉. Question (Burnside 1902) Is B(n,m) �nite?
In the case B(1, n) ∼= Z/nZ and B(m, 2) ∼= (Z/2Z)n.

Question: What are free objects in the category of abelian groups?
⊕

x∈X Z.
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4 Tensor Product

We'll work in the category of R-modules (no assumptions are made on R, including whether it has 1 or not).
(Cross-reference this whole chapter with Commutative Algebra Chapter 2)

Recall M is a left R-module if R×M →M with (r,m) 7→ rm and r(s(m)) = (rs)m. AndM is a right R-module
if R×M →M with (r,m) 7→ mr and (mr)s = m(rs)

Example. R = Mn(C) andM = Cn is left (M is columns vectors) or right (M is row vectors) R-module

If R is commutative a left R-module structure gives rise to a right R-module structure, i.e., we de�ne
mr = rm. M is an S − R bimodule if M is a left S-module and a right R-module and (sm)r = s(mr),
e.g., Cn is a Mn(C)− C bimodule.

Suppose we have f : A⊕B → C such that f(a1 + a2, b) = f(a1, b) + f(a2, b), f(a, b1 + b2) = f(a, b1) + f(a, b2) and
f(ar, b) = f(a, rb). We show A×B → A⊗R B → C.

Example. f : R2 ⊕ R2 → R, f
((

a
b

)
,

(
c
d

))
= 4ac+ bc+ ad+ 4bd. (Easy to check the above relations holds)

De�nition 4.1. Let A be a right R-module and B a left R-module. Let F be the free abelian group on the set
A×B. Let K be the subgroup generated by all elements:

1. (a+ a′, b)− (a, b)− (a′, b)

2. (a, b+ b′)− (a, b)− (a, b′)

3. (ar, b)− (a, rb)

for all a, a′ ∈ A, b, b′ ∈ B and r ∈ R. The quotient F/K is called the tensor product of A and B and is written
A⊗R B. Note: (a, b) +K is written a⊗ b and (0, 0) +K is written 0. This is an abelian group.

Warning: Not every element of A ⊗R B has the form a ⊗ b. A general element is (�nite)
∑
ni(ai ⊗ bi) with

ni ∈ Z.
We have relations (a1 +a2)⊗b = a1⊗b+a2⊗b, a⊗ (b1 +b2) = a⊗b1 +a⊗b2 and ar⊗b = a⊗rb. If A is a S−R

bimodule then A⊗R B is a left S-module since F is an S-module by s(a, b) = (sa, b) and K is an S-submodule.

Example. Z/2Z⊗ Z/2Z ∼= Z/2Z. (c.f. Commutative Algebra)

There is a function π : A × B → A ⊗R B de�ned by (a, b) 7→ a ⊗ b. Note: π is not a group homomorphism
as (a1 + a2, b1 + b2) 7→ a1 ⊗ b1 + a1 ⊗ b2 + a2 ⊗ b1 + a2 ⊗ b2. However π(a1 + a2, b) = π(a1, b) + π(a2, b) and
π(a, b1 + b2) = π(a, b1) + π(a, b2) and π(ar, b) = π(a, rb). (Call these relations �middle linear�)

The universal property of Tensor Product . Let AR,RB be R-module and C an abelian group. If g : A×B → C
is �middle linear� then ∃!g : A⊗R B → C such that gπ = g.

A×B

π

��

g

%%
A⊗R B ∃!

// C

If A is an S −R bimodule and C is an S-module then g is a S-module homomorphism.

Proof. Let F be the free abelian group on A×B. There is a unique group homomorphism g1 : F → C determined
by (a, b) 7→ g(a, b). Since g is �middle linear�, g1((a + a′, b) − (a, b) − (a′, b)) = g(a + a′, b) − g(a, b) − g(a′, b) = 0.
Similarly, the other generators of Klive in ker g1, so we get an induced map g : A⊗R B︸ ︷︷ ︸

=F/K

→ C. Note that g(a⊗ b) =

g!((a, b)) = g(a, b) so gπ = g.
If h : A⊗B → C is a group homomorphism with hπ = g then h(a⊗b) = hπ(a, b) = g(a, b) = g(π(a, b)) = g(a⊗b).

So h and g agree on generators a⊗ b of A⊗R B, so h = g.
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Example. R = Z, A = Z/4Z⊕ Z, B = Q. Then A⊗R B = Q.
To prove this, de�ne f : Z/4Z ⊕ Z × Q → Q by f((a, b), c) = bc. Then f((a1, b1) + (a2, b2), c) = b1c + b2c =

f((a1, b1), c) + f((a2, b2), c), f((a, b), c1 + c2) = b(c1 + c2) = bc1 + bc2, f((a, b)n, c) = f((na, nb), c) = nbc =
f((a, b), nc). So f is �middle linear�, so by the proposition there exists a unique f : A⊗B → Q with f((a, b)⊗ c) =
bc. We have that f is surjective since f((0, 1) ⊗ c) = c for all c ∈ Q. Now consider d =

∑
ni(ai, bi) ⊗ ci in

ker(f). So f(d) =
∑
nibici = 0. Now (a, b) ⊗ c = (a, b)4 ⊗ c

4 = (0, 4b) ⊗ c
4 = (0, 1)4b ⊗ c

4 = (0, 1) ⊗ bc. Hence
d =

∑
ni(0, 1)⊗ bici = (0, 1)⊗

∑
nibici = (0, 1)⊗ 0 = 0.

Tensor products of vector spaces. If V is a vector space over k with basis e1, . . . , en and W is a vector space
over k with basis f1, . . . , fm, then V ⊗k W is a vector space with basis {ei ⊗ fj} (so dimension is nm)

To prove this, let U be a vector space with basis {gij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Let h : V × W → U be
given by (

∑
aiei,

∑
bjfj) 7→

∑
aibjgij . Check: h is �middle-linear�. So by the proposition there exists a unique

h : V ⊗kW → U . The k-module homomorphism h is surjective since h(ei ⊗ fj) = gij . Note that if a =
∑
aiei and

b =
∑
bjfj , then a ⊗ b = (

∑
aiei) ⊗ (

∑
bjfj) =

∑
aibj(ei ⊗ fj). So if h(

∑
nijei ⊗ fj) = 0, then

∑
nijgij = 0 so

nij = 0 for all i, j, hence
∑
nij(ei ⊗ fj) = 0 so h is injective.

Consider R⊗Q V . Since R is a R−Q bimodule, this is a left R-module, so a vector space.

Exercise. If {ei} is a basis for V , then {1⊗ ei} is a basis for R⊗Q V as a R-vector space.

Lemma 4.2. Let R be a ring with 1 and A be a unitary left R-module. Then R⊗R A ∼= A as a left R-module.

Proof. The map f : R × A → A de�ned by (r, a) 7→ ra is �middle-linear� (check!), so ∃!f : R ⊗R A → A with
f(r ⊗ a) = ra. Since r(r′ ⊗ a) = rr′ ⊗ a. So f(r(r′ ⊗ a)) = rr′a = rf(r′ ⊗ a), so f is an R-module homomorphism.
Since 1⊗ a 7→ a, f is surjective. Note that r ⊗ a = 1⊗ ra, so if f(

∑
ni(ri ⊗R bi)) = 0 then since we have∑

ni(ri ⊗ bi) =
∑

ni(1⊗ ribi)

=
∑

1⊗ niribi

= 1⊗
∑

niribi

we �nd f(
∑
ni(ri ⊗ bi)) =

∑
niribi = 0, so

∑
ni(ri ⊗ bi) = 1⊗ 0 = 0. So f is injective.

In general, if M is a left R-module, and φ : R → S a ring homomorphism, then S ⊗R M is a left S-module.
This is often called extension of scalars or sometime base change. If R, S are �elds then S ⊗RM is a vector space
with the same dimension of M .

Exercise. K ( L �elds, L⊗K K[x1, . . . , xn] ∼= L[x1, . . . , xn] (as vector spaces)

4.1 Functoriality

Suppose φ : MR → NR and ψ :R M ′ →R N ′ are R-module homomorphisms. We will now construct φ ⊗ ψ :
M ⊗R M ′ → N ⊗R N ′ as follows: The map f : M × M ′ → N ⊗R N ′ given by (m,m′) 7→ φ(m) ⊗ ψ(m′) is
�middle-linear�. Check this yourself but we can see that

(m1 +m1,m
′) 7→ φ(m1 +m2)⊗ ψ(m′) = (φ(m1) + φ(m2))⊗ ψ(m′)

= φ(m1)⊗ ψ(m′) + φ(m2)⊗ ψ(m′)

= f(m1,m
′) + f(m2,m

′)

This gives an induced map f = φ⊗ ψ : M ⊗RM ′ → N ⊗R N ′ de�ned by φ⊗ ψ(m⊗m′) = φ(m)⊗ ψ(m′)
If M,N are S −R bimodules and φ is a bimodule homomorphism then φ⊗ ψ is an S-module homomorphism.
Then, given a right R-module A, we get a functor A ⊗ − :RMod→Groups, it act on objects by B 7→ A ⊗R B

and on morphisms it acts by (f : B → C) 7→ (1⊗ f : A⊗B → A⊗C). Similarly, a left R-module B gives a functor
−⊗R B :ModR →Groups.

If A is an S −R bimodule, we replace Groups by SMod.

Theorem 4.3. Let R,S be rings, let A be a right R-module, B an R−S bimodule, and C a right S-module. Then
homS(A⊗R B,C) ∼= homR(A,homS(B,C)).
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Note. • Write F for the functor−⊗B andG for the functor hom(B,−). Then the theorem says homS(F (A), C) =
homR(A,G(C)). When we have such a situation for a pair of functors F is called left adjoint to G and G is
right adjoint to F

• If B is an R− S bimodule and C is a right S module, then homS(B,C) is a right R-module, under the map
ψr ∈ homS(B,C) is given by (ψr)(b) = ψ(rb). Check: (ψr)s = ψ(rs) since ((ψr)s)(b) = (ψr)(sb) = ψ(rsb) =
ψ(rs)(b).

• homS(B,C) is an abelian group (φ+ ψ)(b) = φ(b) + ψ(b). Identity: φ(b) = 0∀b ∈ B.

Example. R = S = C = K then (A⊗B)op ∼= hom(A,Bop)

of Theorem 4.3. Given φ : A⊗B → C, de�ne Ψ(φ) = ψ : A→ homS(B,C) by ψ(a)(b) = φ(a⊗ b). We check:

1. For each a, ψ(a) ∈ homS(B,C),

ψ(a)(b+ b′) = φ(a⊗ (b+ b′))

= φ(a⊗ b+ a⊗ b′)
= φ(a⊗ b) + φ(a⊗ b′)
= ψ(a)(b) + ψ(a)(b′)

ψ(a)(bs) = φ(a⊗ bs)
= φ((a⊗ b)s)
= φ(a⊗ b)s sinceφ is anS−module homomorphism

= ψ(a)(b)s

2. ψ is an R-module homomorphism:

ψ(a+ a′)(b) = φ((a+ a′)⊗ b)
= φ(a⊗ b+ a′ ⊗ b)
= φ(a⊗ b) + φ(a′ ⊗ b)
= ψ(a)(b) + ψ(a′)(b)∀b

So ψ(a+ a′) = ψ(a) + ψ(a′) ∈ homS(B,C)

ψ(ar)(b) = φ(ar ⊗ b)
= ψ(a)(rb)

= (ψ(a)r)(b)

So ψ(ar) = ψ(a)r.

3. Ψ is a group homomorphism

Ψ(φ+ φ′)(a)(b) = (φ+ φ′)(a⊗ b)
= φ(a⊗ b) + φ′(a⊗ b)
= Ψ(φ)(a)(b) + Ψ(φ′)(a)(b)

This is true for all a, b so Ψ(φ+ φ′) = Ψ(φ) + Ψ(φ′). Hence Ψ is a group homomorphism.

For the inverse, given an R-module homomorphism ψ : A → homS(B,C) de�ne the function f : A × B → C by
f(a, b) = ψ(a)(b). This is �middle linear� (Check!). So f de�nes φ : A ⊗R B → C with φ(a ⊗ b) = ψ(a)(b). This
gives an inverse to Ψ.

Example. Of Adjoints. Let F :Sets→Groups de�ned by X 7→ F (X) (the free group) and G :Groups→Sets the
forgetful functor. Then homGroups(FX,H) ∼= homSets(X,GH).

The point of all this is: if F is a left adjoint functor, then F preserves coproduct.
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Example. −⊗B preserves direct sums of modules. (A⊕B)⊗ C ∼= (A⊗ C)⊕ (B ⊗ C).

Proposition 4.4. Let A be a right R-module, B an R−S bimodule and C a left S-module. Then (A⊗RB)⊗SC ∼=
A⊗R (B ⊗S C).

Proof. Sketch 1 Fix C, de�ne A ⊗ B → A ⊗ (B ⊗ C) and de�ne a ⊗ b 7→ a ⊗ (b ⊗ c). This means that the map
(A⊗B)×C → A⊗ (B ⊗C) given by (a⊗ b, c) = a⊗ (b⊗ c) is well de�ne and �middle linear�. Then do
the same thing for the other direction and we have an isomorphism.

Sketch 2 We construct A⊗RB⊗C by F (A×B×C)/R where R is a set of relations. (For example (a+ a′, b, c) =
(a, b, c) + (a′, b, c) or (ar, b, c) = (a, rb, c) or (a, bs, c) = (a, b, sc) etc.) Then use universal properties of
categories.

De�nition 4.5. Let R be a commutative ring with identity. An R-algebra is a ring A with identity and a ring
homomorphism f : R → A mapping 1R to 1A such that f(R) is in the centre of A (f(r)a = af(r)∀r ∈ R, a ∈ A).
This makes A a left and right R -module.

Example. R = k a �eld, A = k[x1, . . . , xn]
K ⊆ L �elds, R = K,A = L
R = K, A = Mn(K)

De�nition. An R-algebra morphism is a ring homomorphism φ : A→ B with φ(1A) = 1B that is also an R-module
homomorphism. So φ(ra) = rφ(a).

Proposition 4.6. Let R be a commutative ring with 1, and let A,B be R-algebras. Then A⊗R B is an R-algebra
with multiplication induced from (a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′.

Proof. Once we have shown that the multiplication is well-de�ned, then 1⊗ 1 is the identity and we have f : R→
A⊗B given by f(r) = r ⊗ 1 = 1⊗ r. This satis�es (r ⊗ 1)(a⊗ b) = ra⊗ b = ar ⊗ b = (a⊗ b)(r ⊗ 1).

To show that the multiplication is well-de�ned and distributive we can construct a homomorphism A⊗B⊗A⊗
B → A⊗B by a⊗b⊗a′⊗b′ 7→ aa′⊗bb′. We construct this map in stages: �x a′, b′ and construct φa′,b′ : A⊗B → A⊗B.
Use φa′,b′to construct ψb : A ⊗ B ⊗ A → A ⊗ B and thus the above map. This homomorphism is induced by a
�middle linear� map f : A⊗B ×A⊗B → A⊗B de�ned by (a⊗ b, a′ ⊗ b′) 7→ (aa′, bb′) which is our multiplication.
The �middle-linearity� shows distributivity.

4.2 Tensor Algebras

Let R be a commutative ring with 1 and let M be an R-module

De�nition 4.7. For each k ≥ 1, set T k(M) = M ⊗RM ⊗R · · · ⊗RM︸ ︷︷ ︸
k

. So T 0(M) = R. De�ne T (M) = R ⊕M ⊕

(M ⊗M)⊕ · · · =
⊕∞

k=0 T
k(M). By construction this is a left and right R-module.

Theorem 4.8. T (M) is an R-algebra containing M de�ned by (m1 ⊗ · · · ⊗mi)(m
′
1 ⊗ · · · ⊗m′j) = m1 ⊗ · · · ⊗mi ⊗

m′1⊗· · ·⊗m′j and extend via distributivity. For this multiplication, T i(M)T j(M) ⊆ T i+j(M). If A is any R-algebra
and φ : M → A is a R-module homomorphism, then there exists a unique R-algebra homomorphism Φ : T (M)→ A
such that Φ|M = φ.

Proof. The map T i(M)×T j(M)→ T i+j(M) de�ned by (m1⊗· · ·⊗mi,m
′
1⊗· · ·⊗m′j) 7→ (m1⊗· · ·⊗mi⊗m′1⊗· · ·⊗m′j)

is �middle-linear� (check that this is well-de�ned.) So multiplication is de�ned and distributive. Suppose A is an
R-algebra and φ : M → A is an R-module homomorphism. Then M ×M → A de�ned by (m1,m2) 7→ φ(m1)φ(m2)
is middle linear. So it de�nes an R-module homomorphism M ⊗ M → A. (Exercise: check actually we get
T k(M)→ A). We thus get a R-module homomorphism Φ : T (M)→ A with Φ|M = φ. This respect multiplication,
so is a ring homomorphism. Now Φ(1) = 1 by construction, so we have a R-algebra homomorphism. Since
Φ(m) = φ(m) for all m ∈ M , if Ψ : T (M)→ A were another such R-algebra homomorphism, Ψ(m1 ⊗ · · · ⊗mi) =
ΦΨ(m1) . . .Ψ(mi) = φ(m1) . . . φ(mi) = Φ(m1 ⊗ · · · ⊗mi), so Ψ = Φ.
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Example. R = K a �eld, M = V a d dimensional vector space with basis e1, . . . , ed. T
j(M) is a vector space

with basis ei1 ⊗ · · · ⊗ eij and hence has dimension dj . Multiplication is concatenation, so T (M) consists of �non-
commutative polynomials� in the variables e1, . . . , ed. This is either called the �non-commutative polynomial al-
gebra� or �free associative algebra�.

R = Z and M = Z/6Z. Now T j(M) ∼= Z/6Z, so T (M) ∼= Z⊕ Z/6Z⊕ Z/6Z⊕ . . . ∼= Z[x]/ 〈6x〉.
We work outT (Q/Z). Now Q/Z⊗Z Q/Z = 0, to see this a

b ⊗
c
d = a

b ⊗
b
b
c
d =

(
a
b

)
b⊗ 1

b
c
d = a⊗ c

bd = 0⊗ c
bd = 0.

So T (Q/Z) = Z⊕Q/Z.

De�nition 4.9. A ring S is (N)-graded if S ∼= S0⊕S1⊕· · · = ⊕k≥0Sk (as groups) with SjSi ⊆ Si+j and SiSj ⊆ Si+j
∀i, j ≥ 0. The elements of Si are called homogeneous of degree i. A homomorphism φ : S → T of graded rings is
graded if φ(Sk) ⊆ Tk for all k.

Example. S = k[x1, . . . , xn] or S = T k(M)

Note. S0S0 ⊆ S0, so S0 is a subring. Also S0Sj ⊆ Sj , so each Sj is an S0-module. If S has an identity 1, it lives in
S0. (if not 1 = ek + e, e ∈ ⊕k+1

j=0Sj , for s ∈ S1, s = 1 · s = (ek + e)s = eks+ es→ eks = 0). If S0 is in the centre of
S, then S is an S0-algebra.

4.3 Symmetric and Exterior Algebras

De�nition 4.10. The symmetric algebra of an R-module M is S(M) = T (M)/C(M) where
C(M) = 〈m1 ⊗m2 −m2 ⊗m1 : m1,m2 ∈M〉 (two-sided ideal generated by).

Since T (M) is generated as an R-algebra by T andM , and the images of m1⊗m2 and m2⊗m1 agrees in S(M),
we have S(M) is a commutative ring. (Exercise: think about universal properties)

Example. V is a d-dimensional vector space over k, spanned by e1, . . . , ed. Then S(V ) ∼= k[x1, . . . , xn].

De�nition 4.11. The exterior algebra of an R-module M is the R-algebra ∧(M) = T (M)/A(M) where A(M) =
〈m⊗m : m ∈M〉. The image of m1⊗· · ·⊗mj in ∧M is written m1∧m2∧· · ·∧mj . Multiplication is called exterior
or wedge product.

Example. M = V a d-dimensional vector space over k (of characteristic not 2), spanned by e1, . . . , ed. Then
∧M = T (M)/A(M) = {non-commutative polynomials}/

〈
l2
〉
where l =

∑
aiei. We see that this forces xixj =

−xjxi (consider (xi + xj)
2). So in this case ∧V = k 〈x1, . . . , xj〉 / 〈xixj + xjxi〉. In characteristic 2, we have that

xixi /∈ 〈xixj + xjxi〉

Write ∧kM for the image of T k(M) in ∧(M)

Exercise. This is a graded component, i.e., ∧(M) = ⊕ ∧k (M).

If f ∈ ∧kM, g ∈ ∧lM then fg = (−1)klgf . This is referred as �graded commutative�

4.4 Summary

What we should remember/understand

• Z/mZ⊗Z Z/nZ

• L⊗K[x1, . . . , xn]

• V ⊗k W where V,W are vector-space over k

• ∧kV where V is a vector-space over k.
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5 Homological Algebra

De�nition 5.1. A sequence · · · // M1
φ1 // M2

φ2 // M3
φ3 // M4

// · · · of groups/R-modules/. . . is a complex
if φi+1 ◦ φ = 0, i.e., φi ⊆ ker(φi+1).

It is exact if ker(φi+1) = im(φi)∀i.

A short exact sequence is 0 // A
φ // B

ψ // C // 0 . This means:

1. φ is injective

2. imφ = kerψ

3. ψ is surjective

A morphism of complexes

· · · // Ai
δi //

fi

��

Ai+1

δi+1 //

fi+1

��

Ai+2

δi+2 //

fi+2

��

· · ·

· · · // Bi
µi // Bi+1

µi+1 // Bi+2

µi+2 // · · ·

is a sequences of maps fi : Ai → Bi such that the diagram

Ai
δi //

fi

��

Ai+1

fi+1

��
Bi

µi // Bi+1

commutes. If all the fi are isomorphism then the complexes are isomorphic.

Short 5-lemma. Let

0 // A
ψ //

α

��

B
φ //

β

��

C //

γ

��

0

0 // A′
ψ′ // B′

φ′ // C ′ // 0

be morphism of short exact sequences of groups.

• If α and γ are injective so is β.

• If α and γ is surjective so is β

• If α and γ are isomorphism so is β

Proof. Suppose that α and γ are injective, and β(b) = 0 for some b ∈ B′. Then φ′β(b) = 0 = γφ(b). Since γ is
injective, φ(b) = 0, so b ∈ kerφ, hence there exists a ∈ A such that b = ψ(a). So β(b) = βψ(a) = ψ′α(a) = 0. Since
ψ′ is injective, α(a) = 0, but α is also injective, so α = 0. So b = ψ(a) = 0 and thus β is injective.

Suppose α and γ are surjective and consider b′ ∈ B′. Since γ is surjective, there exists c ∈ C with γ(c) = φ′(b′).
Since φ is surjective, there exists b ∈ B with φ(b) = 0, so γφ(b) = φ′β(b) = φ′(b′). Thus β(b) = b′ ∈ kerφ′ = imψ′.
So there exists a′ ∈ A′ with ψ′(a′) = β(b) − b′. Since α is surjective, there exists a ∈ A such that α(a) = a′, so
ψ′α(a) = β(b)− b′. Thus βψ(a) = β(b)− b′, so b′ = β(b− ψ(a)) ∈ imβ.

Question: Given A,C what can you say about B with 0 → A → B → C → 0 exact? One obvious answer is

0→ A
a7→(a,0)→ A⊕ C →

(a,c)7→c
C → 0 is always exact.

De�nition 5.2. Let R be a ring and let 0 // A
ψ // B

φ // C // 0 be a short exact sequence of R-modules.
The sequence is said to split (or be split) if there exists an R-submodule D ⊆ B such that B = D + ψ(A) with
D ∩ ψ(A) = {0} (i.e., B ∼= D ⊕ ψ(A)). �There exists R-module complement of ψ(A) in B�

Equivalently 0 // A //

∼=
��

B //

��

C //

∼=
��

0

0 // A // A⊕ C // C // 0

is an isomorphism of complexes.
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Lemma 5.3. The short exact sequence 0 // A
ψ // B

φ // C // 0 splits if and only if there exists µ : C → B
(called a section) such that φ ◦ µ = idC , if and only if there exists λ : B → A such that λ ◦ ψ = idA

Note. If there exists an R-module complement D to ψ(A) in B, then D ∼= B/ψ(A) ∼= C

Proof of Note. Consider φ : B → C. Note that φ|D is injective, since D ∩ ψ(A) = {0) (as ψ(A) = kerφ). Since φ
is surjective, for any c ∈ C, there exists b ∈ B with φ(b) = c. Write b = d+ ψ(a) for some d ∈ D, a ∈ A. But then
φ(b) = φ(d+ ψ(a)) = φ(d) + φ(ψ(a)) = φ(d), so φ|D is surjective.

Proof of Lemma. If the sequence splits, there exists an R-module complement D for φ(A). By above, D ∼= C, so
let µ : C → D be the isomorphism (µ = φ−1). By construction φ(µ(c)) = c so φ ◦ µ = idc.

Conversely, if there exists µ : C → B such that φ ◦ µ = idC , let D = µ(C). We need to show that D is an
R-module complement for ψ(A). Let b ∈ D ∩ ψ(A). Then b = µ(c), so φ(B) = φ(µ(c)) = c, but since b = ψ(a)
for some a, we have φ(b) = φ(ψ(a)) = 0, so c = 0 and thus b = µ(0) = 0. Given b ∈ B, let d = µ(φ(b)). Then
φ(b− d) = φ(b−µφ(b)) = φ(b)−φµφ(b) = φ(b)−φ(b) = 0, so b− d ∈ kerφ = imψ. So there exists a ∈ A such that
b = d+ φ(a), so B = D + ψ(A)

Example. Given A and letting C = Z, what are the options for B with 0 // A
ψ // B

φ // C // 0 ? In this
case, B ∼= A⊕Z, since the map µ : C ∼= Z→ B, given by µ : 1 7→ b where b is a �xed choice of b ∈ B with φ(b) = 1,
is a splitting. As φ ◦ µ(n) = φ(nb) = nφ(b) = n · 1 = n.

Recall that homR(D,−) is a functor, f : A→ B,f : homR(D,A)→ homR(D,B) de�ned by φ 7→ f ◦ φ.

Given 0 // A
ψ // B

φ // C // 0 , we can apply homR(D,−) to it:

0 // homR(D,A)
ψ // homR(D,B)

φ // homR(D,C) // 0

. WARNING: no claims this is a complex yet.

Claim: 0→ A
φ→ B is exact, then 0→ homR(D,A)

φ→ homR(D,B) is exact.

Proof. Consider f ∈ homR(D,A). If f 6= 0, then there exists d ∈ D with f(d) = a 6= 0. Then φ(f)(d) = φ(f(d)) =

φ(a) 6= 0 since φ is injective. So φ(f)|neq0 , so homR(D,A)
φ→ homR(D,B) is injective.

Claim: If 0→ A
ψ→ B

φ→ C is exact then homR(D,A)
ψ→ homR(D,B)

φ→ homR(D,C) is exact

Proof. Let f ∈ homR(D,A). Then for all d ∈ D, φ ◦ ψ(f)(d) = φ(ψ(f(d)) = 0, so φ ◦ ψ : homR(D,A) →
homR(D,C) = 0 (i.e., this is a complex). Now consider f ∈ homR(D,B) with φ(f) = 0. Then for any d ∈ D,
φ(f(d)) = 0, so f(d) ∈ kerφ , and thus there exists a ∈ A with φ(a) = f(d). The choice of a is forced since ψ is
injective.

De�ne g : D → A by g(d) = a. We now check this is an R-module homomorphism. Then ψg = f , so f ∈ imψ.
Suppose g(d) = a, g(d′) = a′, then ψ(a) = f(d), ψ(a′) = f(d′). So ψ(a+a′) = ψ(a)+ψ(a′) = f(d)+f(d′) = f(d+d′).
So we must have (since ψ is injective) g(d+ d′) = a+ a′ = g(d) + g(d′). (Check g(rd) = rg(d))

However if 0→ A→ B → C → 0 we do not necessarily have homR(D,B)→ homR(D,C)→ 0 is exact.

Example. 0→ Z ×2→ Z→ Z/2Z→ 0, and D = Z/2Z.

De�nition 5.4. We say that homR(D,−) is a left exact functor.

If F is a covariant functor, F : R-module → R-module, then F is left exact if 0 // A // B // C // 0

implies 0 // F (A) // F (B) // F (C) .

It is right exact if 0 // A // B // C // 0 implies F (A) // F (B) // F (C) // 0

Hence it is exact if 0 // A // B // C // 0 implies 0 // F (A) // F (B) // F (C) // 0
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Question: For whichD is homR(D,−) exact? LetD = R (a ring with identity) If 0 // A // B // C // 0

is exact then 0 // homR(R,A) // homR(R,B) // hom(R,C) // 0 is exact because homR(R,A) ∼= A by

φ 7→ φ(1) and

f(1) A
ψ // B ψf(1)

f
_

OO

homR(R,A) //

OO

homR(R,A)

OO

ψf
_

OO

f � // ψf

commutes.

De�nition 5.5. An R-module P is projective if for any surjection φ : M → N of R-modules and an R-module
map f : P → N such that there exists g : P →M such that f = φ ◦ g

P

f

��

g

~~
M

φ // // N // 0

Example. P = Rn for some n

Proposition 5.6. Let P be an R-module. The following are equivalent:

1. P is projective

2. For all short exact sequence 0 // A
ψ // B

φ // C // 0 we have

0 // homR(P,A) // homR(P,B) // homR(P,C) // 0 is exact. (That is homR(P,−) is an exact func-

tor)

3. There exist an R-module Q and set S such that P ⊕Q∼= ⊕SR. �P is a direct summand of a free module�

Note. If R = Z, R = k[x1, . . . , xn] then all projective modules are free. (The second is Serre's conjecture and proven
by Quillen-Suslin)

Proof. 1⇒ 2 Let 0 // A
ψ // B

φ // C // 0 be a short exact sequence. Then we know

0 // homR(P,A) // homR(P,B) // homR(P,C) is exact. Now given f ∈ homR(P,C) we have

P

f

��

g

��
B

φ // // C // 0

so there exists a unique g : P → B such that f = φ◦g, i.e., f = φ(g). Thus φ : homR(P,B)→ homR(P,C)
is surjective.

2⇒ 3 Suppose homR(P,−) is exact. Write P = ⊕s∈SR/K as a quotient of a free module. Then 0 → K →
⊕R π→ P → 0 is exact. Since homR(P,⊕R) → homR(P, P ) is surjective, there exists µ : P → ⊕R such
that π(µ) = id : P → P , i.e., for all p ∈ P we have π ◦ µ(p) = p. Thus ⊕R ∼= P ⊕K.

3⇒ 1 Suppose P ⊕Q = F (where F is a free R-module, i.e., F ∼= ⊕s∈SR, S a set and let i : S → F ) and

P

f

��
M

φ // // N // 0
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Let π : F → P for the projection map. Then f ◦ π ∈ hom(F,N). For each s ∈ S, let ns be f(π(i(s)).
Choose ms ∈M with φ(ms) = ns. By the universal property there exists a unique g : F →M such that
φ ◦ g = f ◦ π. So we have the following commutative diagram

F

π

��
g

��

P

f

��
M

φ // // N // 0

So de�ne h : P → M by h(p) = g(p, 0). Check: This is an R-module homomorphism. Then φ(h(p)) =
φ(g(p, 0)) = f(π(p, 0)) = f(p). So φ ◦ h = f and so P is projective.

Question: What about other functors? For example hom(−, D) or A⊗−?

Example. 0→ Z ×2→ Z→ Z/2Z→ 0 and apply hom(−,Z/2Z). Then applying hom(−,Z/2Z), we get

0 Z/2Zoo Z/2Zoo Z/2Zoo 0oo , but this is not exact. To see this note that we must have

Z/2Z Z/2Z0oo Z/2Zidoo 0oo , showing the failure of surjectivity.

Lemma 5.7. Let ψ : A→ B, φ : B → C be R-module homomorphism. If 0 // hom(C,D) // hom(B,C) // hom(A,D)

is exact for all R-modules D, then A
ψ // B

φ // C // 0 is exact.

Proof. We need to show:

1. φ is surjective, use D = C/ imφ

Set D = C/φ(B), let φ1 : C → D be the projection map. Then π1 ◦ φ : B → C/φ(B) is the zero map
by construction. So φ(π1) = 0 ∈ hom(B,D). Since hom(C,D) → hom(B,D) is injective, π1 = 0, so the
projection C → C/φ(B) is the zero map. So C/φ(B) = 0 and thus φ(B) = C so it is surjective.

2. imψ ⊆ kerφ, use D = C, id : C → C

Exercise

3. ker(φ) ⊆ imψ, use D = B/ imψ.

Exercise

Proposition 5.8. Let 0 // A
ψ // B

φ // C // 0 be an exact sequence of R-modules. Then

D ⊗A
1⊗ψ // D ⊗B

1⊗φ // D ⊗ C // 0 is exact.

Proof. Recall hom(F ⊗G,H) ∼= hom(F,hom(G,H)). Now by left exactness of hom(−, E), for any E we have

0 // hom(C,E) // hom(B,E) // hom(A,E) . Then for all D

0 // hom(D,hom(C,E)) // hom(D,hom(B,E)) // hom(D,hom(A,E))

So 0 // hom(D ⊗ C,E) // hom(D ⊗B,E) // hom(D ⊗A,E)) is exact. So by the lemma D ⊗ A →
D ⊗B → D ⊗ C → 0 is exact (Check the maps are what you think they are)

Recall: M• : . . . // M i−1 ∂i // M i
∂i+1// M i+1

∂1+2 // M i+2 // . . . is a complex (or cochain complex ) if ∂j+1 ◦
∂j = 0 for all j

De�nition 5.9. Given a (cochain) complex M , the nth cohomology group is Hn(M) = ker ∂n+1/ im ∂n

Notation. If M• . . . // Mi+1

∂i+1 // Mi
∂i // Mi−1

∂i−1 // Mi−2 // . . . is a (chain) complex, we write Hn(M) =

ker ∂n/ im ∂n+1 and call this the nth homology group.
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De�nition 5.10. Let A be an R-module. A projective resolution of A is an exact sequence P

. . . // Pn
∂n // Pn−1

∂n−1 // . . .
∂1 // P0

ε // A // 0

such that each Pi is a projective module.

Example. 0→ Z ×2→ Z→ Z/2Z→ 0 is a projective resolution of the Z-module Z/2Z

Note. For R-module, we can actually ask that the Pi be free R-modules. These always exists for R-modules

Let F : R-modules→ R-modules be a covariant right exact functor or a contravariant left exact functor. Then

applying F to Pn → Pn−1 → · · · → P0 → 0 (forget A) gives a complex F (P). Then the nth derived functor of F
is Hn(F (P))

Example. F is hom(−, D). Then F (P) is, 0 // hom(P0, D)
∂1 // hom(P1, D)

∂2 // hom(P2, D)

De�nition 5.11. With the above setting Extn(A,D) = ker ∂n+1/ im ∂n for n ≥ 1. Ext0(A,D) = ker ∂1

Example. 0→ Z ×2→ Z→ Z/2Z→ 0, what is Extn(Z/2Z,Z/2Z)? 0 Z/2Z∂2oo Z/2Z0=∂1oo Z/2Zidoo 0oo . So:

• Ext0(Z/2Z,Z/2Z) = ker ∂1 = Z/2Z

• Ext1(Z/2Z,Z/2Z) = ker ∂2/ im ∂1 = Z/2Z

• Extn(Z/2Z,Z/2Z) = 0 for n ≥ 2

Theorem 5.12. Extn(A,D) does not depend on the choice of projective resolution

Remark. Ext1R(C,A) is in bijection with the equivalence classes of B such that 0 // A // B // C // 0 is
exact. �Extension of C by A�

Example. D⊗−. Let P be a projective resolution of A: 0 Aoo P0
εoo P1

∂1oo P2
∂2oo . . .

∂3oo . Apply D⊗−

to P 0 D ⊗ P0
oo D ⊗ P1

1⊗∂2oo D ⊗ P2
1⊗∂2oo . . .

1⊗∂3oo d

De�nition 5.13. The nth derived functor of D ⊗ − is called TorRn (D,−). So TorRn (D,A) = ker ∂n/ im ∂n+1 and
TorR0 (D,A) = D ⊗ P0/ im ∂

Example. R = Z, A = Z/7Z and 0 Aoo Zoo Z×7oo 0oo and D = Z/7Z. So we get

0 Z/7Z⊗Z Zoo Z/7Z⊗Z Z
∂1=0oo 0oo , but Z/7Z⊗Z Z ∼= Z/7Z. So

• TorZ0 (Z/7Z,Z/7Z) = (Z/7Z)/ im ∂1 = Z/7Z

• TorZ1 (Z/7Z,Z/7Z) = (Z/7Z)/0 = Z/7Z

Remark. If A is a Z-module (abelian group) then A is torsion free if and only if Tor1(A,B) = 0 for every abelian
group.

De�nition 5.14. A short exact sequence of complexes 0 // A
ψ // B

φ // C // 0 is a set oh homomorphism
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of complexes such that 0 // An
ψn // Bn

φn // Cn // 0 is exact for every n.

0

��

0

��

0

��
. . . An+1
oo

ψn+1

��

Anoo

ψn

��

An−1oo

ψn−1

��

. . .oo

. . . Bn+1
oo

φn+1

��

Bnoo

φn

��

Bn−1oo

φn−1

��

. . .oo

. . . Cn+1
oo

��

Cnoo

��

Cn−1oo

��

. . .oo

0 0 0

This diagrams commutes, the rows are complexes and the columns are exacts.

Theorem 5.15 (Long exact sequence of cohomology). Let 0 // A
ψ // B

φ // C // 0 be a short exact se-
quence of complexes. Then there is a long exact sequence

0 // H0(A ) // H0(B) // H0(C )
∂0 // H1(A ) // H1(B) // H1(C )

∂1 // H2(A ) // . . .

What are the maps? Given

An−1
∂n //

ψn−1

��

An
∂n+1//

ψn

��

An+1

ψn+1

��
Bn−1 µn

// Bn µn+1

// Bn+1

We want Hn(A ) → Hn(B). Let a ∈ ker ∂n+1. Then ψn+1 ◦ ∂n+1(a) = 0, so µn+1 ◦ ψn(a) = 0, hence ψn(a) ∈
kerµn+1. We want ker ∂n+1/ im ∂n → kerµn+1/ imµn. It su�ces to check ψ(im ∂n) ⊆ im(µn). If a ∈ An−1 then
ψn ◦ ∂n(a) = µn ◦ ψn−1(a) im(µn). So we get a map Hn(A )→ Hn(B) and similarly Hn(B)→ Hn(C )

For the other map, we use the Snake Lemma

Snake Lemma. Let

A
ψ //

f

��

B
φn+1 //

g

��

C

h
��

// 0

0 // A′
ψ′
// B′

φ′
// C ′

be a commutative diagram with exact rows. Then there is an exact sequence

ker f // ker g // kerh
∂// coker f ∼= A′/ im f // coker g // cokerh

Proof. De�ne δ: kerh → coker f . Let c ∈ kerh. Then there is b ∈ B with φ(b) = c since φ is surjective. By
commutativity 0 = h(c) = h ◦ φ(b) = φ′ ◦ g(b). So g(b) ∈ kerψ′. By exactness there exists a′ ∈ A′ such that
ψ′(a′) = g(b). Set ∂(c) = a′ + im f ∈ coker f .

We need to show that ∂ is well de�ned. Given another choice b̃ with φ(̃b) = c, the di�erence b− b̃ ∈ kerφ = imψ.

So there exists a ∈ A such that ψ(a) = b− b̃. But then gψ(a)′ = g(b)− g(̃b) = ψ′f(a). So g(̃b) = ψ′(a′ − f(a)). We
then would set ∂(c) = a′ − f(a) + im f = a′ + im f .
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6 Representation Theory

Check in this chapter whether each proposition or lemma rely on the fact that rings need to have 1.

6.1 Ring Theory for Representation Theory

Recall: Let G be a group. The group algebra R[G] = {
∑
agg : ag ∈ R, g ∈ G} = ⊕g∈GR.

Representation theory is the study of modules over R[G]

De�nition 6.1. An R-module M 6= {0} is simple if M has no proper submodules, i.e., N ⊆ M then N = M or
N = {0}

Proposition 6.2. Let M and M ′ be simple left R-modules. Then every R-module homomorphism f : M →M ′ is
either 0 or an isomorphism.

Proof. Suppose f is not zero. Then ker(f) is a submodule of M that is not equal to M , so it must be the 0 module,
i.e., f is injective. Similarly im f is a submodule of M ′ that is not the zero module, so im f = M ′ and thus f is
surjective. So f is an isomorphism.

A ring R is simple if RR is a simple R-module, e.g, R = k a �eld

De�nition 6.3. A left R-module is semi-simple if it is the direct sum of simple modules.

De�nition 6.4. A left ideal I ⊆ R is minimal if there exists no left ideal J of R such that 0 ( J ( I.

Example. R = Mn(k). I =

∗...
∗

0

 is a minimal left ideal.

De�nition 6.5. A ring R is (left) semisimple if it is isomorphic as an R-module to a direct sum of minimal left
ideals. (i.e. RR is a semisimple R-module)

Example. Mn(K) ∼= ⊕nj=0Ij where Ij =

0

∗
...
∗

jth-column

0


Proposition 6.6. A left R-module M is semisimple if and only if every submodule of M is a direct summand.

Proof. ⇒) Suppose M is semisimple, so M ∼= ⊕j∈JSj . For any subset I ⊆ J , de�ne SI = ⊕j∈ISj . Let B be a
submodule of M . Then by Zorn's lemma, there is K ⊆ J maximal with respect to the property that SK ∩B = {0}.
(Suppose K1 ( K2 ( . . . with Ski ∩ B = {0}. Set K ′ = ∪Ki and consider SK′ . If b ∈ SK′ ∩ B then b ∈ ⊕j∈K′Sj ,
so b = sj1 + · · ·+ sjr ,sji ∈ Sji . There is Ks with j1, . . . , jr ∈ Ks , so B ∈ SKs ∩B which is a contradiction)

We claim M = B ⊕ SK , we just need to show that m ∈ M ⇒ m = b + sk for b ∈ b, sk ∈ SK . If j ∈ K, then
Sj ⊆ B + SK .

If j /∈ K, then by maximality, (SK + Sj) ∩ B 3 b 6= 0. So there exists sK ∈ SK , sj ∈ Sj such that sK + sj = b,
so sj = b− sK ∈ Sj ∩ (B + SK) 6= 0 since sj 6= 0 as b /∈ SK . Thus all Sj are contained in B + SK , so M ⊆ B + SK .
⇐) Suppose every submodule of M is a direct summand. We �rst show that every non-zero submodule B of M

contains a simple summand.
Fix b 6= 0 with b ∈ B. By Zorn's lemma there exists a submodule C of B maximal with respect to b /∈ C. If

C = {0}, then B = Rb and B must be simple (otherwise any proper non-zero submodule would not contain b).
Otherwise write M = C ⊕ C ′, then B = C ⊕ (C ′ ∩B︸ ︷︷ ︸

D

). (Since C ∩ (C ′ ∩ B) = {0} and b ∈ B ⇒ b = c + c′ for

c ∈ C, c′ ∈ C ′, since b, c ∈ B, c′ ∈ B.) We claim that the non-zero submodule D is simple. If not by the above
argument we can write, D = D′ ⊕D′′ where D′, D′′ are non-zero submodules of D. We claim that we do not have
b ∈ (C ⊕D′)∩ (C ⊕D′′). If we did, we could write b = c+ d′ = c′+ d′′ for c, c′ ∈ C and d′ ∈ D′, d′′ ∈ D′′. But then
c− c′ = d′′ − d′ ∈ C ∩D = {0}, so d′ = d′′ ∈ D′ ∩D′′ = {0}, hence c = c′ = b contradicting b /∈ C. But this means
one of C ⊕D′ and C ⊕D′′ does not contain b, contradicting the choice of C. Thus B = C ⊕D contains the simple
summand D.
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We now show that M is semisimple. By Zorn's lemma there is a family {Sj : j ∈ I} of simple submodules of M
maximal with respect to the property that the submodule U that they generated is their direct sum. By hypothesis,
M = U ⊕ V . If V = {0}, M is a direct sum of simple modules, so we are done. Otherwise V has a non-zero simple
summand S, V ∼= S ⊕ V ′. Then U ∩ S = {0}, so

∑
Sj + S = ⊕Sj ⊕ S contradicting the maximality of U . So

V = {0} and M is the direct sum of simple submodules.

Maschke's Theorem. If G is a �nite group and k a �eld with char(K) - |G|, then k[G] is semisimple. (i.e. k[G]
is a direct sum of simple k[G]-modules)

Proof. It su�ces to show that every submodule (ideal) I of kG is a direct summand. We have

0 // I
i //
kG //

λ
oo coker // 0

so it su�ces to construct λ : kG → I such that λ ◦ i = idI . Since both kG and I are vector space over k, there
exists V ⊆ kG such that kG ∼= I ⊕ V as vector space. Let π : kG→ I be the projection map (it is a linear map).

De�ne λ : kG→ kG by λ(u) = 1
|G|
∑
g∈G gπ(g−1u). Note that λ(u) ∈ I, since π(g−1u) ∈ I and gπ(g−1u) ∈ I as I

is a left ideal. Note also that if b ∈ I then λ(b) = b. Indeed λ(b) = 1
|G|
∑
g∈G gπ(g−1b) = 1

|G|
∑
g∈G gg

−1b = |G|
|G|b = b.

Finally we check that λ is a kG-module homomorphism. It is straightforward to check that λ is a k-linear map,
since π is. Also for h ∈ G,

λ(hu) =
1

|G|
∑
g∈G

gπ(g−1hu)

=
h

|G|
∑
g∈G

h−gπ(g−1hu)

=
h

|G|
∑
g′∈G

g′π(g′−1u) where g
′

= h−1g

= hλ(u)

so λ is a kG-module homomorphism with λ ◦ i = idI . So I is a direct summand.

Example. C[Z/2Z] = {a(0) + b(1) : a, b ∈ C} = C ((0) + (1))︸ ︷︷ ︸
={a(0)+a(1):a∈C}

⊕ C ((0)− (1))︸ ︷︷ ︸
={a(0)−a(1):a∈C}

De�nition 6.7. Let G be a group. A representation of G is a group homomorphism, φ : G→ GL(V ) where V is
a vector space. It is �nite dimensional if V is a �nite dimensional vector space. V is a simple kG-module if V has
no G-invariant subspace.

Point: If V is a vector space over k, then V is a kG-module, via g · v = φ(g) · v.

Example. LetG = S3 and φ : S3 → GL3(C) send a permutation to its permutation matrix. φ((1, 2)) =

0 1 0
1 0 0
0 0 1


and φ((1, 2, 3)) =

0 0 1
1 0 0
0 1 0

. This makes C3 into a C[S3]-module. Is it simple? The answer is no because we

notice that

1
1
1

 is a common subspace to both matrix. So we have C3 ∼=C[S3] span

1
1
1

 ⊕ V , where V is a

2-dimensional submodule. In fact V = span

 0
1
−1

 ,

 1
0
−1

. In the basis

1
1
1

 ,

 0
1
−1

 ,

 1
0
−1

 for V we have

(1, 2)→

1 0 0
0 0 1
0 1 0

, (1, 2, 3)→

1 0 0
0 0 1
0 −1 −1

.
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Example. C[Z/2Z], F2[Z/2Z] and let V = C((0) + (1)) and W = F2((0) + (1)). Maschke's theorem tells us
that C[Z/2Z] is a direct summand (see previous example) but nothing about F2[Z/2Z]. In fact we can not write
F2[Z/2Z] ∼= W⊕?.

Proposition 6.8. 1. Every submodule and every quotient of a semisimple module is semisimple

2. If R is semisimple, then every left R-module M is semisimple.

Proof. 1. Let B be a submodule of M . Every submodule C of B is a submodule of M , so M ∼= C ⊕D for some
D. Let π : M → C be the projection map and let λ : B → C be given by λ = π|B . Then

0 // C
i //

B //
λ
oo coker // 0

so B ∼= C ⊕ coker. So every submodule of B is a direct summand so B is semisimple.

Let M/H be a quotient of M . Since M is semisimple we have M ∼= H ⊕H ′ for some submodule H ′. By the
�rst part H ′ is semisimple so M/H ∼= H ′ is semisimple.

2. Suppose R is semisimple. Then any free R-module is semisimple. (R ∼= ⊕Mi so ⊕R ∼= ⊕ ⊕Mi ) But every
R-module is a quotient of a free module, so every R-module is semisimple.

Corollary 6.9. Let G be a �nite group and k a �eld with chark - |G|. Then every kG-module is a direct sum of
simple kG-modules, so every representation is a direct sum of irreducible representation.

Proposition 6.10. Let R ∼=R ⊕i∈IMi be a semisimple ring, where the Mi are simple modules and let B be a simple
R-module. Then B ∼= Mi for some i.

Proof. We have 0 6= B ∼= HomR(R,B) ∼= ⊕i∈I HomR(Mi, B). However by Schur's Lemma HomR(Mi, B) = 0 unless
Mi
∼= B.

Corollary 6.11. Let G be a �nite group and k a �eld with chark - |G|. Then there are only a �nite number of
simple kG-modules up to isomorphism, and thus only a �nite number of irreducible representation of G.

Example. Let G = S3.

• φ1 : G→ C∗, φ1(g) = 1 for all g. This corresponds to the C[S3] submodule C(
∑
g∈S3

g).

• φ2 : G→ C∗, φ2(g) = sgn(g) =

{
1 g is even

−1 g is odd
. This corresponds to the C[S3] submodule C

(∑
g∈S3

sgn(g)g
)
.

• φ3 : G→ GL2(C), φ3((1, 2)) =

(
0 1
1 0

)
and φ3((1, 2, 3)) =

(
0 −1
1 −1

)
.

Exercise:

a Check that this is an irreducible representation

b Find a two dimensional submodule of C[S3] that this is isomorphic to.

So C[S3] ∼= C
∼=φ1

⊕ C
∼=φ2

⊕ C2
∼=φ3

⊕ C2
∼=φ3

Question: What are the possibilities for semisimple rings?
e.g.: k[G], G �nite, good characteristic. Mn(k). Mn(D) where D is a division ring. From these we can create

more for example Mn1(D1)× · · · ×Mnr (Dr).

Theorem 6.12 (Wedderburn-Artin). A ring R (with 1) is semisimple if and only if R is isomorphic to a direct
sum/product of matrix rings over division rings. R ∼= Mn1

(D1) × · · · ×Mnr (Dr). The ni , Di are unique up to
permutation.
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Proof. We've just discuss �if�
Suppose R is semisimple, so R ∼=R ⊕i∈IMi. We �rst note that |I| < ∞, since 1 ∈ R, 1 = mi1 + · · · + mis for

some mij ∈ Mij . So R = R1 ⊆ Mi1 ⊕ · · · ⊕Mis ⊆ R, so we have equality. After reordering, we may assume that
Mi � Mj for i 6= j, 1 ≤ i, j ≤ r and for all j < r there exists i ≤ r with Mj

∼= Mi. Write Bi = ⊕Mj
∼=Mi

Mj , so
R ∼= B1 ⊕ · · · ⊕Br.

We have Rop ∼= HomR(R,R) (as a ring) with the map f(1) f�oo , then f(r) = f(r · 1) = rf(1) and

f ◦ g(1) = f(g(1)) = g(1)f(1) f ◦ g�oo So Rop ∼= HomR(R,R) ∼= HomR(⊕ri=1Bi,⊕ri=1Bi)
∼= ⊕ri,j=1 HomR(Bi, Bj).

Now HomR(Bi, Bj) = HomR(⊕nil=1Ml,⊕
nj
k=1Mk) = ⊕nil=1⊕

nj
k=1 HomR(Mi,Mj) = 0 if i 6= j by Schur's Lemma. Since

every non-zero function in HomR(Mi,Mi) is an isomorphism by Schur's lemma HomR(Mi,Mi) is a division ring
with multiplication being function composition. Call this Dop

i . Then HomR(Bi, Bi) ∼= ⊕nik,lD
op
i
∼=

check
Mni(D

op
i ). So

Rop ∼= Mn1
(Dop

1 )× · · · ×Mnr (D
op
r ), hence R ∼= Mn1

(Dop
1 )op × · · · ×Mnr (D

op
r )op = Mn1

(D1)× · · · ×Mnr (Dr).
Proof omits uniqueness.

Exercise. Mn(Dop)op ∼= Mn(D)

Corollary 6.13 (Molien). If G is a �nite group, and k is algebraically closed, with chark - |G|, then k[G] ∼=
Mn1

(k)× · · · ×Mnr (k) and thus
∑
n2i = |G|.

Example. C[Z/3Z] ∼= Mn1
(C) × · · · ×Mnr (C). Now 3 = n21 + · · · + n2r implies r = 3 and n1 = n2 = n3 = 1. So

C[Z/3Z] ∼= C× C× C.
Let us look at the irreducible representation. We always have the �trivial representation�, φ1 : Z/3Z → C∗

de�ned by φ1(g) = 1 for all g.

We then have φ2((0)) = 1, φ2((1)) = ω and φ2((2)) = ω2 where ω = e
2πi
3 , similarly we also get φ3((0)) = 1,

φ3((1)) = ω2 and φ3((2)) = ω
So then C[Z/3Z] ∼= C((0) + (1) + (2))︸ ︷︷ ︸

φ1

× C((0) + ω2(1) + ω(2))︸ ︷︷ ︸
φ2

× C((0) + ω(1) + ω2(2))︸ ︷︷ ︸
φ3

. Check that this is a

ring isomorphism e.g. ((0) + (1) + (2))((0) + ω(1) + ω2(2)) = 0.

Proof of Corollary. By Maschke's theorem k[G] is semisimple, so by Wedderburn-Artin theorem k[G] ∼= Mn1
(D1)×

· · · ×Mnr (Dr) where Di
∼= HomKG(Mi,Mi)

op for simple kG-module Mi. First note that k ⊆ Hom(Mi,Mi)
op,

for a ∈ k, u ∈ Mi we set a(u) = au. Then a(gu) = agu = g(au) so this is kG-homomorphism. Consider any
f ∈ Dop

i , since f is a kG-homomorphism it is a linear transformation, so f(au) = af(u), i.e., (af)(u) = (fa)(u), so
f commutes with any a ∈ k. Let k(f) be the smallest sub division ring of Dop

i that contains k and f . The division
ring k(f) is a �nite dimensional vector space over k.

Thus 1, f, f2, f3, . . . are linearly dependent over k, so there exists g ∈ k[X] with g(f) = 0. Take g with minimal
degree. But then {a0 + a1f + · · · + arf

deg(g)−1 : ai ∈ k} is closed under addition, multiplication. Also g is an
irreducible polynomial, since otherwise g = g1g2 would imply g1(f)︸ ︷︷ ︸

6=0

g2(f)︸ ︷︷ ︸
6=0

= 0 in the division ring Dop
i . We show

that this is closed under division. Given h =
∑
aif

i, the elements 1, h, h2, h3, . . . are linearly dependant over k. So
there exists bi ∈ k with

∑s
i=j≥0 bih

i = 0, where we may assume that bj = 1, then 1
h = −

∑s
i=j+1 bih

i−j−1 and this

can be written as
∑r
i=0 cif

i. Then the multiplication in k(f) is commutative (since k commutes with f), so k(f)
is a �eld containing k. Since f is algebraic over the algebraically closed �eld k, f ∈ k.

Question: We now have (for good k) kG ∼= Mn1(k)× · · · ×Mnr (k). What is r?
Answer: It is the number of conjugacy class of G
Recall: A conjugacy class of a group G is a set Ch = {ghg−1 : g ∈ G} of all conjugates of an element of h. The

class sum corresponding to Ch is zh =
∑
g′∈Ch g

′. The centre of a ring R is Z(R) = {a ∈ R : ab = ba∀b ∈ R}. e.g.
The centre of Mn(k) is {λI : λ ∈ k}
Lemma 6.14. Let G be a �nite group. Then the class sum zh form a k-basis for Z(k[G])

Proof. First consider zh =
∑
g′=ghg−1 g′ ∈ k[G]. For any g̃ ∈ G we have

g̃zh =
∑

g′=ghg−1

g̃g′ =
∑

g′=ghg−1

(g̃g)g(g−1g̃−1)g̃ = zhg̃

since if g1 6= g2 ∈ Ch then g̃g1g̃ 6= g̃g2g̃. Hence zh ∈ Z(K[G])
Now suppose z ∈

∑
agg ∈ Z(k[G]). Then for all g̃ ∈ G, g̃zg̃−1 =

∑
ag g̃gg̃

−1 =
∑
agg, so ag̃gg̃−1 = ag and thus

the coe�cients of z are constant on conjugacy classes. So z is a linear combination of class sums.
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Corollary 6.15. Let G be a �nite group and k a �eld with k = k and charK - |G|. Then kG ∼= Mn1(k)×· · ·×Mnr (k)
where r = number of conjugacy class of G.

Proof. The centre of Mn1
(k)× · · · ×Mnr (k) has dimension r over k, so r = number of conjugacy classes.

De�nition 6.16. Let φ : G→ GL(V ) be a representation of G. The character of φ is χφ : G→ k, χφ(g) = Trφ(g).
(Note Tr(A) =

∑
aii)

Warning: This is not a group homomorphism unless dimV = 1.

Note. χ(ghg−1) = Trφ(ghg−1) = Tr(φ(g)φ(h)φ(g)−1) = Tr(φ(h)φ(g)φ(g)−1) = Trφ(h) = χφ(h), so characters are
constant on conjugacy classes.

De�nition 6.17. The character table of a �nite group G is the r × r table (where r is the number of conjugacy
classes) with columns indexed by conjugacy classes and rows indexed by irreducible representation recording the
character.

Example. G = S3

(1) (1, 2), (1, 3), (2, 3) (1, 2, 3), (1, 3, 2)
φ1 1 1 1
φ2 1 −1 1
φ3 2 0 −1

G = Z/3Z

(0) (1) (2)
1 1 1 1
ω 1 ω ω2

ω2 1 ω2 ω
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7 Galois Theory

De�nition 7.1. A �eld extension L of a �eld K is a �eld L containing K. We'll write L/K or L : K. Given a
subset X of L the intersection of all sub�elds of L containing K and X is denoted K(X).

Example. K = Q, L = R and X = {
√

2} then K(
√

2) = {a+ b
√

2 : a ∈ Q}.
X = π, K(π) = set of all rational functions of π

De�nition 7.2. An extension �eld L/K is simple if L = K(α) for some α ∈ L

Example. L = Q(i,
√

5) = Q(i+
√

5). The inclusion one way is clear. For the other way notice that (i+
√

5)2 =
4 + 2

√
5i ∈ L⇒

√
5i ∈ L. Also −

√
5 + 5i ∈ L⇒ 6i ∈ L so i ∈ L.

De�nition 7.3. An element α ∈ L is algebraic over K if there exists a monic polynomial g ∈ K[x] with g(α) = 0.
The g of lowest degree is called the minimal polynomial. If α is not algebraic, it is said to be transcendental.

Example. Q = the algebraic closure of Q = the set of all algebraic number over Q. This is countable. (So
transcendental elements of C exists)

De�nition 7.4. An extension L/K is algebraic if every element of L is algebraic.

In general if α is algebraic over Q with a minimal polynomial f of degree d and β is algebraic over Q with a
minimal polynomial g of degree e, what can you say about α+ β?

De�nition 7.5. The degree of L/K written [L : K] is the dimension of L as a vector space over K.

Note. If L = K(α) for α algebraic with minimal polynomial g then [L : K] = deg g since {1, α, α2, . . . , αdeg g−1} is
a basis. If α is transcendental then L ∼= K(t) and [L : K] =∞ (de�ne φ : K(t)→ K(α), t 7→ α)

The Tower Law. Let K,L,M be �elds with K ⊆ L ⊆M . Then [M : K] = [M : L][L : K]

Proof. Let {xα : α ∈ I} be a basis for L/K and let {yβ : β : J} be a basis for M/L. De�ne zαβ = xαyβ ∈ M . We
claim that {zαβ} is a basis for M/K.

We show that they are linearly independent. If
∑
α,β aαβzαβ = 0 with �nitely many aαβ ∈ K non-zero. Then∑

β(
∑
α aαβxα)yβ = 0, since the yβ are linearly independent over L we have

∑
α aαβxα = 0 for all β. Since the xα

are linearly independent over K we have aαβ = 0 for all α, β.
We show spanning. If z ∈M , then z =

∑
λβyβ for λβ ∈ L. For each λβ =

∑
aαβxα. So x =

∑
β(
∑
α aαβxα)yβ =∑

α,β aαβxαyβ =
∑
aαβxαβ .

So {zαβ} is a basis for M over K, so [M : K] = [M : L][L : K]

Example. [Q(i,
√

5) : Q] = [Q(i,
√

5) : Q(i)][Q(i) : Q] = 2 × 2 = 4. The minimal polynomial of i +
√

5 over Q is
x4 − 8x2 + 36. (Note that this is not (x2 + 1)(x2 − 5))

De�nition 7.6. An automorphism of L is a �eld isomorphism φ : L → L (so φ(0) = 0 and φ(1) = 1). We say φ
�xes K if φ(a) = a for all a ∈ K.

Example. φ : C→ C. φ(a+ bi) = a− bi complex conjugation.
φ : Q(

√
5, i) → Q(

√
5, i) de�ned by φ(a + b

√
5 + ci + d

√
5i) = a − b

√
5 + ci − d

√
5i. Note φ �xes Q(i) but not

Q(
√

5).

De�nition 7.7. The Galois group Gal(L/K) of L/K is the group of all automorphisms of L �xing K.

Example. Using the φ de�ned in the second part of the previous example, we have φ ∈ Gal(Q(
√

5, i)/Q(i)) but
not in Gal(Q(

√
5, i)/Q(

√
5)).

Gal(C/R) ∼= Z/2Z (generated by complex conjugation) (Because φ(a+ bi) = a+ bφ(i) and φ(i)2 = φ(−1) = −1)

Note that Gal(L/K) is a group under function composition. φ : L→ L,ψ : L→ L, φ(a) = ψ(a) = a for a ∈ K.
φ ◦ ψ : L→ L is an isomorphism and φψ(a) = φ(ψ(a)) = φ(a) = a for a ∈ K

Example. Gal(Q(
√

5, i)/Q) = Z/2Z× Z/2Z.
Gal(Q( 3

√
2)/Q) = 1, [Q( 3

√
2) : Q] = 3

De�nition 7.8. For a subgroup H of Gal(L/K) we denote by LH the set LH = {α ∈ L : φ(α) = α for all α ∈ H}.
This is a sub�eld of L called the �xed �eld of H
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Example. H = Gal(C/R), CH = R.
Gal(Q(

√
5, i)/Q) = 〈φ1, φ2〉 where φ1(i) = −i, φ1(

√
5) =

√
5 and φ2(i) = i, φ2(

√
5) = −

√
5. Let Hi = 〈φi〉.

Then Q(
√

5, i)H1 = Q(i),Q(
√

5, i)H2 = Q(
√

5),Q(
√

5, i)Gal = Q. De�ne H3 = 〈φ3〉, where φ3(i) = −i and
φ3(
√

5) = −
√

5.

Gal

H1 H3 H2

1

Q(
√

5, i) = Q(
√

5, i)1

Q(
√

5) = Q(
√

5, i)H2 Q(i
√

5) = Q(
√

5, i)H3 Q(i) = Q(
√

5, i)H1

Q = Q(
√

5, i)Gal

Note. For any subgroup H of Gal(L/K) we have K ⊆ LH ⊆ L and H ≤ Gal(L/LH) ≤ Gal(L/K)

De�nition 7.9. A polynomial f ∈ K[x] splits over K if f = a
∏d
i=1(x− bi), a, b1, . . . , bd ∈ K

Example. ef = x3 − 2 splits over C Note f = (x − 3
√

2)(x − 3
√

2ω)(x − 3
√

2ω2) where ω = e
2πi
3 . So we see that f

does not split over Q( 3
√

2)

De�nition 7.10. A �eld L is a splitting �eld for a polynomial f ∈ K[x] if K ⊆ L and

1. f splits over L

2. If K ⊆M ⊆ L and splits over M then M = L

(Equivalently L = K(σ1, . . . , σd) where σ1, . . . , σd are the roots of f in L)

These always exist, and are unique up to isomorphism. The proof uses induction on deg f , where we use the
intermediate �eld M = K[x]/(f).

Example. Q( 3
√

2, 3
√

2ω, 3
√

2ω2) = Q( 3
√

2, ω) is a splitting �eld for f = x3 − 2 (where ω = e
2πi
3 )

De�nition 7.11. An extension L/K is normal if every irreducible polynomial f over K which has at least one
root in L splits over L.

Example. C/R is normal
Q( 3
√

2)/Q is not normal.

De�nition 7.12. An irreducible polynomial f ∈ K[x] is separable over K if it has no multiple zeros in a splitting
�eld, (i.e, the bi are distinct). Otherwise it is inseparable

Example. x4 + x3 + x2 + x+ 1 is separable, its roots are ωj , j = 1, . . . , 4 where ω5 = 1
K = F2(x), f(t) = t2 + x is inseparable. K ⊆ L where y ∈ L satis�es f(y) = 0. f(y) = y2 + x = 0, x = y2, so

f = t2 + y2 = (t+ y)2

Proposition 7.13. If K is a �eld of characteristic 0, then every irreducible polynomial is separable over K.
If K has characteristic p > 0, then f is separable unless f = g(xp).

Recall: A polynomial f ∈ K[x] has a double root if and only if f and f ′ (the formal derivative) have a common
factor. If f had a double root and f ′ 6= 0, f and f ′ would have a common factor in K[x] (by the Euclidean
algorithm). But since deg(f ′) < deg(f), this factor is not f , contradicting f being irreducible, unless f ′ = 0. We
only have f ′ = 0 if charK = p and f = g(xp).

De�nition 7.14. An algebraic extension L/K is separable if for α ∈ L, its minimal polynomial is separable over
K.

Theorem 7.15 (Fundamental Theorem of Galois Theory). Let L/K be a �nite separable normal �eld extension
with [L : K] = n and Gal(L/K) = G then
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1. |G| = n

2. For K ⊆ M ⊆ L we have M = LGal(L/M) and H = Gal(L/LH), so H 7→ LH is an order reversing bijection
between the poset of subgroups of G and sub�elds K ⊆M ⊆ L

3. If K ⊆M ⊆ L then [L : M ] = |Gal(L/M)| and [M : K] = |G|/|Gal(L/M)|

4. M/K is normal if and only if Gal(L/M) is a normal subgroup of Gal(L/K). In that case Gal(M/K) ∼=
G/Gal(L/M)

Corollary 7.16. 1. If L/K is �nite, normal, separable then there are only �nitely many �elds M with K ⊆
M ⊆ L.

2. If Gal(L/K) is abelian, then for any K ⊆M ⊆ L we have M/K normal.

We see from this that Gal(Q( 3
√

2, ω)/Q) = S3 since Q( 3
√

2)/Q is not normal (exercise: show this directly by
writing down 6 automorphism)

Galois' Application: Gal(L/K) simple implies no intermediate normal M/K, This in terns implies no highest
degree polynomial �solved by radicals�

Proof of the Fundamental Theorem of Galois Theory (in ideas).

Lemma 7.17. If φi : M → L, i = 1, . . . , r are distinct inclusion of �elds, then the φi are linearly independent over
L, i.e.,

∑
aiφi(m) = 0∀m then ai = 0∀i.

We apply this to M = L. For H a subgroup of Gal(L/K) we use the lemma to show that [L : LH ] = |H|.
({φ ∈ H} are linearly independent φ : L→ L). So [LH : K] = [L : K]/|H|. Next we use the following propositions

Proposition 7.18. If L/K is normal and K ⊆M ⊆ L has M/K normal then for all φ ∈ Gal(L/K), φ(M) = M

We use twice. Once for 4. and �rst to show that the [L : K] maps L → N (where N is a bigger �eld)
we construct by hand have image in L. Use this to show |Gal(L/K)| = [L : K], thus LGal(L/K) = K, because
[L : LGal(L/K)] = |G| = [L : K].

Example. • K = Q, L = splitting �eld of x3 − 2, that is L = Q( 3
√

2, 3
√

2ω, 3
√

2ω2) = Q( 3
√

2, ω) where ω = e
2πi
3 .

Now K ≤ L if �nite, separable (characteristic 0) and normal. What is Gal(L/K) = G? Any elements of G
permutes 3

√
2, 3
√

2ω, 3
√

2ω2. So G ⊆ S3, but since G is of order 6 = [L : K], we must have G = S3.

L

3

2
2

2

Q( 2
√

3ω2)

3

Q( 3
√

2ω)

3

Q( 3
√

2)

3
Q(ω)

2

Q

{id}

3

2
2

2

〈(12)〉

3

〈(13)〉

3

〈(23)〉

3
〈(123)〉

2

S3

• Let K = Q and L be the splitting �eld of x3−3x−1 = (x−α)(x−β)(x−γ). Then Q ≤ L = Q(α, β, γ). What
is Gal(L/K) =? So G ⊆ S3. Using the fact about discriminant (see below) we have that no transposition is
in G. (Since (α− β)(α− γ)(β − γ) = ±9. ) Hence we have |G| = 3 so G = Z/3Z.

Fact. If L is the splitting �eld of a cubic then Gal(L/K) =

{
Z/3Z ∆(f) is a square in Q
S3 otherwise

De�nition 7.19. The discriminant of a polynomial f with roots α1, α2, . . . , αn is ∆(f) =
∏
i<j(αi − αj)2

Fact. You can express ∆(f) as a polynomial on the coe�cients of f

Example. If f = x3 − ax2 + bx− c, ∆(f) = a2b2 + 18abc− 27c2 − 4a3c− 4b3
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