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Abstract
A variational principle introduced to select some symplectic connections lead-

s to field equations which, in the case of the Levi Civita connection of Kähler
manifolds, are equivalent to the condition that the Ricci tensor is parallel. This
condition, which is stronger than the field equations, is studied in a purely sym-
plectic framework.

1. A symplectic connection ∇ on a symplectic manifold (M,ω) of dimension 2n is a

torsion free linear connection such that ∇ω = 0. It is a standard fact [5] that the space E
of symplectic connections on (M,ω) is isomorphic (in a non-canonical way) to the space

of completely symmetric, covariant, 3 tensor fields on (M, ω). We have introduced in

[3] a variational principle in order to single out particular symplectic connections, which

we called preferred. The Lagrangian density is the “square” of the curvature tensor R

of ∇ and the scalar product on the space of curvature tensors is induced by ω; it is not

positive definite. The functional on E has the form

J =
∫

R2ωn

n!
(1)
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The corresponding field equations are
∮

X,Y,Z
(∇Xr)(Y, Z) = 0 (2)

for all vector fields X,Y, Z on M , where
∮

X,Y,Z denotes the sum over cyclic permutations

of X, Y and Z. The symmetric tensor r is the Ricci tensor of the connection ∇:

r(X, Y ) = tr[Z → R(X, Z)Y ].

We showed in [3] how to solve the field equations (2) in dimension 2, and we determined

for compact surfaces the moduli space of solutions modulo the action of the symplecto-

morphism group. The aim of this paper is to describe a few preliminary steps useful for

the higher dimensional situation.

2. To the curvature endomorphism R of ∇, one associates a symplectic curvature

tensor R:

R(X, Y, Z, T ) = ω(R(X, Y )Z, T ) (3)

This tensor is antisymmetric in its first two arguments, symmetric in its last two argu-

ments and satisfies the first and second Bianchi identities
∮

X,Y,Z
R(X, Y, Z, T ) = 0 (4)

∮

X,Y,Z
(∇XR)(Y, Z, T, U) = 0 (5)

We consider, as in [7], the decomposition of R:

R = E + W (6)

where

E(X,Y, Z, T ) =
−1

2(n + 1)
[2ω(X, Y )r(Z, T ) + ω(X, Z)r(Y, T )

+ ω(X, T )r(Y, Z)− ω(Y, Z)r(X, T )− ω(Y, T )r(X,Z)], (7)

and observe that the lagrangian density has the form

R2 = E2 + W 2. (8)

Proposition 1 Let ∇ be a symplectic connection and assume W = 0. Then the con-

nection ∇ is preferred. Furthermore there exists a 1-form u such that

(∇Xr)(Y, Z) = ω(X,Y )u(Z) + ω(X, Z)u(Y ) (9)

Conversely, if there exists a 1-form u such that (9) holds, then the connection ∇ is

preferred and the tensor field W satisfies the second Bianchi identity
∮

X,Y,Z
(∇XW )(Y, Z, T, V ) = 0 (10)
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Remark 2 The proof will show that condition (10) is sufficient to ensure that ∇ is

preferred and that (9) holds.

Proof. Since W = 0 we have
∮

X,Y,Z
(∇XE)(Y, Z, T, U) = 0.

Hence using (7):
∮

X,Y,Z
2ω(Y, Z)(∇Xr)(T, U) + ω(Y, T )(∇Xr)(Z, U) + ω(Y, U)(∇Xr)(Z, T ) (11)

− ω(Z, T )(∇Xr)(Y, U)− ω(Z, U)(∇Xr)(Y, T ) = 0

Choose a local basis Xi (i ≤ 2n) of the tangent space and let ωij = ω(Xi, Xj). Denote

by ωij the elements of the inverse matrix ωijωjk = δi
k.

Taking in the above relations Y = Xi, Z = Xj and multiplying by ωij we get

−2n(∇Xr)(T, U) + (∇T r)(X, U) + (∇Ur)(X,T ) + ω(X, T )ρ(U) + ω(X, U)ρ(T ) = 0

where

ρ(U) =
∑

i,j

(∇Xjr)(Xi, U)ωij.

Making a cyclic sum on X,T, U we get

(−2n + 2)
∮

X,T,O
(∇Xr)(T, U) = 0

which proves that the connection ∇ is preferred if n > 1. Recall from [3] that if M

is of dimension 2, W vanishes identically and thus the assumption only makes sense if

dim M ≥ 4. Taking into account that the connection is preferred in (∗) we get relation

(9) with

u =
1

(2n + 1)
ρ.

Conversely the substitution of (9) in
∮

(∇XE)(Y, Z, T, U) shows that E satisfies the

second Bianchi X,Y, Z identities.

3. Among symplectic manifolds are the Kähler or pseudo-Kähler manifolds. For these

symplectic manifolds there is a distinguished, symplectic connection: the Levi Civita

connection ∇̇. The following exhibits the necessary and sufficient condition for ∇̇ to be

preferred in the sense of §1.

Proposition 3 Let (M, g, J, ω) be a pseudo-Kähler manifold of dimension 2n and let ∇̇
be the Levi Civita connection associated to g. Then ∇̇ is a preferred connection if and

only if the Ricci tensor r of ∇̇ is parallel

∇̇r = 0.
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Proof. Let us first recall some known facts about the Ricci form of Kähler manifolds

[1]. Let R denote the curvature endomorphism of ∇̇ and let R be the Riemannian

curvature tensor

R(X, Y, Z, T ) = g(R(X,Y )Z, T ).

Since g and ω are related by

g(X,Y ) = ω(X, JY ),

the Riemannian curvature tensor R is related to the symplectic curvature tensor by

R(X, Y, Z, T ) = R(X, Y, Z, JT ).

Using the symmetries of R we get

g(R(X, JY )JZ, T ) = g(R(JZ, T )JX, JY ) = g(JR(JZ, T )X, JY )

= g(R(JZ, T )X, Y ) = g(R(X, Y )JZ, T )

which means that

R(JX, JY ) = R(X,Y ).

This implies that

r(JX, JY ) = tr[Z → R(JX, Z)JY ] = tr[Z → JR(JX,Z)Y ]

= −tr[Z → JR(X, JZ)Y ]

= tr[Z → R(X, Z)Y ] = r(X, Y )

The Ricci form ρ is defined by

ρ(X, Y ) = r(JX, Y ).

It is a form of type (1, 1); indeed

ρ(JX, JY ) = −r(X, JY ) = r(JX, Y ) = ρ(X, Y ).

It is also closed, hence

0 =
∮

X,Y,Z
Xρ(Y, Z)− ρ([X, Y ], Z) =

∮

X,Y,Z
(∇Xρ)(Y, Z). (∗)

Extend ρ complex linearly to the complexified tangent bundle and denote by X ′, (resp.

X ′′) the holomorphic (resp. antiholomorphic) component of X. In (∗) choose X = X ′,

Y = Y ′, Z = Z ′′ then

∇X′ρ(Y ′, Z ′′) +∇Y ′ρ(Z ′′, X ′) +∇Z′′ρ(X ′, Y ′) = 0.



Parallel Symplectic Ricci Tensor 5

Since ∇ preserves types, the last term vanishes identically and hence

∇X′ρ(Y ′, Z ′′)−∇Y ′ρ(X ′, Z ′′) = 0. (∗∗)

The field equations (2) can be extended complex linearly to the complex tangent bundle.

Choosing, as above, X = X ′, Y = Y ′, Z = Z ′′ we get

∇X′r(Y ′, Z ′′) +∇Y ′r(Z ′′, X ′) +∇Z′′r(X ′, Y ′) = 0.

This can be written in terms of ρ

∇X′ρ(Y ′, Z ′′)−∇Y ′ρ(Z ′′, X ′) +∇Z′′ρ(X ′, Y ′) = 0.

As above, the last term vanishes and thus

∇X′ρ(Y ′, Z ′′) +∇Y ′ρ(X ′, Z ′′) = 0. (∗ ∗ ∗)

From (∗∗) and (∗ ∗ ∗) we get

(∇X′ρ)(Y ′, Z ′′) = 0.

Since ρ is of type (1, 1) this implies ∇X′ρ = 0; since ρ is real we get

∇Xρ = 0

for any real vector field X and thus ∇Xr = 0.

If (M, g, J, ω) is Kähler, simply connected and complete (for the Levi Civita connec-

tion ∇) the de Rham theorem states that (M, g, J, ω) is isometric to a direct product:

(M, ω, J, g) =
p

∏

i=0

(Mi, ωi, Ji, gi)

of simply connected, Kähler, complete manifolds. The factor

(M0, ω0, J0, g) = (Cp, ω0, J0, g0)

is isometric to the flat manifold Cp with its standard Kähler structure. Each of the

factors (Mi, ωi, Ji, gi) has irreducible holonomy. Furthermore the Ricci tensor has the

form

r = ⊕p
i=1ri

where ri is the Ricci tensor of (Mi, ωi, Ji, gi). If the Ricci tensor is parallel (∇r = 0),

then ∇(i)ri = 0.

If ∇(i)r(i) = 0, the manifold (Mi, ωi, Ji, gi) is Kähler-Einstein, i.e. there exists a real

number λi such that

ri = λigi.
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Indeed, since gi is positive definite, there exists, at each point, a gi-orthonormal basis

with respect to which ri is diagonal. If Vµ(x) is a proper subspace of Mx where ri|Vµ =

µI|Vµ , the distributions Vµ and V ⊥
µ are parallel and thus stable by the holonomy. This

contradicts the irreducibility and hence ri = λigi.

Corollary 4 If (M, ω, J, g) is a simply connected, complete Kähler manifold and if the

Levi Civita connection is preferred, (M,ω, J, g) is a direct product of Kähler Einstein

simply connected complete manifolds.

We are thus going to study symplectic manifolds admitting a symplectic connection∇
with parallel Ricci tensor. But before going in this direction we would like to investigate

the W = 0 condition in the Kähler framework.

Proposition 5 Let (M, ω, J, g) be a Kähler manifold; assume it is Kähler Einstein and

assume that the W tensor associated to the Levi Civita connection vanishes. Then

(M, ω, J, g) has constant holomorphic curvature.

Proof. Let X be a unit tangent vector at x(∈ M). The holomorphic curvature

Hx(X) = R(X, JX, X, JX) = −R(X, JX,X, X)

= − 1
2(1 + n)

4r(X,X) = − 1
(1 + n)n

τ

where τ denotes the scalar curvature of (M, g).

Remark 6 If (M,ω, J, g) has constant holomorphic curvature then the W tensor cor-

responding to the Levi Civita connection vanishes identically.

Corollary 7 Let (M,ω, g, J) be a simply connected Kähler manifold which is com-

plete with respect to the Levi Civita connection ∇. If ∇ has vanishing W tensor then

(M,ω, J, g) is isometric to a product of flat Cn’s, CP k’s and Hk’s where Hk is the k-disk

with the standard Bergman metric.

This is a direct consequence of the above analysis and of [4].

4. We now embark on the study of symplectic manifolds (M, ω) admitting a symplect-

ic connection with parallel Ricci tensor. We concentrate on the 4-dimensional situation

although quite a number of results generalise to the 2n-dimensional case.

To the symmetric Ricci tensor r, we can associate an endomorphism A by

r(X, Y ) = ω(X,AY ).

Clearly

ω(X,AY ) + ω(AX, Y ) = 0
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and thus A is an element of the Lie algebra of the symplectic group Sp(n,R).

If r is parallel, so is A and thus the Jordan Chevalley type of A does not depend

on the point x ∈ M . In particular, the eigenvalues are constant and the generalised

eigenspaces Vλ of A determine parallel distributions.

We recall the following elementary lemma:

Lemma 8 Let A be an element of the Lie algebra of Sp(n,R); let λ be an eigenvalue of A

and let Vλ be the corresponding generalised eigenspace (i.e. Vλ = {v ∈ R2n( or C2n) | ∃k ∈
N s.t. (A− λ)kv = 0}). Then V ⊥

λ (= {v ∈ R2n( or C2n) |ω(v, w) = 0, ∀w ∈ Vλ}) is

V ⊥
λ = ⊕

µ∈spec(A)
µ 6=−λ

Vµ

Remark 9 If necessary, we have extended ω to C2n complex bilinearly.

Corollary 10 If A admits a complex eigenvalue λ = a + ib, ab 6= 0 it admits also the

eigenvalues λ̄,−λ,−λ̄. In particular if dim M = 4 A is semi simple and there exists a

complex basis {eλ, eλ̄, e−λ, e−λ̄} composed of eigenvectors of A.

Corollary 11 If A admits a real (resp. pure imaginary) eigenvalue a (resp. ib) with a

(resp. b) 6= 0 it also admits the eigenvalue −a (resp. −ib). If A admits the eigenvalue

0, it has necessarily even multiplicity.

Proposition 12 Let (M, ω) be a simply connected symplectic manifold and let ∇ be

a complete symplectic connection such that the corresponding Ricci tensor is parallel.

Assume the Ricci tensor is non-degenerate. Then

(M, ω,∇) =
p

∏

i=1

(Mi, ωi,∇i)

where each (Mi, ωi,∇i) is a complete symplectic space with a parallel Ricci tensor such

that the corresponding endomorphism has eigenvalues {λi,−λi, λi,−λi} (there are just

two elements in this set if λi is real or imaginary).

Proof. The Ricci tensor defines a pseudo Riemannian structure r∇; the Levi Civita

connection of r∇ coincides with ∇ since r∇ is parallel and ∇ is torsion-free. The endo-

morphism A associated to r∇ gives a decomposition of the complexified tangent space

in sums of generalised eigenspaces. When those are grouped for {λi,−λi, λi,−λi} they

yield real parallel ω- and r∇-orthogonal distributions on M . The completeness assump-

tion and the simple connectedness of M imply the result by Wu’s pseudo Riemannian

analogue of the de Rham decomposition theorem [8].
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Proposition 13 Let (M,ω) be a simply connected symplectic manifold and let ∇ be

a complete symplectic connection such that the corresponding Ricci tensor is parallel.

Denote by A(r) the endomorphism associated to r. Assume all eigenvalues of A(r) are of

multiplicity 1. Then

(i) (M,ω,∇) is a symplectic symmetric space;

(ii) (M,ω,∇) =
p

∏

i=1

(Mi, ωi,∇i)×
q

∏

j=1

(Mj, ωj,∇j) where each (Mi, ωi,∇i) (resp. each

(Mj, ωj,∇j)) is a 4-dimensional (resp. 2-dimensional) symmetric symplectic space;

(iii) each 4-dimensional factor (Mi, ωi,∇i) is symplectomorphic and affinely equivalent

to the symmetric space SL(2,C)/C∗ endowed with its standard connection and with

a symplectic form which is the classical Kostant Souriau form corresponding to the

adjoint orbit of an element λH of sl(2,C); 1

(iv) Each 2-dimensional factor (Mj, ωj,∇j) is symplectomorphic and affinely equivalent

either to the sphere S2 endowed with its standard connection and with a symplectic

form which is a multiple of the standard form, or to the disk D2 endowed with the

Levi Civita connection of a Riemannian metric of constant negative curvature and

with a symplectic form which is a multiple of the Riemannian volume form, or

to the universal cover of the one-sheeted hyperboloid of Minkowski 3-dimensional

space endowed with the Levi Civita connection associated to the Lorentz metric of

constant curvature and with a symplectic form which is a multiple of the Lorentz

volume form.

Proof. The blocks of the eigendecomposition of the endomorphism A(r) are 4× 4 or

2× 2 and have the form












λ 0 0 0

0 −λ 0 0

0 0 λ 0

0 0 0 −λ













, λ = a + ib, ab 6= 0;

(

λ 0

0 −λ

)

, λ ∈ R0;

(

is 0

0 −is

)

, s ∈ R0.

As in the proposition above, (M,ω,∇) is a product of 4- or 2-dimensional factors, each

complete and simply connected.

1We denote, as usual, by {H,E, F} the basis of the Lie algebra sl(2,C) such that [E, F ] = H, [H, E] =

2E, [H, F ] = −2F and λ ∈ C denotes the complex eigenvalue of A(r).
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In the 4-dimensional case we can, at each point, choose a basis eλ of eigenvectors

such that ω(eλ, e−λ) = 1 and eλ̄ = ēλ, e−λ̄ = ē−λ. There exists a local, complex 1-form

a such that

∇Xeλ = a(X)eλ, ∇Xe−λ = −a(X)e−λ

and the curvature endomorphism is

R(X, Y )eλ = da(X,Y )eλ, R(X,Y )e−λ = −da(X,Y )e−λ.

The Bianchi identities
∮

R(eλ, e−λ)eλ̄ =
∮

R(eλ, e−λ)e−λ̄ = 0

imply

da(eλ, eλ̄) = da(eλ, e−λ̄) = da(e−λ, eλ̄) = da(e−λ, e−λ̄) = da(eλ̄, e−λ̄) = 0.

The only non-vanishing components of the Ricci tensor are

r(eλ, e−λ) = −da(eλ, e−λ) = λ; r(eλ̄, e−λ̄) = λ̄.

From this we get

(∇XR)(Y, Z)eλ = (∇XR)(Y, Z)e−λ = 0.

Hence we have local symmetry. To the local symmetric space one associates a symmetric

triple (g, σ, Ω) which determines its local isomorphism class [2, 6]. The Lie algebra g is

constructed as follows: the subspace p = {X ∈ g | σ(X) = −X} is identified with the

tangent space at a point, hence pC is spanned by {eλ, e−λ and their conjugates }; the

subspace k = {X ∈ g | σ(X) = X} is of the form k = [p,p] and its elements can be

identified with the endomorphisms of p given by the curvature. So


















[eλ, e−λ] = R(eλ, e−λ);

[R(eλ, e−λ), eλ] = −λeλ;

[R(eλ, e−λ), e−λ] = λe−λ

and the Lie algebra g is isomorphic to sl(2,C) viewed as a real 6-dimensional Lie algebra.

The standard basis {H, E, F} is such that

eλ = αE, e−λ = βF, R(eλ, e−λ) = −λ
2
H, (αβ = −λ

2
).

If {θ̃λ} denotes the dual basis to the basis {eλ} and {θλ} the dual basis to {E, F, Ē, F̄}
one has

ω = −λ
2
(θλ ∧ θ−λ) + c · c.
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This concludes the 4-dimensional case.

In dimension 2 we have either a real or a pure imaginary eigenvalue

A =

(

λ 0

0 −λ

)

λ ∈ R0 ω =

(

0 1

−1 0

)

A =

(

is 0

0 −is

)

s ∈ R0 ω = i

(

0 1

−1 0

)

.

A calculation completely analogous to the above proves the local symmetry. The case of

the real eigenvalue leads to the universal cover of the 1-sheeted hyperboloid in Minkowski

3-space. The sphere corresponds to s > 0 and the disk to s < 0.

Proposition 14 Let (M,ω) be a simply connected symplectic manifold admitting a com-

plete symplectic connection ∇ such that

(i) its Ricci tensor r is parallel and non-degenerate;

(ii) the corresponding endomorphism A(r) admits a real or purely imaginary eigenvalue

λ with multiplicity 2;

then the endomorphism A(r)|Vλ, where Vλ denotes the generalised eigenspace correspond-

ing to the eigenvalue λ of multiplicity 2, is diagonal.

Proof. Assume A(r)|Vλ has a nilpotent part. The argument used in the proof of Propos-

ition 13 reduces us to a 4-dimensional situation. There exists a local basis {ej; j ≤ 4}
such that

A(r) =













λ 1 0 0

0 λ 0 0

0 0 −λ 1

0 0 0 −λ













, ω =













0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0













and λ is real or pure imaginary. There exist two 1-forms a, b such that

∇Xe1 = a(X)e1, ∇Xe3 = −a(X)e3,

∇Xe2 = b(X)e1 + a(X)e2, ∇Xe4 = b(X)e3 − a(X)e4

and the curvature has the form

R(X, Y )e1 = da(X, Y )e1, R(X,Y )e2 = db(X, Y )e1 + da(X,Y )e2,

R(X, Y )e3 = −da(X, Y )e3, R(X, Y )e4 = db(X,Y )e3 − da(X,Y )e4.

The Bianchi identity
∮

4,1,2
R(e4, e1)e2 = 0



Parallel Symplectic Ricci Tensor 11

implies da(e4, e1) = 0. Now the (1, 4) component of the Ricci tensor is on the one hand

r14 = −λ

and on the other hand

r41 = tr[Z → R(e4, Z)e1] = da(e4, e1) = 0,

which is a contradiction.

Lemma 15 Let (M, ω) be a 4-dimensional symplectic manifold and let ∇ be a symplectic

connection whose Ricci tensor is parallel. Assume the endomorphism A(r) admits a non-

zero real eigenvalue and the eigenvalue 0 and assume A(r) has a nilpotent part. Then

(M, ω) contains two transverse symplectic foliations, whose leaves are parallel. The

induced connection on each of these leaves is locally symmetric. The simply connected

symmetric symplectic space corresponding to one family of leaves is a coadjoint orbit

of the group M(2) (the motion group of Minkowski 3-space). The simply connected

symmetric space corresponding to the other family of leaves is the universal cover of the

one-sheeted hyperboloid in Minkowski 3-space.

Proof. There exists a local basis such that

A(r) =













0 1 0 0

0 0 0 0

0 0 λ 0

0 0 0 −λ













, ω =













0 1 0 0

−1 0 0 0

0 0 0 1

0 0 −1 0













.

Furthermore there exist two 1-forms b, k such that

∇Xe1 = 0, ∇Xe2 = b(X)e1,

∇Xe3 = k(X)e3, ∇Xe4 = −k(X)e4

and the curvature has the form

R(X, Y )e1 = 0, R(X,Y )e2 = db(X,Y )e1,

R(X,Y )e3 = dk(X,Y )e3, R(X, Y )e4 = −dk(X, Y )e4.

The first Bianchi identity implies

db(e1, e4) = db(e1, e3) = db(e3, e4) = 0,

dk(e1, e2) = dk(e1, e3) = dk(e1, e4) = dk(e2, e3) = dk(e2, e4) = 0

and the form of the Ricci tensor

db(e1, e2) = 1, dk(e3, e4) = λ.

From this we deduce the local symmetry and the two types of leaves.
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Example Let (M, ω) = (M1, ω1)×(M2, ω2) where M1 = R2, ω1 = dx∧dy and (M2, ω2)

is a symplectic manifold which admits a symplectic connection ∇2 with parallel Ricci

tensor (for instance M2 is the standard 1-sheeted hyperboloid in Minkowski 3-space with

ω2 its Lorentz volume form). Consider the family of connections on M1 parametrised by

M2:
∇X∂x = 0,

∇X∂y = (x + ψ)dy(X)∂x,

where ψ is a function on M such that ∂xψ = 0. Combine these and ∇2 to define a

symplectic connection on M . Its Ricci tensor (given by r(∂y, ∂y) = −1 and r∇2) is

parallel but the connection is in general not locally symmetric. Indeed, for a tangent

vector Z which is tangent to M2

(∇∂yR)(Z, ∂y)∂y = Z(∂yψ) 6= 0.

Remark 16 This shows that there exist Ricci parallel symplectic connections which are

not locally symmetric. This also shows that the endomorphism A(r) associated to the

Ricci tensor can have a nilpotent part.
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