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DIMENSION OF SLICES THROUGH THE SIERPINSKI CARPET

ANTHONY MANNING AND KÁROLY SIMON

Abstract. For Lebesgue typical (θ, a), the intersection of the Sierpinski car-
pet F with a line y = x tan θ + a has (if non-empty) dimension s − 1, where
s = log 8/ log 3 = dimH F . Fix the slope tan θ ∈ Q. Then we shall show
on the one hand that this dimension is strictly less than s − 1 for Lebesgue
almost every a. On the other hand, for almost every a according to the angle
θ-projection νθ of the natural measure ν on F , this dimension is at least s−1.
For any θ we find a connection between the box dimension of this intersection
and the local dimension of νθ at a.

1. Introduction

Let F denote the Sierpinski carpet [14, p.81] in the unit square [0, 1]× [0, 1] = I2

in the plane R2 and let Eθ,a := {(x, y) ∈ F : y−x tan θ = a} denote its intersection
with the line segment Lineθ,a across I2 of slope θ through (0, a). (We only consider
θ ∈

[
0, π

2

)
because the case θ ∈

[
π
2 , π

)
is equivalent under the transformation

(x, y) �→ (x, 1− y).) We shall study the dimension of Eθ,a for a ∈ Iθ := [− tan θ, 1],
as a subset of the y-axis.

Figure 1. The intersection of the Sierpinski carpet with the line
y = 2

5x+ a for some a ∈ [0, 1].

The angle θ projection of the unit square [0, 1]2 to the y-axis is

(1) projθ(x, y) := (− tan θ, 1) · (x, y).
When tan θ ∈ Q, we shall show as our main result, in Theorem 9, that for

Lebesgue almost every a,

dimH Eθ,a < log 8/ log 3− 1.

Received by the editors September 3, 2009 and, in revised form, January 24, 2011.
2010 Mathematics Subject Classification. Primary 28A80; Secondary 37H15, 37C45, 37B10,

37A30.
Key words and phrases. Self-similar sets, Hausdorff dimension, dimension of fibres.
This research was supported by the Royal Society grant 2006/R4-IJP and the research of the

second author by the OTKA Foundation #T 71693.

c©2012 American Mathematical Society
Reverts to public domain 28 years from publication

213



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

214 ANTHONY MANNING AND KÁROLY SIMON

This behavior for all rational slopes is atypical because, as an easy consequence of
some results of Marstrand (see [12, Chapter 10]), we shall prove in Lemma 2 that,
for Lebesgue almost all (θ, a), dim(Eθ,a) = s− 1, where s = log 8/ log 3 = dimH F .

When tan θ ∈ Q the opposite behavior also occurs because, for νθ-almost all
a ∈ Iθ, we shall show dim(Eθ,a) ≥ s− 1. Here νθ is defined as follows.

We order the vectors (u, v) ∈ {0, 1, 2} × {0, 1, 2} \ {(1, 1)} in lexicographic order
and write ti for the i-th vector, i = 1, . . . , 8. The Sierpinski carpet F is the attractor
of the IFS

G :=

{
gi(x, y) =

1

3
(x, y) +

1

3
ti

}8

i=1

.

Let Σ8 := {1, . . . , 8}N and write σ : Σ8 → Σ8 for the left shift. We write Π : Σ8 → F
for the natural projection

Π(i) := lim
n→∞

gi1...in(0)

and ν := Π∗μ8 for the natural measure on F , where μ8 is the Bernoulli measure on

Σ8 given by
{

1
8 , . . . ,

1
8

}N
. Then νθ := projθ∗(ν).

Feng and Hu proved [4, Theorem 2.12] that every self-similar measure η is exact
dimensional. That is, the local dimension of the measure η, given by

(2) d(η, x) = lim
r→0

log η(B(x, r))

log r
,

is defined and constant for η-almost all x. It was shown by Young [19] that this
constant must be the Hausdorff dimension of the measure η. That is,

(3) for η a.a. x, d(η, x) = dimH(η) := inf {dimH(U) : η(U) = 1} .

We will apply this result to the measure νθ, which is a self-similar measure for
the IFS

Φ :=

{
ϕθ
i (t) =

1

3
· t+ 1

3
· projθ(ti)

}8

i=1

with equal weights. That is, for every Borel set B,

νθ(B) =
8∑

k=1

1

8
νθ

((
ϕθ
k

)−1
(B)

)
.

Since νθ is a self-similar measure on Iθ ⊂ R, (3) gives

(4) for νθ a.a. x, d(νθ, x) ≤ 1.

2. Statement of results

2.1. Behavior for typical slope. A special case of a theorem of Marstrand [13]
(also see [12, Theorem 10.11]) is

Proposition 1 (Marstrand). For ν-almost all z ∈ F and for Lebesgue almost all
θ ∈ [0, π) we have

dim
(
F ∩ (z +W θ)

)
= s− 1 and Hs−1(F ∩ (z +W θ)) < ∞,

where W θ is the straight line of angle θ through the origin.
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Lemma 2. For Lebesgue almost all (θ, a), a ∈ Iθ, θ ∈ [0, π/2),

(5) dim (Eθ,a) = s− 1,

where dim denotes either dimH or dimB.

Proof. This follows from [12, Theorem 10.10] using a density point argument. �

2.2. The general case. We shall prove that for all θ the various dimensions are
νθ-almost everywhere constant functions.

Proposition 3. Fix an arbitrary θ ∈ [0, π/2). Then there exist non-negative num-
bers dθH and dθB , d

θ
B

such that for νθ-almost all a ∈ Iθwe have

(6) dimH(Eθ,a) = dθH , dimB(Eθ,a) = dθB and dimB(Eθ,a) = dθ
B
.

Proposition 4. For all θ ∈ [0, π/2) and a ∈ Iθ if either of the two limits

(7) dimB(Eθ,a) = lim
n→∞

logNθ,a(n)

log 3n
, d(νθ, a) = lim

δ→0

log(νθ[a− δ, a+ δ])

log δ

exists, then the other limit also exists, and, in this case,

(8) dimB(Eθ,a) + d(νθ, a) = s.

Theorem 5. For every θ ∈ [0, π/2) and for νθ-almost all a ∈ Iθ we have

dimB(Eθ,a) = s− dimH(ν
θ) ≥ s− 1.

The assertion includes that the box dimension exists.

2.3. The case of absolutely continuous νθ. It is well known (see [12, Theorem
9.7]) that νθ 
 Leb for Lebesgue almost all θ ∈ [0, π/2).

Theorem 6. Suppose that θ satisfies νθ 
 Leb.
(a): For Leb-almost all a ∈ Iθ, there exist 0 < c3(θ, a) < c4(θ, a) < ∞ such

that

(9) ∀n, c3(θ, a) ·
(
8

3

)n

< Nθ,a(n) < c4(θ, a) ·
(
8

3

)n

.

(b): In particular, for Lebesgue almost all a ∈ Iθ, dimB(Eθ,a) exists and is
equal to s− 1.

2.4. Behavior for rational slope. Recently Liu, Xi and Zhao proved

Theorem 7 ([11]). Let tan θ ∈ Q. For Lebesgue almost all a ∈ Iθ we have

dimB(Eθ,a) = dimH(Eθ,a) = dθ(Leb) ≤ log 8

log 3
− 1,

where dθ(Leb) is a constant depending only on θ.

They conjectured the strict inequality.
If tan θ ∈ Q, then the dimensions in Proposition 3 are equal.

Proposition 8. If tan θ ∈ Q, then there is a constant dθ(νθ) such that

(10) dθ(νθ) := dθH = dθB = dθ
B
.

Our main theorem asserts the strict inequality.
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Theorem 9. If tan θ ∈ Q, then, for Lebesgue almost all a ∈ Iθ, we have

(11) dθ(Leb) := dimB(Eθ,a) = dimH(Eθ,a) <
log 8

log 3
− 1.

It now follows from Proposition 4 that the local dimension of the self-similar
measure νθ is Lebesgue almost everywhere equal to a constant which is greater
than 1.

Corollary 10. If tan θ ∈ Q, then, for Lebesgue almost all a ∈ Iθ, we have

(12) d(νθ, a) = s− dθ(Leb) > 1.

Comparing (4) with (12) shows that, when tan θ ∈ Q, the measure νθ on Iθ is
singular w.r.t. Lebesgue measure, in contrast to the absolute continuity in Section
2.3. It turns out that there are many slices which do not have the small dimension
of Theorem 9.

Theorem 11. If tan θ ∈ Q, then, for νθ-almost all a ∈ Iθ,

dimH(Eθ,a) = s− dimH(ν
θ) ≥ s− 1.

A result related to Corollary 10 was recently proved by Feng and Sidorov; see
[5]. Their Proposition 1.4 says that if ρ is the reciprocal of some Pisot number in
(1, 2), the value taken at Lebesgue almost every point by the local dimension of the
Bernoulli convolution μρ is strictly greater than 1.

Organization of the paper: In Section 3 we develop our method of symbolic
dynamics and prove Theorem 9. Then in Section 4 we prove the remaining results
by using some notation and Proposition 18 from Section 3.

3. The proof of our main result

We make the standing hypothesis that tan θ = M
N ≥ 0, where the natural num-

bers M,N are coprime.
If 3|N , then 3 � M and, using the isometry (x, y) �→ (y, x), we may consider

tan θ = N/M instead; thus we may assume that 3 � N . Because of the isometry
(x, y) �→ (1− x, 1− y) we do not need to consider a ∈

[
−M

N , 0
)
.

The idea of the proof of Theorem 7 was as follows: The authors found three
non-negative integer matrices A0, A1, A2 such that corresponding to the first n
digits (a1, . . . , an) ∈ {0, 1, 2}n of the base 3 expansion of a ∈ [0, 1] they could
approximate the minimal number of squares of size 1/3n one needs to cover the
n-th approximation of F by the norm of Aa1

· · ·Aan
.

Our method is similar but we use different matrices A0, A1, A2, which carry more
geometric meaning. In Proposition 12 the subadditive ergodic theorem is used to
express Hausdorff dimension in terms of the average of the logarithm of the norm
of products of A0, A1, A2. In Proposition 18 we show that one of these products
B1 has each row either all zero or all positive (which requires extra care in Section
3.3 if N is even). In Section 3.4 we consider the action of A0, A1, A2 on the right
on the simplex Δ of positive vectors as an Iterated Function System and, after
studying powers of B1, show that this IFS is contracting on average. In Section 3.5
our Theorem 9 is proved using the property that there is a positive measure subset
of the invariant set of the IFS, where the various products do not all expand by
the same amount, and a theorem of Furstenberg about the integral representation
of the Lyapunov exponent of a random matrix product.
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Figure 2. Tiling S when (N,M) = (5, 2), K = 11

3.1. Our transition matrices. Now the interior of the strip

S := {(x, y) ∈ R2 : x ∈ [0, N ], y − x tan θ ∈ [0, 1]}

meets the 2N +M − 1(= K, say) unit squares I2 + z for z in{(
q,

[
q
M

N

])
,

(
q,

[
q
M

N

]
+ 1

)
: 0 ≤ q < N

}
∪
{([

r
N

M

]
, r + 1

)
: 0 < r < M

}
.

In the tiling of S by its intersection with these squares we number the tiles

(13) Qi := ((q, r) + I2) ∩ S, 1 ≤ i ≤ K

in increasing order of q and, for given q, in increasing order of r. Let us denote the
(q, r) in (13) as (qi, ri). That is,

(14) Qi = ((qi, ri) + I2) ∩ S, and Qi ∩ int(S) 
= ∅.

Figure 2 illustrates the case M/N = 2/5, K = 11.
Consider the three parallel narrower infinite strips S0, S1, S2 with

St := {(x, y) ∈ R2 : y − x tan θ − t/3 ∈ [0, 1/3]}

and the expanding maps

ψt : S0 ∪ S1 ∪ S2 → St, ψt(x, y) := (x/3, (y + t)/3), t = 0, 1, 2.

Then

Eθ,a = F ∩
∞⋂

n=1

ψan−1
◦ · · · ◦ ψa1

San

expresses Eθ,a as the intersection with F of strips of vertical height 3−n chosen
according to the expansion 0.a1a2a3 . . . of a in base 3.

Consider the intersection of St with the eight squares of side 3−1 that cover F
and, correspondingly, of 3St with (q′, r′)+I2, where q′, r′ are not both congruent to
1 mod 3. We define, for t ∈ {0, 1, 2}, theK×K transition matrix At, with entries 0
and 1 so that its (i, j)-th entry is 1 if and only if 3(Qi∩St) contains (�N, t+�M)+Qj

for some � ∈ {0, 1, 2} with qj + �N, rj + t + �M not both congruent to 1 mod 3.
That is,

(15) At(i, j) = 1 ⇔
{

∃� ∈ {0, 1, 2} , Qi ∩ St ⊃ 3−1 ((�N, t+ �M) +Qj) and
either qj + �N 
≡ 1 mod 3 or rj + t+ �M 
≡ 1 mod 3

}
.
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Figure 3. Tiling each strip St when (N,M) = (5, 2)

In Figure 3 the label j is marked in 3−1((�N, t+ �M)+Qj), and this illustrates,
for example, that the first three rows of these transition matrices are

A0 =

⎛⎜⎜⎝
1 1 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 1
. . .

⎞⎟⎟⎠ ,

A1 =

⎛⎜⎜⎝
1 1 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0
. . .

⎞⎟⎟⎠ ,

A2 =

⎛⎜⎜⎝
1 0 1 0 1 0 0 0 0 0 0
0 1 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
. . .

⎞⎟⎟⎠ .

The involution (x, y) �→ (N,M + 1)− (x, y) sends S1 to itself, exchanges S0 and
S2, and sends Qi to QK+1−i. Therefore these matrices exhibit the symmetries

∀i, j ∈ {1, . . . ,K} A0(i, j) = A2(K + 1− i,K + 1− j),(16)

A1(i, j) = A1(K + 1− i,K + 1− j).(17)

Consider transitions from Qi = ((q, r)+I2)∩S to Qj = ((q′, r′)+I2)∩(S+(0, t)).
For the nine cases �, t ∈ {0, 1, 2}, At(i, j) = 1 when Qi = (([(q′ + �N)/3], [(r′ + t+
�M)/3]) + I2) ∩ S except for any case where

(18) q′ + �N ≡ r′ + t+ �M ≡ 1 mod 3,

which corresponds to a square deleted from F .
Because 3 � N , given j, (18) determines (�, t), and so each of A0, A1, A2 has each

column sum equal to 2 or 3 and

(19) As := A0 +A1 +A2 has each column sum 8.
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If a0, a1, a2 and 1 denote the row vectors in RK for which each entry of 1 is 1
and each A� has the row vector of its column sums equal to 3.1 − at, then each
entry of at is 0 or 1 and a0 + a1 + a2 = 1.

Now At(i, j) = 1 wheneverQi∩St contains a 3
−1-sized copy ofQj , and Au(j, k) =

1 when Qj ∩ Su contains a 3−1-sized copy of Qk, so the (i, k)-th entry of AtAu is
the number of the 82 squares of side 3−2 covering F that meet Qi ∩ St ∩ ψt(Su)
in a 3−2-sized copy of Qk. By induction, the (1, k)-th entry in the product matrix
Aa1

Aa2
. . . Aan

is the number of the 8n squares of side 3−n covering F that meet
Q1 ∩Sa1

∩ψa1
(Sa2

)∩ . . .∩ (ψa1
◦ · · · ◦ψan−1

)(San
) in a 3−n-sized copy of Qk. Thus

the first row of Aa1
Aa2

. . . Aan
counts the elements of a (3−n

√
2)-cover of Eθ,a. (In

the cases (N,M) = (1, 1) and (2, 1), certain matrix entries are 2, and the elements
of the cover are still counted correctly.) Thus we get:

Proposition 12. For every a ∈ [0, 1] , a =
∞∑
i=1

ai3
−i we have

(20) dimBEθ,a ≤ 1

log 3
lim sup
n→∞

1

n
log ‖Aa1...an

‖1,

where Aa1...an
denotes Aa1

· · ·Aan
and ‖ · ‖1 denotes the sum of the moduli of the

entries. For almost all a =
∞∑
i=1

ai · 3−i the right hand side gives the same value

and we can replace lim sup by lim. Consider the random product of the matrices
A0, A1, A2, each taken with probability 1/3 independently in every step. Then the
Lyapunov exponent γ of this random matrix product is the almost sure value of the
limit above. That is,

(21) γ := lim
n→∞

1

n
log ‖Aa1...an

‖1, for a.a. (a1, a2, . . . ).

Similarly,

(22) γ = lim
n→∞

1

n

∑
i1...in

1

3n
log ‖Ai1...in‖1.

Further,

(23) γ ∈ [log 2, log 3].

As an easy consequence of Theorem 7, the definition of γ and the translation
invariance of the Lebesgue measure, we obtain the following proposition.

Proposition 13. If tan θ ∈ Q, then for Lebesgue almost all a ∈ Iθ we have

(24) dimB(Eθ,a) = dimH(Eθ,a) =
γ

log 3
.

We will use the following definitions.

Definition 14. The symbolic space to code the translation parameter a ∈ [0, 1] is

Σ := {0, 1, 2}N. Let πy : Σ → [0, 1] be defined by

πy(i) :=

∞∑
k=1

ik · 3−k, i = (i1, i2, . . . ).

We denote the uniform distribution on Σ by P :=
{

1
3 ,

1
3 ,

1
3

}N
. The push down

measure (πy)∗ of P by πy is the Lebesgue measure Leb on [0, 1]. The measure P is
ergodic with respect to (Σ, σ), where σ is the left shift on Σ.
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As an easy case first consider the intersection of F with horizontal lines.

Proposition 15. For almost every a, dimH(E0,a) =
1
3 log 18/ log 3 < log 8/ log 3−

1.

Proof. If tan θ = 0/1, then the above construction gives K = 2N + M − 1 = 1
and 1 × 1 matrices A0 = A2 = (3), A1 = (2). Then E0,a is covered by Aa1

. . . Aan

squares of side 3−n. This leads us to study the function on Σ := {0, 1, 2}N taking
the value log 2 where the first symbol is 1 and log 3 elsewhere, whose integral with
respect to P is 1

3 log 18. �

So, from now on we may assume that M/N 
= 0. By symmetry, without loss of
generality we may assume that M/N > 0.

To prove Proposition 12 we need the following simple observation, which will
also be used later.

Fact 16. Consider the non-negative K ×K matrices A,B. Let

(25) cA(j) :=

K∑
i=1

A(i, j) and rB(i) :=

K∑
j=1

B(i, j)

be the j-th column sum and the i-th row sum of the matrices A,B respectively.
Then

(26) ‖A ·B‖1 =
∑
i

cA(i) · rB(i).

Proof. The proof of Fact 16 is a simple calculation. �

Now we turn to the proof of Proposition 12.

Proof of Proposition 12. The inequality in (20) immediately follows from the dis-
cussion right above the proposition. The fact that we can replace lim sup by lim in
(20) is an immediate corollary of the sub-additive ergodic theorem (see [18, p. 231]).
For non-negative matrices it is easy to check that ‖ · ‖1 is submultiplicative. Indeed

‖A ·B‖1 =
∑
i

cA(i) · rB(i) ≤
K∑
i=1

K∑
j=1

cA(i) · rB(j) = ‖A‖1 · ‖B‖1.

This implies that the sequence of the bounded functions fk : Σ → R,

(27) fk(i) := log ‖AT

ik
· · ·AT

i1‖1 = log ‖Ai1...ik‖1,

is sub-additive. Using the ergodicity of P and the sub-additive ergodic theorem [18,
p. 231] we obtain that the limit

(28) γ := lim
n→∞

1

n
· fn(i) = lim

n→∞

1

n
· log ‖Ai1 · · ·Ain‖1

exists for P-almost all (a1, a2, . . . ) ∈ Σ and gives the same value. Further, using

1

n

∫
fn(i)dP(i) =

1

n

∑
i1...in

1

3n
log ‖Ai1...in‖1,

the sub-additive ergodic theorem implies that (22) holds.
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To verify (23) we make the following observation: each factor in the matrix
product Ai1 · · ·Ain has each column sum either 2 or 3. This implies that all the
column sums of the product matrix are between 2n and 3n. This yields

�(29) ∀[i1, . . . , in] we have: K · 2n ≤ ‖Ai1 · · ·Ain‖1 ≤ K · 3n.

The inequality (30) below is an immediate corollary of (20) and (21).

Corollary 17. The following holds:

(30) dimBEθ,a ≤ γ

log 3
.

3.2. Positive rows in some products of our matrices. Recall from Section 1
that

(31) 3 � N.

In this section and the next we prove

Proposition 18. There exists n0 and (a1 . . . an0
) ∈ {0, 1, 2}n0 such that the rows

of the matrix Aa1...an0
are vectors with either all positive or all zero elements.

Our approach is as follows. A row will be positive when labels 1 to K appear in
the intersection of each square with the strip in the n0-th version of Figure 3. The
labelling depends on the relation between N and 3. When M/N < 1 we shall find
the labels near the left or right edge of the square in positions corresponding to
squares in the n0-th stage in the construction of F . When M/N ≥ 1 the strip may
not be near either edge, so we shall search instead in small rectangles with diagonal
of slope near M/N and carefully chosen horizontal and vertical coordinates.

3.2.1. An IFS leaving S invariant. First we introduce some notation. For t, � ∈
{0, 1, 2} we define the contraction:

ψ�
t (x, y) :=

1

3
· [x+ � ·N, y + � ·M + t] .

To compute the n-fold compositions we introduce the following notation:

(32) �1,n := �13
n−1 + · · ·+ �n−1 · 3 + �n

and

(33) a1,n := a13
n−1 + · · ·+ an−1 · 3 + an.

If we write ψ�1...�n
a1...an

for ψ�1
a1

◦ · · · ◦ ψ�n
an

and S�1...�n
a1...an

for ψ�1...�n
a1...an

(S), then we have

(34) ψ�1...�n
a1...an

(x, y) =
1

3n
· [x+N · �1,n, y +M · �1,n + a1,n]

and

(35) S =
⋃

(a1...an),(�1...�n)∈{0,1,2}n

S�1...�n
a1...an

,

where the sets on the right hand side have disjoint interior. The set S�1...�n
a1...an

is the
intersection of the slope θ level n strip

Sa1...an
:=

{
(x, y) : 0 ≤ x ≤ N and 0 ≤ y − (x · tan θ + a1

3
+ · · ·+ an

3n
) ≤ 1

3n

}
,
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with the level n vertical strip

V �1...�n :=

{
(x, y) : N ·

(
�1
3

+ · · ·+ �n
3n

)
≤ x < N ·

(
�1
3

+ · · ·+ �n
3n

+
1

3n

)}
,

for all (�1 . . . �n), (a1 . . . an) ∈ {0, 1, 2}n. See Figure 4.

Figure 4. The subsets defined in (35) and (36) when M/N = 2/5.

Earlier in (14) we defined the K = 2N +M −1 different level zero squares which
together cover S. Similarly, here we define the level n square of shape j in S�1...�n

a1...an

by

(36) Q�1...�n
a1...an

(j) := ψ�1...�n
a1...an

(Qj).

3.2.2. The n-th approximation of the translated copies of the Sierpinski carpet.

Definition 19. Let F̃ be the union of the translated copies of the Sierpinski carpet
to those unit squares that intersect S. That is,

F̃ :=

K⋃
i=1

((qi, ri) + F ) .

Let F̃n be the level n approximation of F̃ . Put

Un
i =

{
u ∈ [qi, qi + 1) : ∃(u1, . . . , un) ∈ {0, 1, 2}m s.t. u = qi +

n∑
m=1

um · 3−m

}
,

V n
i =

{
v ∈ [ri, ri + 1) : ∃(v1, . . . , vn) ∈ {0, 1, 2}m s.t. v = ri +

n∑
m=1

um · 3−m

}
and say that um, vm are the m-th ternary (that is, base 3) digits of u, v respectively.
For some n1 ≥ n2 and for u ∈ Un1

i and v ∈ V n2
i we define the so-called level (n1, n2)
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grid rectangle in the square (qi, ri) + I2:

(37) Ri(u, v) := (qi, ri) +

(
n1∑

m=1

um · 3−m,

n2∑
m=1

vm · 3−m

)
+
[
0, 3−n1

]
×
[
0, 3−n2

]
.

The collection of all level (n1, n2) grid rectangles in (qi, ri)+I2 is calledRi(n1, n2).
That is,

Ri(n1, n2) := {Ri(u, v) : u ∈ Un1
i and v ∈ V n2

i } .
When n1 = n2, then the elements of

Ci(n) := Ri(n1, n2), n = n1 = n2

are called level n grid squares in (qi, ri) + I2. Those level n grid squares that are

contained in F̃n are called n-cylinder squares.

For a given level n grid square we can decide if it is an n-cylinder square using the
following fact, whose proof follows immediately from the observation that all the

elements (x, y) of the Sierpinski carpet F can be represented as (x, y) =
∞∑
k=1

(
uk

3k
, vk
3k

)
such that for all k either uk ∈ {0, 2} or vk ∈ {0, 2}.

Fact 20. The level n grid square Ri(u, v) ∈ Ci(n) with u = qi +
n∑

m=1
um · 3−m and

v = ri +
n∑

m=1
vm · 3−m is an n-cylinder square if and only if

(38) ∀1 ≤ p ≤ n, either up ∈ {0, 2} or vp ∈ {0, 2} .

Fact 21. If Q�1...�n
a1...an

(j) ⊂ (qi, ri) + I2, then the inclusion

(39) Q�1...�n
a1...an

(j) ⊂ F̃n ∩ ((qi, ri) + I2)

is equivalent to the following assertion:

(Assertion): Let (u1, . . . , un), (v1, . . . , vn) ∈ {0, 1, 2}n be defined by

(40) ψ�1...�n
a1...an

(qj , rj) = (qi, ri) +
1

3n

(
n∑

�=1

3n−� · u�,
n∑

�=1

3n−� · v�

)
.

Then for every 1 ≤ p ≤ n we have

(41) either up ∈ {0, 2} or vp ∈ {0, 2} .

Lemma 22. There is m0 such that
{
3m0 + 32m0 · · ·+ 3km0

}N

k=1
is a full residue

system modulo N .

Proof. Clearly we can find k < � such that 3k ≡ 3� mod N. Let m0 := �−k. Then

(42) 3m0 ≡ 1 mod N

holds (since we assumed that 3 � N). Thus 3m0+32m0+· · ·+3km0 ≡ k mod N . �

Definition 23. (a): First we define k0 as the smallest non-negative integer
satisfying M/N < 3k0 . That is, if M/N ≥ 1, then

(43) 3k0−1 ≤ M/N < 3k0 .

On the other hand if M/N < 1, then k0 := 0.
(b): We fix m0 which satisfies (42).
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(c): Finally, we introduce the equivalence relation ∼ on {0, . . . , N − 1} as
follows:
if N is odd: then k ∼ � holds for all k, �;
if N is even: then k ∼ � holds iff either both k and � are even or both

of them are odd.
(d): Assume that M/N < 1. We shall argue later in proving Proposition 8

that for all shapes Qi, 1 ≤ i ≤ K, the region in Qi with first coordinate in
the interval

(44)
Jn
0 (i) = [qi, qi+(3m0·N+1)·3−n) or Jn

2 (i) = [qi+1−
(
3m0·N+1 + 1

)
·3−n, qi+1−3−n)

contains an image of Qj by ψ�1...�n
a1...an

for an appropriately chosen �1 . . . �n.

The definition of the intervals in (44) will be much more complicated when
M/N ≥ 1.

3.2.3. The definition of the intervals Jn
0 (i), J

n
2 (i) in the general case. First we have

to place some restrictions on (a1, . . . , an) ∈ {0, 1, 2}n for the strip Sa1,...,an
consid-

ered. To do that we divide the set {1, 2, . . . , n} into four regions:

I1 := {1, . . . , 2k0} , I2 := {2k0 + 1, . . . , n∗} ,

where n∗ := n− (m0N + 1)− 4N32k0 and

I3 := {n∗ + 1, . . . , n∗} , I4 := {n∗ + 1, . . . , n} ,

where n∗ := n∗ + 4N32k0 = n− (m0N + 1). When M/N < 1, then k0 = 0 and in
that case I1 = ∅.

Assumption (A1):

(a): an = 0

(b): ∀i, ∀u ∈ U2k0
i , v ∈ V k0

i we assume that both the top left and bottom right
corners of the rectangle Ri(u, v) are farther from Sa1...an

than 3−n∗ . This
can be arranged by excluding NM33k0 
 3n∗ grid intervals of level n∗ −
(k0 + 2) when selecting the level n grid interval determined by (a1, . . . , an)
from the interval [0, 1]. So, this is a restriction implemented by excluding
some intervals whose indices are from I1 ∪ I2 and their total length is less
than NM33k0 · 2 · 3−n∗ · 3k0+2, so now we assume that n is large enough
that this is 
 1.

(c): Let us denote the bottom edge of Sa1...an
by Bottoma1...an

. See Figure
5. We define yα (yα) for 1 ≤ α ≤ N32k0 (0 ≤ α ≤ N32k0 − 1) as the second
coordinate of the intersection of the line Bottoma1...an

with the vertical line
xα := α ·3−2k0 −2 ·3−(n∗+4α−1) (xα := α ·3−2k0 +3−(n∗+4α+1)) respectively.
Note that all these xα, xα lie in [0, N ]. We assume that (a1, . . . , an) is chosen
in such a way that
c1: for all 1 ≤ α ≤ N32k0 , both the (n∗+4α−1)-th and the (n∗+4α)-th

digits of the ternary expansion of yα are zero and

c2: for all 0 ≤ α ≤ N32k0−1, both the (n∗+4α+1)-th and (n∗+4α+2)-th
digits of the ternary expansion of yα are zero.

Now we prove that there is a positive proportion (independent of n) of all possible
(a1, . . . , an) ∈ {0, 1, 2}n for which assumptions (c1) and (c2) hold. First, for having
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Figure 5. L1(α), L2(α), R0(α), R1(α) are level n∗ � 2k0 grid intervals.

a more convenient notation we write

bα := n∗ + 4α− 1, 1 ≤ α ≤ N32k0 and fα := n∗ + 4α+ 1, 0 ≤ α ≤ N32k0 − 1.

(Here fα refers to forward and bα refers to backward relative to α3−2k0 ; see Figure
5.)

Fact 24. There are 3n∗ possible choices of (a1, . . . , an) ∈ {0, 1, 2}n such that the
following holds:

0 = yα
bα

= yα
bα+1

, ∀α ∈
{
1, . . . , N32k0

}
and(45)

0 = yαfα = yαfα+1, ∀α ∈
{
0, . . . , N32k0 − 1

}
,

where yα
k
(yαk ) is the k-th ternary digit of yα (yα) respectively.

Proof. Observe that

(46) yα =
n∑

k=1

ak3
−k + zα and yα =

n∑
k=1

ak3
−k + zα,

where

zα :=
M

N
· xα and zα :=

M

N
· xα.

We prove that there is a way to choose the elements ak ∈ {0, 1, 2}, for k ∈ I3∪I4
such that (45) holds for all possible choices of ak, k ∈ I1 ∪ I2. We construct these
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values ak for k ∈ I3 ∪ I4 by mathematical induction starting from k = n and
moving towards smaller values of k. Namely, we define ak := 0 for all k ∈ I4. Fix
an arbitrary k′ ∈ I3. We assume that we have already defined ak for all k′ ≤ k ≤ n.
Clearly, we can either find a 1 ≤ α′ ≤ N32k0 such that k′ ∈ {bα′ , bα′ + 1} or we
can find a 0 ≤ α′ ≤ N32k0 − 1 such that k′ ∈ {fα′ , fα′ + 1}. For symmetry without
loss of generality we may assume that we are in the latter case and k′ = fα′ + 1.
Then we compute the overflow ok′ from the (k′ + 1)-th ternary place to the k′-

th ternary place when adding up
n∑

k=k′+1

ak · 3−k and
∞∑

k=k′+1

zα
′

k · 3−k. That is, if

n∑
k=k′+1

ak ·3−k+
∞∑

k=k′+1

zα
′

k ·3−k > 3−k′
, then there is an overflow to the k′-th ternary

place and then ok′ := 1; otherwise there is no overflow and ok′ := 0. Observe that
the value of ok′ depends only on the ternary digits ak for k′ < k ≤ n (which have

been determined at this stage of the mathematical induction) and zα
′

k for k′ < k
which are given numbers. So, we can compute the number ok′ . It follows from
(46) that yαk′ = ak′ + zαk′ + ok′ . Then for ak′ := −(zαk′ + ok′) mod 3 we obtain that
yαk′ = 0. We continue this process with doing the same first for k′ − 1, then k′ − 2,
and so on for all k ≥ n∗ + 1. �

Fact 25. Let J ⊂ [0, 1] be a non-empty interval. Whenever n is big enough we
can choose (a1, . . . , an) ∈ {0, 1, 2}n which satisfies the requirements of assumption
(A1) and

(47)

[
n∑

k=1

ak3
−k,

n∑
k=1

ak3
−k + 3−n

]
⊂ J.

Proof. The three parts of the assumption posed restrictions for indices in different
regions, so these restrictions cannot conflict. Let G be the biggest grid interval, say
level g, which is contained in J . This means that we need to fix the first g ternary
digits. In parts (a) and (c) of assumption (A1), we fixed the last 4N32k0+m0N+1
ternary digits of (a1, . . . , an). So, from now on, we need to fix g+4N32k0 +m0N+1
ternary digits to provide that (47) and parts (a), (c) of assumption (A1) hold. In
this way we restrict ourselves to a set of level n grid intervals with a total length of

at least 3−(g+4N32k0+m0N+1) (which does not depend on n) among which only an
amount of total length of NM33k0 · 3−(n∗−(k0+2)) (which tends to zero as n → ∞)
is lost for part (b). So, if n is big enough, then we find an (a1, . . . , an) satisfying
the assumptions (A1) and (47). �

The reason for part (c) of assumption (A1) is as follows:

Remark 26. We consider α · 3−2k0 as the end point of two level 2k0 grid intervals:

(48) IL(α) :=
[
(α− 1)3−2k0 , α3−2k0

]
and IR :=

[
α3−2k0 , (α+ 1)3−2k0

]
.

Assume that the corresponding ternary digits of these intervals are (uL
1 , . . . , u

L
2k0

)

and (uR
1 , . . . , u

R
2k0

). Let

(49) nα,L := #
{
1 ≤ � ≤ 2k0 : uL

� = 1
}
, nα,R := #

{
1 ≤ � ≤ 2k0 : uR

� = 1
}
.

Then we define the level n∗ grid intervals

(50) JL(α) :=

{
L1(α), if nα,L is odd
L2(α), otherwise,

JR(α) :=

{
R1(α), if nα,L is odd,
R0(α), otherwise,



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SLICES OF THE SIERPINSKI CARPET 227

where the level n∗ grid intervals L1(α), L2(α), R0(α), R1(α) are defined in Figure
5. In this way, JL(α) and JR(α) are level n∗ grid intervals contained in IL(α) and
IR(α) respectively. For V ∈ {L,R} we obtain the ternary digits of JV (α) as the
concatenation of (uV

1 , . . . , u
V
2k0

) and a vector of n∗ − 2k0 components of all zeros or
twos if nα,V is an even number. If nα,V is an odd number, then the ternary digits
of JV (α) are obtained in the same way with the difference that we have digit one in
the bα-th place (fα-th place) if V = L (V = R) respectively. In this way for both
JL(α) and JR(α) the number of ones among the ternary digits is an even number.

Definition 27. We say that Sa1...an
is an n-good strip if (a1, . . . , an) satisfies

assumption (A1).
From now on we fix n and an n-good strip Sa1...an

. For this strip Qi = ((qi, ri)+
I2) ∩ S is a relevant shape if int(Sa1...an

∩Qi) 
= ∅.

We remark that, in the case whenM/N < 1, we do not use part (c) of assumption
(A1).

We recall that in Definition 23 we have already defined the intervals Jn
0 (i) =

[qi, qi + 3−(n∗−1)) and [qi + 1− 3−(n∗−1) − 3−n, q + 1 − 3−n). Now we extend this
definition to the case when M/N ≥ 1 and Qi is a relevant shape for the strip
Sa1...an

. The idea of the construction is as follows: Using the notation of Definition
19, for every 1 ≤ i ≤ K we shall define, by an inductive procedure, Ri(u

k0+�, v�),
for 0 ≤ � ≤ k0 such that:

(C1): Sa1...an
∩Ri(u

k0+�, v�) 
= ∅.
(C2): uk0+� ∈ Uk0+�

i and v� ∈ V �
i with

(51) uk0+� = qi +

k0+�∑
m=1

um · 3−m, v� = ri +
�∑

m=1

vm · 3−m.

(C3): uk0+1, . . . , uk0+� ∈ {0, 2} and v1, . . . , v� ∈ {0, 2}.
In this way we will obtain

(52) R∗
i := Ri(u

2k0 , vk0) ∈ R(2k0, k0).

It is clear by the definition that the following two assertions hold:

Remark 28. (1) Using Fact 20, all the 3k0 level 2k0 grid squares contained in

R∗
i are in F̃ 2k0 .

(2) The slope of the increasing diagonal of the rectangle R∗
i is 3k0 , which is

slightly larger than M/N . Thus every line of slope M/N that enters the
rectangle via the bottom horizontal line will leave R∗

i through its Eastern
side. The rectangle R∗

i corresponds, in the simpler case M/N < 1, k0 = 0,
to the whole square (qi, ri) + I2 for which every line of slope M/N that
meets it must cross its Western or Eastern side.

Definition 29. Using the previous notation of this section, especially (51) and
(50), we define the intervals

Jn
0 (i) = JR(u

2k032k0), Jn
2 (i) = JL(u

2k032k0 + 1).

The properties of these intervals, which are summarized in the following lemma,
are immediate consequences of the definition.
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Lemma 30. (a): The orthogonal projection of Sa1...an
∩R∗

i (the rectangle R∗
i

was defined in (52)) to the x-axis contains at least one of the level n∗ grid
intervals Jn

0 (i) or Jn
2 (i). If the line Bottoma1...an

enters the rectangle R∗
i

on its Western side, then Jn
0 (i) is such an interval. If the line Bottoma1...an

enters the rectangle R∗
i on its Southern side, then Jn

2 (i) is such an interval.

(b): Using the notation of (51), by Fact 20, all the 3n
∗−k0 level n∗ grid

squares both in Jn
0 (i)× [vk0 , vk0 +3−k0 ] and in Jn

2 (i)× [vk0 , vk0 +3−k0 ] are

contained in F̃n∗
.

x

y
l

1
3

2
3

uk

Box1

Box

1

Bottoma1 n

2

Box2

I

I1

Figure 6. The inductive definition of Box�.

Now we present the inductive construction of rectangle R∗
i . Fix an 1 ≤ i ≤ K

such that Qi is a relevant shape for Sa1...an
. We recall that the line Bottoma1...an

was defined as the bottom edge of the strip Sa1...an
. Using the notation of Definition

19 we construct a nested sequence of rectangles
{
Ri(u

k0+�, v�)
}k0

�=0
satisfying the

conditions (C1), (C2) and (C3). To construct Ri(u
k0 , v0) note that it follows from

(43) that we can find a 0 ≤ m′ ≤ 3k0 such that the line Bottoma1...an
intersects

the vertical line segments
{
(x, y) : x = qi +m′3−k0 , qi < y < qi + 1

}
. Let us call

this segment l0 and the point where l0 intersects Bottoma1...an
A0. See Figure

6. Observe that qi + m′3−k0 is the (left or right) end point of two level k0 grid
intervals. At least one of these two intervals lies in [qi, qi + 1]. We call this level k0
grid interval I0 (if there are two such intervals, then we pick one). Note that the
left end point of I0 (which is either qi+m′3−k0 or qi+m′3−k0 − 3−k0) is defined as
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uk0 = qi +
k0∑

m=1
um3−m. Let v0 := ri. Note that A0 lies on one of the vertical sides

of Box0 := Ri(u
k0 , v0). If the first ternary digit of the y-coordinate of A0 is either

0 or 2, then we call it v1 and define Box1 ⊂ Box0 as that 1/3 scaled copy of Box0
which contains A0 on one of its vertical sides. Clearly, the orthogonal projection I1
of Box1 to the x-axis is a level k0 + 1 grid interval which has a level k0 end point.
Therefore the last digit, called uk0+1, of the ternary representation of I1 is either 0
or 2. In this way we defined Ri(u

k0+1, v1) = Box1. On the other hand, if the first
ternary digit of the y-coordinate of A0 is equal to 1, then the definition of uk0+1, v1
is more complicated. Namely, in this case we define Box1 as follows: Without loss
of generality we may assume that Box0 is on the left hand side of l0 (as in Figure 6).
In this case we define v1 := 0 (otherwise we would have chosen v1 = 2). We divide
the bottom third part of Box0 into three equal vertical strips corresponding to the
level k0+1 grid intervals contained in I0 (Figure 6). It follows from (43) that one of
the vertical sides of one of these three 3−(k0+1) × 3−1 rectangles, which is different
from the middle one, intersects Bottoma1...an

. Let us call this point A1, and the
non-middle positioned 3−(k0+1) × 3−1 grid rectangle which contains A1 on one of
its vertical sides is called Box1, and the projection of Box1 to the x-axis is called I1.
Clearly, I1 ⊂ I0 is a level 3k0+1 grid interval and its k0 +1 ternary digit is different
from 1. This follows from the non-middle position of Box1 as mentioned above.
So, the rectangle Ri(u

k0+1, v1) := Box1 satisfies the requirements (C1)-(C3). We
continue the construction Ri(u

k0+�, v�) := Box� for all � ≤ k0 exactly in the same
way.

3.2.4. The proof of Proposition 18. Level n shapes are labeled using N · �1,n and

which of these appear in F̃n is affected by u1,n, so we compare these, using (34)
and Fact 21, in the following lemma, which is the key step in proving Proposition
18.

Lemma 31. Fix any i, j ∈ {1, . . . ,K} satisfying qi ∼ qj. Let n ≥ m0 · N + 1.
Assume that we are given

(53) u1, . . . , un−(m0N+1) ∈ {0, 1, 2}

in such a way that

(54) u1 + · · ·+ un−(m0N+1) is an even number.

We can choose un−m0N , . . . , un ∈ {0, 1, 2} and (�1, . . . , �n) ∈ {0, 1, 2}n such that

(55) qj +N · �1,n = 3n · qi +
n∑

k=1

3n−k · uk.

Proof. Clearly we can choose (�′1, . . . , �
′
n) ∈ {0, 1, 2}n such that for

p := N(�′1 ·3n−1+ · · ·+ �′n)−3n · qi+ qj −
(
3n−1 · u1 + · · ·+ 3m0·N+1 · un−(m0·N+1)

)
we have

(56) 0 ≤ p ≤ N − 1.

Now we distinguish two cases based on the parity of N .
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N is odd: Then it follows from (42) that{
2 ·

(
3m0 + 32m0 + · · ·+ 3km0

)}N

k=1

is a complete residue system modulo N since {2k}Nk=1 is such a system. So
we can find integers 1 ≤ k ≤ N and v ∈ N such that

(57) 2
(
3m0 + · · ·+ 3km0

)
= v ·N + p.

Choose (�1, . . . , �n) ∈ {0, 1, 2}n such that

N(�′1 · 3n−1 + · · ·+ �′n) + vN = N(�1 · 3n−1 + · · ·+ �n).

Then

(58)

N(�1 · 3n−1 + · · ·+ �n)− 3n · qi + qj −
(
3n−1 · u1 + · · ·+ 3m0·N+1 · un−(m0·N+1)

)
= v ·N + p = 2

(
3m0 + · · ·+ 3km0

)
,

which immediately implies the assertion of the lemma.
N is even: In this case{

2 ·
(
3m0 + 32m0 + · · ·+ 3km0

)}N

k=1

is not a complete residue system but contains (actually twice) all the even
number residues. On the other hand, using qi ∼ qj and (54), we see that p
is an even number. This follows from (50) and Definition 29. So, as above,
we can find integers 1 ≤ k ≤ N and v ∈ N such that (57) holds. The rest
of the proof is the same as in the case when N is odd. �

This implies

Corollary 32. Fix an arbitrary (a1, . . . , an) ∈ {0, 1, 2}n and also fix 1 ≤ i, j ≤ K
such that qi ∼ qj. For any u ∈ {0, 2} we can find (�1, . . . , �n) ∈ {0, 1, 2}n such that
for the first component function (ψ�1...�n

a1...an
)1 of ψ�1...�n

a1...an
we have

(a): (ψ�1...�n
a1...an

)1(qj) ∈ Jn
u (i) and

(b): Q�1...�n
a1...an

(j) ⊂ F̃n.

Proof. Using Fact 21 and Lemma 31 the proof immediately follows from the obser-
vation that for u = 0, 2, choosing (�1, . . . , �n) as in Lemma 31 we get that the first
coordinate of ψ�1...�n

a1...an
(qj , rj) is

(ψ�1...�n
a1...an

(qj , rj))1 =
1

3n
(
qj +N(�1 · 3n−1 + · · ·+ �n)

)
= qi + u · (3−1 + · · ·+ 3m0·N+1−n) + 2 · 3−n

(
3m0 + · · ·+ 3km0

)
,

where 0 ≤ k ≤ N − 1. �

Lemma 33. Assume that Sa1...an
is an n-good strip. For each 1 ≤ i, j ≤ K let ri

be the i-th row vector of the matrix Aa1...an
and write ri(j) for the j-th element of

ri. Then

(59) ri 
= 0 and qj ∼ qi imply Aa1...an
(i, j) = ri(j) > 0.
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Proof. Recall

(60) ri(j) = #
{
(�1, . . . , �n) ∈ {0, 1, 2}n | Q�1...�n

a1...an
(j) ⊂ Qi ∩ F̃n

}
.

Assume that int(Qi ∩ Sa1...an
) 
= ∅. It is enough to prove that

(61) j ≤ K, qi ∼ qj ⇒ ∃(�1, . . . , �n) ∈ {0, 1, 2}n s. t. Q�1...�n
a1...an

(j) ⊂ Qi ∩ F̃n.

Namely, by definition,

Q�1...�n
a1...an

(j) ∩ S�1...�n
a1...an

⊂ Sa1...an
.

To verify (61) we fix j ≤ K such that qi ∼ qj . Let u ∈ {0, 2} be chosen such
that assumption (A2) holds for Jn

u (i). For this u, i, j and (a1, . . . , an) we choose
an (�1, . . . , �n) ∈ {0, 1, 2}n which satisfies Corollary 32. This implies that we have

Q�1...�n
a1...an

(j) ⊂ Qi ∩ F̃n. Namely,
(
ψ�1...�n
a1...an

)
1
(qj) ∈ Jk(i). �

Corollary 34. We assume that Sa1...an
is an n-good strip and we write ri for the

i-th row vector of the matrix Aa1...an
. Assume that ri 
= 0.

(a): If N is odd, then all the elements of ri are positive,
(b): If N is even, then for all j satisfying qj ∼ qi, we have ri(j) > 0.

Note that for a shape Qi which is relevant for the n-good strip Sa1...an
we have

ri 
= 0.

3.3. The case when N is an even number. The above argument shows that in
the case when 3 � N we can find a1, . . . , an such that all the rows of some matrices
Aa1...an

are either all-positive or all-zero. Now we would like to add to Corollary
34 (b) and prove the same in the case when N is even.

In this section we always assume that N is even. We fix n which is large enough.
(It will be specified later how large n has to be.) We always assume that a =
(a1, . . . , an) ∈ {0, 1, 2}n is chosen in such a way that an = 0 and Sa1...an

is an n-good
strip. For every q ∈ {0, . . . , N − 1} we can find a unique i = i(q, a) ∈ {1, . . . ,K}
such that:

(a): q = qi.
(b): Qi is a relevant shape for Sa1...an

.
(c): For J(q) :=

[
q + 1

3n , q +
2
3n

]
we have

(62) J(q) ⊂ J0(i) ⊂ (q, q + 1) ∩ π1 (e1(i, a1, . . . , an)) ∩ π1(e2(i, a1, . . . , an)),

where π1 is the projection to the first axis.

Observe that
(63)

J(q) = q +

[
n∑

k=1

uk3
−k,

n∑
k=1

uk3
−k + 3−n

]
, where u1 = · · · = un−1 = 0, un = 1.

One of the motivations to consider the intervals J(q) is as follows.

Fact 35. For some 0 ≤ q ≤ N − 1 let C = J(q)× J ′, where

(64) J ′ := m+

[
n∑

k=1

vk3
−k,

n∑
k=1

vk3
−k +

1

3n

]
,
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for some 0 ≤ m ≤ M − 1. Then

(65) C ⊂ (q,m) + Fn if and only if vn 
= 1,

where Fn is the n-th approximation of F .

The proof of this fact is an immediate corollary of Fact 21 and (63).
Given n and q define �1, . . . , �n ∈ {0, 1, 2}n as follows:⌊

3nq + 1

N

⌋
= �1 · 3n−1 + · · ·+ �n−1 · 3 + �n.

Then we have

(66) J(q) ⊂
[
N ·

(
�1
3

+ · · ·+ �n
3n

)
, N ·

(
�1
3

+ · · ·+ �n
3n

+
1

3n

)]
.

Thus there is a unique z1 = z1(q) ∈ {0, . . . , N − 1} such that

(67) z1(q) := 3n · q + 1−N · 3n ·
(
�1
3

+ · · ·+ �n
3n

)
.

(Thus z1(q) is the number of the interval J(q) when we count modulo N the hor-
izontal intervals of width 3−n.) It is easy to see that q → z1(q) is a bijection on
{0, . . . , N − 1}. Since N is even we obtain

(68) ∀q ∈ {0, . . . , N − 1} , q 
∼ z1(q).

Further, since 3 � N , the map z1 : {0, . . . , N − 1} → {0, . . . , N − 1} is a bijection.
Now we define z2 := z2(q) ∈ {0, . . . ,M − 1} as follows:

(69) z2(q) := min
{
k |

(
(z1(q), k) + I2

)
∩ int(S) 
= ∅, k +M · �n(q) 
≡ 1 mod 3

}
.

We write

(70) C(q, a) := ψ�1(q)...�n(q)
a1...an

((z1(q), z2(q)) + I2).

Using Fact 21 and an = 0, by (34) we obtain

(71) C(q, a) ⊂ Qi(q,a) ∩ F̃n and C(q, a) ∩ Sa1...an

= ∅.

LetQ(q) :=
(
(z1(q), z2(q)) + I2

)
∩S.Note that we could chooseQ(q) independent

of a only because we always assume here that we restrict our attention to those
n-good strips Sa1...an

for which an = 0. Then

(72) ψ�1...�n
a1...an

(Q(q)) = C(q, a) ∩ Sa1...an
.

Summarizing what we have proved above:

Lemma 36. Assuming that Sa1...an
is an n-good strip and an = 0, for every

m ∈ {0, . . . , N − 1} we can find 1 ≤ i, j ≤ K such that qi 
∼ qj, qj = m and
Aa1...an

(i, j) > 0.

Proof. With q := z−1
1 (m), i := i(q, a) and Qj := Q(q) the assertion of the lemma

follows. �

Lemma 37. We can find n and a = (a1, . . . , an) ∈ {0, 1, 2}n with an = 0 and
q′ 
∼ q′′ ∈ {0, . . . , N − 1} such that Sa1,...,an

is an n-good strip and both Q(q′) and
Q(q′′) are relevant shapes for Sa1,...,an

.
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Proof. First suppose that M/N ≥ 1. Then Q(z−1
1 (0)) is either Q1 = I2 ∩ S or

Q2 = ((0, 1) + I2) ∩ S. Each is relevant for any n-good strip Sa1,...,an
. By Fact 25

we can now choose any n-good strip Sa1,...,an
with an = 0 for which Q(z−1

1 (1)) is

relevant and it is also relevant for Q(z−1
1 (0)). As 0 
∼ 1 we have z−1

1 (0) 
∼ z−1
1 (1)

as required.
Now suppose that M/N < 1. Then Q(z−1

1 (0)) is either Q1 or Q2. Clearly,
if Q(z−1

1 (0)) = Q1, then whichever way we choose Q(z−1
1 (1)) ⊂ ([1, 2]× R) ∩ S

we can find a narrow enough strip of slope M/N through this shape and Q1.
This would immediately give us by Fact 25 that q′ = z−1

1 (0), q′′ = z−1
1 (1) satisfy

the requirements of the lemma. So, we may assume that Q(z−1
1 (0)) = Q2. By

symmetry, for the same reason we can assume that Q(z−1
1 (N − 1)) = QK−1 =

((N − 1,M − 1)+ I2)∩S. If M/N > 1/2, then M/N < (M − 1)/(N − 1) and so we
can find a narrow enough strip of slope M/N which traverses both Q2 and QK−1.
So, by Fact 25, we can choose q′ = z−1

1 (0), q′′ = z−1
1 (N − 1).

Now assume that 0 < M/N < 1/2. First suppose that

(73) Q(z−1
1 (1)) = Q3 = ((1, 0) + I2) ∩ S and

Q(z−1
1 (N − 2)) = QK−2 = ((N − 2,M) + I2) ∩ S.

Then by elementary geometry one can find a narrow strip which intersects the
interior of both Q3 and QK−2. So, by Fact 25, we can choose q′ = z−1

1 (1) and
q′′ = z−1

1 (N − 2).
If (73) does not hold, then either

(74) Q(z−1
1 (1)) = Q4 = ((1, 1) + I2) ∩ S

or

(75) Q(z−1
1 (N − 2)) = QK−3 = ((N − 2,M − 1) + I2) ∩ S.

If (74) holds we put q′ = z−1
1 (0), q′′ = z−1

1 (1) and if (75) holds we put q′ =
z−1
1 (N − 2), q′′ = z−1

1 (N − 1). �

Now we are ready to prove Proposition 18.

Proof of Proposition 18. If N is odd, then the assertion of the proposition follows
from Lemma 33. So, we may assume that N is even. Let us fix n and ã =
(ã1, . . . , ãn), and q′, q′′ whose existence is guaranteed by Lemma 37. Using the
notation of Lemma 36 we substitute m = q′ to define i′, j′ as in Lemma 36.
Further, we also substitute m = q′′ in Lemma 36 to define i′′, j′′. As a shorthand
notation we write in this proof

A := Aã1,...,ãn
.

Then by definition we have

(76) A(i′, j′), A(i′′, j′′) > 0.

Without loss of generality we may assume that

q′ = qj′ and qi′′ are even and q′′ = qj′′ and qi′ are odd.

We will use the following observation: it follows from Corollary 34 (b) that for any
1 ≤ k, � ≤ K we have

(77) A2(k, �) ≥ A(k, k) ·A(k, �) ≥ A(k, �),



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

234 ANTHONY MANNING AND KÁROLY SIMON

since all the non-zero entries of A are at least one. First we prove that

(78) A2(i′, k) > 0 and A2(i′′, k) > 0 for every 1 ≤ k ≤ K.

To see that the first inequality holds observe that it follows from (76) and Corollary
34 (b) that whenever qk is even we have

A2(i′, k) ≥ A(i′, j′) ·A(j′, k) > 0.

Similarly if qk is an odd number, then using (78) and Corollary 34 (b) we get

A2(i′, k) ≥ A(i′, k) > 0,

which completes the proof of the first half of (78). By symmetry, the second in-
equality in (78) can be proved in the same way.

Now let u ∈ {1, . . . ,K} be arbitrary such that the u-th row of A is a non-all-zero
row. To prove Proposition 18 it is enough to show that for every v ∈ {1, . . . ,K}
we have

(79) A3(u, v) > 0.

If qu, qv have the same parity, then this follows from Corollary 34 (b) and (77). If
qu and qv have different parity, then without loss of generality we assume that qu
is odd. Since we assumed that qi′ is also odd we get from Corollary 34 (b) that
A(u, i′) > 0. So, (78) yields that

(80) A3(u, v) ≥ A(u, i′) ·A2(i′, v) > 0.

Thus we have verified Proposition 18 with n0 := 3n and

(a1, . . . , an0
) = (ã1, . . . , ãn, ã1, . . . , ãn, ã1, . . . , ãn). �

3.4. A corollary of the Perron-Frobenius theorem. We fix n0 and Aa1...an0

which satisfies Proposition 18. We consider the matrices

B :=
{
Ai1...in0

}
(i1...in0

)∈{0,1,2}n0
.

We write T := 3n0 and B = {B1, . . . , BT }, where
B1 := Aa1...an0

.

Put

Bs :=
T∑

k=1

Bk.

Since

Bs =
∑

i1...in0

Ai1...in0
= (A0 +A1 +A2)

n0 ,

using (19) one immediately gets that

(81) Bs has each column sum 8n0 .

Further,

(82) ∀1 ≤ k ≤ T, each column sum of Bk ∈ [2n0 , 3n0 ] .

In particular all the matrices Bk are column allowable (every column contains a
non-zero element) non-negative integer matrices.
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We define the Lyapunov exponent for the random product of the matrices

{Bi}Ti=1, where for each i in every step we choose Bi independently with prob-
ability 1/T . Using (21) the Lyapunov exponent

(83) γB := lim
n→∞

1

n
log ‖Bi1...in‖1, for a.a. (i1, i2, . . . ).

Then clearly we have

(84) γ =
1

n0
· γB,

where we recall that T = 3n0 . Note that it follows from (22) that

(85) lim
k→∞

1

k
·
∑

j1...jk

1

T k
· log ‖Bj1...jk‖1 = γB.

Let B̂1 be the matrix that we obtain from B1 when we replace all the column
vectors of B1 that correspond to an all-zero row by all-zero columns. That is, if
the column and row vectors of B1 are

B1 = [c1, . . . , cK ] and B1 = [r1, . . . , rK ] ,

then the matrix B̂1 is defined by its column vectors as follows:

(86) B̂1 = [c∗1, . . . , c
∗
K ] ,

where

c∗i =

{
ci, if ri > 0;
0, if ri = 0.

Note that for any k we have

(87) Bk+1
1 = B̂k

1 ·B1.

Let

(88) � := # {i : ci > 0} .
We choose an orthogonal matrix Q that corresponds to a change of the order of

the basis vectors in the natural basis such that

(89) Q · B̂1 ·QT =

[
C 0
0 0

]
,

where C is a positive (all the elements are positive) � × � matrix. It follows from
the Perron-Frobenius theorem [1, p. 185], [17, p. 9] that for the leading eigenvalue
ρ and normalized left and right leading eigenvectors u,v ∈ R� of C we have

(90) uT · C = ρ · uT , C · v = ρ · v, u > 0, v > 0,
�∑

i=1

ui · vi = 1,
�∑

i=1

vi = 1.

Furthermore, there exists 0 < ρ0 < ρ and �× � matrices Rk such that for the �× �
matrix

P := v · uT

we have

(91) ∀k Ck = ρk · P +Rk,

where for all 1 ≤ i, j ≤ K the (i, j)-th element r
(k)
i,j of the matrix Rk satisfies

(92) |r(k)i,j | < c1 · ρk0 ,
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for some constant c1 > 0. Sometimes we will have to extend vectors defined in R�

to RK . We will do this in two different ways: namely, for a ∈ R� we write

(93) a∗ :=

[
a
0

]
and a∗ := Q−1a∗.

The meaning of a∗ is as follows: to provide that all the � positive rows of B1 become
the first � rows we needed to use a permutation of the basis vectors of the natural
basis. This permutation was provided by multiplying by the orthogonal matrix Q
on the left. To permute all the coordinates to the original order we have to multiply
by Q−1 on the left.

Remark 38. (a): In the following definition we use the fact that by the defi-
nition of Q the last K − � rows of the matrix Q · B1 ·QT are all-zero rows
and the first � rows are all-positive rows. That is, there exists an � × K
matrix D such that

(94) Q ·B1 ·QT =

[
D
0

]
and D = [C|E] with E > 0.

(b): By the definition of Q we have

(95) B1Q
−1v∗ = Q−1((C · v)∗) = Q−1ρv∗ = Q−1

[
C|E
0

]
v∗ = ρQ−1v∗.

Note that Q is an orthogonal matrix that corresponds to some change of the
order in the natural basis. Hence Q ≥ 0. In this way we see that ρ is an eigenvalue
of the matrix B1. Furthermore, v∗ = Q−1v∗ is a non-negative eigenvector of the
eigenvalue ρ.

Definition 39. For every n and for every (b1, . . . , bn) ∈ {1, . . . , 3n0}n:
(a): We write Eb1...bn for the �×K matrix which satisfies[

Eb1...bn

0

]
= Q ·B1 ·QT ·Q ·Bb1...bn ·QT = Q ·B1 ·Bb1...bn ·QT .

(b): We define the positive vector of K components

uT
b1...bn := uT · Eb1...bn .

(c): For ε ∈ R we define the (column) vector ε ∈ R� as a vector with all
components ε.

Lemma 40. Let 0 < ε1 < min1≤i≤� vi. Then there exists k0 such that for every n
and for every (b1, . . . , bn) ∈ {1, . . . , 3n0}n we have

(96) ρk0 ·
(
v − 1

10
ε1

)
· uT

b1...bn < Ck0 · Eb1...bn < ρk0 ·
(
v +

1

10
ε1

)
· uT

b1...bn .

Proof. The proof follows from (92). Namely,

(97) k0 := k0(ε1) is defined as k0 := min

{
k : c1 ·

{
ρ0
ρ

}k

<
ε1
10

· min
1≤i≤�

ui

}
.

Then by (92) we have 1
ρk0

· |r(k0)
i,j | < ε1

10 ·minui. Hence

ρk0

(
v · uT − 1

10
ε1 · uT

)
< Ck0 < ρk0

(
v · uT +

1

10
ε1 · uT

)
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

SLICES OF THE SIERPINSKI CARPET 237

This completes the proof of the lemma because all the elements of all the matrices
and vectors in the last inequality as well as in the assertion of the lemma are
non-negative. �

Lemma 41. There is (i1, . . . , in0
) ∈ {0, 1, 2}n0 such that

(98) ‖Aa1...an0
· v∗‖1 
= ‖Ai1...in0

· v∗‖1,

where we recall that v∗ was defined by the convention introduced in (93).

Proof. To get a contradiction we assume that

(99) ∀(i1, . . . , in0
) ∈ {0, 1, 2}n0 , ‖Aa1...an0

· v∗‖1 = ‖Ai1...in0
· v∗‖1.

Then

3n0 · ρ = 3n0 · ‖ρ · v∗‖1 = 3n0 · ‖B1 · v∗‖1

=
∑

(i1,...,in0
)

‖Ai1...in0
· v∗‖1 =

∥∥∥∥∥∥
∑

(i1,...,in0
)

Ai1...in0
· v∗

∥∥∥∥∥∥
1

= ‖An0
s · v∗‖1 = 8n0‖v∗‖1 = 8n0 ,

so ρ = 8n0/3n0 . However this is impossible since 8n0/3n0 cannot be a root of the
characteristic polynomial of B1 which is a matrix of integer coefficients. �

We assume from now on that we numbered the elements of B such that

(100) ‖B1 · v‖ 
= ‖B2 · v‖.
Without loss of generality we may assume that ‖B1 · v‖ < ‖B2 · v‖.

Definition 42. Let us define 0 < ε1 < 1
20 ·min vi and c0 > 0 such that

(101)
‖B1 · (v + 10ε1)

∗‖1
‖(v − 10ε1)‖1

+ c0 <
‖B2 · (v− 10ε1)

∗‖1
‖(v+ 10ε1)‖1

.

Lemma 43. Here we use the notation of Lemma 40. For an arbitrary (b1, . . . , bn) ∈
{0, 1, 2}n we define

Fb1...bn := Bk0+1
1 ·Bb1...bn .

Then for an arbitrary n and for arbitrary (b1, . . . , bn) ∈ {0, 1, 2}n we have

(102)
‖B1 · Fb1...bn‖1
‖Fb1...bn‖1

+ c0 <
‖B2 · Fb1...bn‖1
‖Fb1...bn‖1

,

where ‖A‖1 means the sum of the modulus of the elements of the matrix.

Proof. First we start with a simple observation that we will use at the end of this
argument. Let a,b ≥ 0 be vectors of K components.

(103) If A = a · bT , then ‖A‖1 = ‖a‖1 · ‖bT ‖1.
Because QAQT is obtained from A by permuting the rows and columns,

‖A‖1 = ‖Q ·A ·QT ‖1.
Thus in order to verify (102) it is enough to estimate the ratio of the norms

‖Q ·Bj · Fb1...bn ·QT ‖1 for j = 1, 2 and ‖Q · Fb1...bn ·QT ‖1.
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Using (89), (87) and Definition 39 (a) we obtain

(104) Q · Fb1...bn ·QT =

[
Ck0 0
0 0

]
·
[

Eb1...bn

0

]
=

[
Ck0 · Eb1...bn

0

]
.

Lemma 40 asserts that

ρk0 ·
(
v − 1

10
ε1

)
· uT

b1...bn
< Ck0 · Eb1...bn < ρk0 ·

(
v +

1

10
ε1

)
· uT

b1...bn
,

where we recall that uT
b1...bn

= uT · Eb1...bn . Using (103) this implies that
(105)

ρk0 ·
∥∥∥∥(v − 1

10
ε1

)∥∥∥∥
1

·
∥∥uT

b1...bn

∥∥
1
≤ ‖Fb1...bn‖1 ≤ ρk0 ·

∥∥∥∥(v +
1

10
ε1

)∥∥∥∥
1

·
∥∥uT

b1...bn

∥∥
1
.

Now we estimate

‖Q ·Bj · Fb1...bn ·QT ‖1 = ‖Q ·Bj ·QT ·Q · Fb1...bn ·QT ‖1, j = 1, 2.

Also from the assertion of Lemma 40 we obtain that

(106) ρk0 ·
(
v − 1

10
ε1

)∗
·uT

b1...bn ≤ QT ·Q·Fb1...bn ·QT ≤ ρk0 ·
(
v +

1

10
ε1

)∗
·uT

b1...bn .

Using (103) again we get on the one hand,

(107) ‖Q ·Bj · Fb1...bn ·QT ‖1 ≤ ρk0 ·
∥∥∥∥Bj ·

(
v +

1

10
ε1

)∗∥∥∥∥
1

·
∥∥uT

b1...bn

∥∥
1

and on the other hand,

(108) ‖Q ·Bj · Fb1...bn ·QT ‖1 ≥ ρk0 ·
∥∥∥∥Bj ·

(
v − 1

10
ε1

)∗∥∥∥∥
1

·
∥∥uT

b1...bn

∥∥
1
.

Putting together these last two inequalities with (105), the assertion of the lemma
immediately follows from (101). Namely, for j = 1, 2,

�(109)

∥∥∥Bj ·
(
v − 1

10ε1
)∗∥∥∥

1∥∥(v + 1
10ε1

)∥∥
1

≤ ‖Bj · Fb1...bn‖1
‖Fb1...bn‖1

≤

∥∥∥Bj ·
(
v + 1

10ε1
)∗∥∥∥

1∥∥(v − 1
10ε1

)∥∥
1

.

Lemma 44. For every m and b1, . . . , bm and i = 1, . . . , T we have

(110)
‖Bi ·Bb1...bm‖1
‖Bb1...bm‖1

∈ [2n0 , 3n0 ] .

Proof. Using the notation and the assertion of Fact 16 and the fact that, for all i,
every column sum of Bi is between 2n0 and 3n0 we obtain

K∑
i=1

2n0‖rBb1...bn
(i)‖1 ≤ ‖Bi ·Bb1...bm‖1 ≤

K∑
i=1

3n0‖rBb1...bn
(i)‖1.

The simple observation that ‖Bb1...bn‖1 =
K∑
i=1

‖rBb1...bn
(i)‖1 completes the proof of

the lemma. �

Definition 45. (a): Let

R :=
{
(x1, . . . , xT ) ∈ [2n0 , 3n0 ]

T
: ∃i, j such that |xi − xj | ≥ c0

}
,
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where c0 > 0 is the constant defined in Lemma 43. Using the well-known
inequality between the arithmetic and geometric means we obtain that the
continuous function

f(x1, . . . , xT ) := log

T∑
j=1

xj

T
− log T

√
x1 · · ·xT

takes only positive values on the compact set R. We define

(111) δ0 := min f |R > 0.

(b): Let m > k0 + 1. Put

Im := {1, . . . , T}m , I ′
m := {i ∈ Im : i1 = · · · = ik0+1 = 1} and I ′′

m := Im \ I ′
m.

Fact 46. For every i ∈ I ′
m we have

(112)
1

T
· log

T∏
j=1

‖Bj ·Bi‖1
‖Bi‖1

+ δ0 ≤ log
1

T

T∑
j=1

‖Bj ·Bi‖1
‖Bi‖1

.

Proof. It follows from Lemma 43 that for every i ∈ I ′
m,

‖B1 ·Bi‖1
‖Bi‖1

+ c0 <
‖B2 ·Bi‖1
‖Bi‖1

.

This and Lemma 44 imply that for every i ∈ I ′
m,(

‖B1 ·Bi‖1
‖Bi‖1

, . . . ,
‖BT ·Bi‖1

‖Bi‖1

)
∈ R.

The assertion of the fact immediately follows from (111). �

Observe that for every i ∈ Im we have

T∑
j=1

‖Bj · Bi‖1
‖Bi‖1

=

‖
T∑

j=1

Bj ·Bi‖1

‖Bi‖1
(113)

=
‖Bs ·Bi‖1
‖Bi‖1

=
8n0‖Bi‖1
‖Bi‖1

= 8n0 ,

where in the next to last step we used (26) and (81). This and Fact 46 imply that

(114) ∀i ∈ I ′
m :

1

T
· log

T∏
j=1

‖Bj · Bi‖1
‖Bi‖1

≤ n0 · log
8

3
− δ0.

Lemma 47. For every m ≥ k0 + 1 we have

(115)
1

Tm
·
∑
i∈Im

1

T
log

T∏
j=1

‖Bj ·Bi‖1
‖Bi‖1

≤ n0 · log
8

3
− T−(k0+1) · δ0.
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Proof.

1

Tm
·
∑
i∈Im

1

T
log

T∏
j=1

‖Bj ·Bi‖1
‖Bi‖1

=
1

Tm
·
∑
i∈Im

1

T
·

T∑
j=1

log
‖Bj ·Bi‖1
‖Bi‖1

=
1

Tm
·
∑
i∈I′

m

1

T
·

T∑
j=1

log
‖Bj ·Bi‖1
‖Bi‖1

+
1

Tm
·
∑
i∈I′′

m

1

T
·

T∑
j=1

log
‖Bj ·Bi‖1
‖Bi‖1

≤ #I ′
m

Tm
· n0 · log

8

3
− #I ′

m

Tm
· δ0

+
#I ′′

m

Tm
· log 1

T

T∑
j=1

‖Bj ·Bi‖1
‖Bi‖1

= n0 · log
8

3
− T−(k0+1) · δ0,

where in the inequality we used (114). �

3.5. The proof of Theorem 9. It follows from Corollary 17 that to prove our
Theorem 9 it is enough to check that

(116) γ < log
8

3
,

where the Lyapunov exponent γ was defined in (21). To do so we need to use a
theorem of Furstenberg about the integral representation of the Lyapunov exponent.
Now we use the definitions from [17, Chapter 3].

Definition 48. We recall that a non-negative K × K matrix is called column
allowable if every column contains a non-zero element. Since we will use this theory
for matrices which are the product of A0, A1, A2 in the sequel we will always be
working with column allowable matrices. We write CA for the set of K ×K non-
negative, column allowable matrices. Further let

(117) CAp := {A ∈ CA : if r is a row vector of A, then either r = 0 or r > 0} .
For the vectors with all elements positive, x = (x1, . . . , xK) > 0 and y =

(y1, . . . , yK) > 0, we define the pseudo-metric

d(x,y) := log

[
maxi(xi/yi)

minj(xj/yj)

]
.

This is not exactly a metric because d(x,y) = 0 if and only if x = λy for some real
number λ, but d defines a metric on

Δ :=

{
x = (x1, . . . , xK) ∈ RK : xi > 0 and

K∑
i=1

xi = 1

}
.

We call it projective distance. For all A ∈ CA we define

Ã : Δ → Δ Ã(x) :=
xT ·A

‖xT ·A‖1
.
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Finally for any A ∈ CA the Birkhoff contraction coefficient τB(A) is defined as

the Lipschitz constant for Ã. That is,

τ (A) := sup
x,y∈Δ, x�=y

d(xT ·A,yT ·A)

d(x,y)
.

Lemma 49 ([17]). (a): For every i = 1, . . . , T we have τ (Bi) ≤ 1.
(b): The map B1 is a strict contraction in the projective distance. That is,

h := τ (B1) < 1.

Proof. Part [a]: Since Bi ∈ CA the statement can be checked easily. Also it appears
as formula [17, (3.1)].

Part [b]: Note that B1 ∈ CAp. Therefore we can use [17, Theorem 3.10] and
[17, Theorem 3.12], which yields the assertion. �

We will need the following notation from [10]:

Definition 50. On the complete metric space (Δ, d) we write M(Δ) for the set
of all probability measures on Δ for which μ(φ) < ∞ holds for all real-valued
Lipschitz functions φ defined on (Δ, d). After Hutchinson we define the distance of
μ, ν ∈ M(Δ) by

L(μ, ν) := sup {μ(φ)− ν(φ)|φ : Δ → R, Lip(φ) ≤ 1} .

We will consider the metric space (M(Δ), L). Using that (Δ, d) is a complete
metric space, the main result of [10] implies that

Proposition 51 (Kravchenko [10, Theorem 4.2]). The metric space (M(Δ), L)
is complete.

We introduce the operator F : M(Δ) → M(Δ):

Fν(H) :=
1

T
·

T∑
i=1

ν
(
B̃−1

i (H)
)

for a Borel set H ⊂ Δ. Using ν ∈ M(Δ), for every Lipschitz function φ we have

(118) Fν(φ) =
1

T
·

T∑
i=1

ν(φ ◦ B̃i).

Lemma 52. (a): F is a contraction on the metric space (M(Δ), L).
(b): There is a unique fixed point ν ∈ M(Δ) of F and for all μ ∈ F we have

L(ν,Fnμ) → 0.

Proof of (a). Note that our IFS
{
B̃i

}T

i=1
is not contracting, only contracting on

average (that is, the arithmetic mean of the Lipschitz constants of the functions in
the IFS is less than one). Let z := T/(h+(T −1)) > 1. Fix an arbitrary φ ∈ Lip(1).
We write

ψ :=
z

T
·
(
φ ◦ B̃1 + · · ·+ φ ◦ B̃T

)
.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

242 ANTHONY MANNING AND KÁROLY SIMON

Using Lemma 49 we obtain that also ψ ∈ Lip(1). Then for an arbitrary ν, μ ∈ M(Δ)
we have

(119) z · [Fν(φ)−Fμ(φ)] = ν(ψ)− μ(ψ) ≤ L(ν, μ).

So, we have obtained that

(120) ∀μ, ν ∈ M(Δ), L(Fν,Fμ) ≤ 1

z
· L(ν, μ),

which completes the proof of Part (a). �

Proof of (b). This follows from Proposition 51 and the Banach Fixed Point Theo-
rem. (A contraction on a complete metric space has a unique fixed point.) �

From now on we always write ν ∈ M(Δ) for the unique fixed point of the operator
F on M(Δ). That is,

(121) ν(φ) =
1

Tn
·
∑

i1...in

ν(φ ◦ B̃i1...in)

holds for all Lipschitz functions φ and n ≥ 1. Following the idea of Furstenberg [6],
it is a key point of our argument that we would like to give an integral representation
of the Lyapunov exponent γB as an integral of a function ϕ to be introduced below
against the measure ν.

Definition 53. Let ϕ : Δ → R be defined by

(122) ϕ(x) :=
1

T
·

T∑
k=1

log ‖x ·Bk‖1, x ∈ Δ.

Lemma 54. We have Lip(ϕ) ≤ 1 on the metric space (Δ, d).

Proof. Let x,y ∈ Δ. We assume that x 
= y. Then

(123) min
j

xj

yj
< 1 and max

i

xi

yi
> 1,

since
∑

xi =
∑

yi = 1, xi, yi > 0. We fix k with 1 ≤ k ≤ T . It is enough to prove
that the function

ψk : x �→ log ‖x ·Bk‖1
is in Lip(1) because ϕ is the arithmetic mean of the functions {ψk}Tk=1. Now fixing
x,y ∈ Δ, x 
= y,

(124) ψk(x)− ψk(y) = log
‖x ·Bk‖1
‖y ·Bk‖1

.

Note that for arbitrary a ∈ Δ we have

(125) ‖a ·Bk‖1 = a1 · ‖r1‖1 + · · ·+ aK · ‖rK‖1,
where r1, . . . , rK are the row vectors of the matrix Bk. This is so because the
matrix Bk is non-negative. Hence from (124) we obtain

(126) ψk(x)− ψk(y) = log

K∑
i=1

xi · ‖ri‖1
K∑
i=1

yi · ‖ri‖1
.
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Further, for all 1 ≤ i ≤ K, we have

(127) min
�

x�

y�
· yi · ‖ri‖1 ≤ xi · ‖ri‖1 ≤ max

�

x�

y�
· yi · ‖ri‖1.

Thus, using yi > 0 for all 1 ≤ i ≤ K, we obtain

min
�

x�

y�
≤

K∑
i=1

xi · ‖ri‖1
K∑
i=1

yi · ‖ri‖1
≤ max

�

x�

y�
.

Putting this and (126) together yields that

(128) logmin
�

x�

y�
≤ ψk(x)− ψk(y) ≤ logmax

�

x�

y�
.

From this and (123) we get

|ψk(x)− ψk(y)| ≤ logmax
�

x�

y�
− logmin

�

x�

y�
= log

max�
x�

y�

min�
x�

y�

= d(x,y).

This implies that

|ϕ(x)− ϕ(y)| ≤ 1

T

T∑
k=1

|ψk(x)− ψk(y)| ≤ d(x,y),

which completes the proof of the lemma. �

Proof of Theorem 9. Using (84) and (116) the only thing left to prove is that

(129) γB < n0 · log
8

3
.

Let

w :=
1

K
· e, where e := (1, . . . , 1) ∈ RK .

We define the sequence of measures νn ∈ M1 by

ν0 := δw and νn(H) := (Fnν0)(H) =
1

Tn
·
∑

i1...in

ν0(B̃
−1
i1...in

(H)),
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where H ⊂ Δ is a Borel set. Observe that∫
Δ

ϕ(x)dνn(x) =
1

Tn

∑
i1...in

∫
Δ

ϕ(x)dν0

(
B̃−1

in...i1
(x)

)
=

1

Tn

∑
i1...in

ϕ
(
B̃in...i1(w)

)
(130)

=
1

T

T∑
k=1

1

Tn

∑
i1...in

log ‖B̃in...i1(w) ·Bk‖1

=
1

T

T∑
k=1

1

Tn

∑
i1...in

log
‖w ·Bi1...in ·Bk‖1
‖w ·Bi1...in‖1

=
1

Tn+1

∑
i1...in+1

log ‖w ·Bi1...in+1
‖1 −

1

Tn

∑
i1...in

log ‖w ·Bi1...in‖1

=
1

Tn
·
∑

i1...in

1

T
log

T∏
k=1

‖w · Bk ·Bi1...in‖1
‖w ·Bi1...in‖1

=
1

Tn
·
∑

i1...in

1

T
log

T∏
k=1

‖Bk ·Bi1...in‖1
‖Bi1...in‖1

.

Using Lemma 47 we obtain that for all n ≥ k0 + 1,

(131)

∫
Δ

ϕ(x)dνn(x) ≤ n0 · log
8

3
− T−(k0+1) · δ0.

In the rest of the proof we will verify that the limit of the left hand side is equal
to γB, from which it immediately follows that (129) holds. Namely, results of
Furstenberg [6] indicate that the Lyapunov exponent γB (defined in (83)) has the
following integral representation:

(132) γB =

∫
Δ

ϕ(x)dν(x) = lim
n→∞

∫
Δ

ϕ(x)dνn(x),

where the second equality follows from Lemma 52. Although we believe that this
follows from [6], for the convenience of the reader we give a short proof of (132)
here.

We start with an easy observation: in (130) we put together the left hand side of
the first line and the right side of the fifth line. Then we apply for both � = n+ 1
and � = n that

1

T �

∑
i1...i�

log ‖w ·Bi1...i�‖1 = log 1/K +
1

T �

∑
i1...i�

log ‖Bi1...i�‖1

to obtain

(133)

∫
Δ

ϕ(x)dνn(x) =
1

Tn+1

∑
i1...in+1

log ‖Bi1...in+1
‖1 −

1

Tn

∑
i1...in

log ‖Bi1...in‖1.

Let us define the measure

η� :=
1

�

�∑
n=1

νn.
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Clearly η� ∈ M(Δ) holds for all � and it follows from Lemma 52 that for all Lipschitz
functions φ we have

(134) lim
�→∞

η�(φ) = lim
n→∞

νn(φ) = ν(φ).

Note that by (133) the integral η�(ϕ) is given by a telescopic sum. This yields

η�(ϕ) =
1

�

�∑
n=1

νn(ϕ) =
1

�

⎛⎝ 1

T �+1

∑
i1...i�+1

log ‖Bi1...i�+1
‖1 −

1

T
·

T∑
i=1

log ‖Bi‖1

⎞⎠ .

Now the assertion of (132) immediately follows from (85). As was noted above,
(129) follows from (131) and (132), which completes the proof of Theorem 9. �

4. The remaining proofs

The angle θ projection from S to the y-axis is denoted by PROJθ. We are
using notation defined in Section 3.1. The projθ projection of the IFS G :={
gi(x, y) =

1
3 (x, y) +

1
3ti

}8

i=1
is the IFS

Φ :=

{
ϕθ
i (t) =

1

3
· t+ 1

3
· projθ(ti)

}8

i=1

.

That is, for every i = 1, . . . , 8 the following diagram is commutative:

F
gi ��

projθ

��

F

projθ

��
Iθ

ϕθ
i

�� Iθ

4.1. The measures νθ and ν̃θ. We recall that, for θ ∈ [0, π/2) and a ∈ Iθ, Lineθ,a
denotes the line segment in [0, 1]2 of angle θ through the point (0, a). Further, for
any a ∈ [0, 1], let LINEθ,a be the line segment in S of angle θ through the point
(0, a). Using the notation of Definition 19 we define the measure ν̃ on the Borel

subsets of F̃ as follows:

ν̃ :=
1

N

K∑
i=1

((qi, ri) + ν) |S .

The angle θ projection of ν̃ to the y-axis is called ν̃θ. When πθ := projθ ◦ Π, this
can be summarized by
the following diagram is commutative:

(Σ8, μ8)

Π∗

��

πθ
∗

����
���

���
�

(F, ν)
projθ∗

�� (Iθ, νθ)

and (F̃ , ν̃)
PROJθ

∗ �� ([0, 1], ν̃θ).

It is immediate from the definitions and from the symmetries of the Sierpinski
carpet that for Borel sets H ⊂ [− tan θ, 0] and P ⊂ [0, 1] we have

(135) ν̃θ(P ) = νθ(H) = 0 implies that νθ(P ) = 0 and νθ(1− tan θ −H) = 0.
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On the other hand, for H ⊂ [− tan θ, 0], νθ(H) = 0 does not imply that νθ(1+H) =
0. This makes our investigation more complicated than the analogous proof for the
Lebesgue measure. We will use the following observation.

Lemma 55. The measure ν̃θ is invariant under the map y �→ 3y mod 1.

Proof. For (i1, . . . , in) ∈ {0, 1, 2}n we write

Ii1...in :=

[
n∑

k=1

ik · 3−k,

n∑
k=1

ik · 3−k + 3−n

]
.

Since the ν measure of every level n shape j is 8−nν(Qj) we obtain

(136) ν̃θ(Ii1...in) =
K∑
j=1

#i1...in(j) · 8−nν(Qj),

where #i1...in(j) denotes the number of level n shapes j contained in F̃n ∩ Si1...in .
That is,

(137) #i1...in(j) =
K∑

k=1

Ai1...in(k, j).

Since from (19) all the column sums of the matrix A0+A1+A2 are equal to 8, this
readily implies that

(138)

2∑
i0=0

#i0i1...in(j) = 8 ·#i1...in(j).

Since the inverse image by y �→ 3y mod 1 of Ii1...in is
⋃2

i0=0 Ii0i1...in , formulae
(136) and (138) together imply the assertion of the lemma. �

4.2. The dimension of the intersection is a constant νθ-almost surely.

Lemma 56. For every θ ∈ [0, π), the following functions are μ8-almost everywhere
constant:

(139) i �→ dimH(Eθ,πθ(i)), i �→ dimB(Eθ,πθ(i)), i �→ dimB(Eθ,πθ(i)).

Proof. The fact that these functions are Borel measurable can be proved in exactly
the same way as the analogous statement proved in [9, Lemma 2.4]. Now, for every
i ∈ Σ8 and k ∈ {1, . . . , 8}, we have gk

(
Lineθ,πθ(i)

)
⊂ Lineθ,πθ(ki), which implies

that these three functions have the property

(140) ∀j ∈ Σ, f(σj) ≤ f(j).

Such a function is μ8-almost everywhere constant since (σ, μ8) is ergodic and, for
each t, σ {i : f(i) ≤ t} ⊂ {i : f(i) ≤ t} . �

Clearly, for every θ, a,

(141) if Π(i),Π(j) ∈ Eθ,a, then dim(Eθ,πθ(i)) = dim(Eθ,πθ(j))

if dim means any one of Hausdorff dimension, lower box dimension or upper box
dimension.

Proof of Proposition 3. The assertion of Proposition 3 follows immediately from
(141) and Lemma 56. �
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The proof of Theorem 7 is based on a method of Kenyon-Peres which uses a
theorem due to Ledrappier (see [9, Proposition 2.6]). We use their method but we
have to tackle an additional problem: unlike the Lebesgue measure, our measure
νθ is not translation invariant, which makes this case much more difficult.

Proof of Proposition 8. In this proof when we write dim it means any of the follow-
ing dimensions: dimH, dimB or dimB. By Lemma 55 we can apply [9, Proposition
2.6] exactly as in the proof of [11, Theorem 1.1 (3)] to obtain

(142) for ν̃θ-almost all b ∈ [0, 1], dimH(LINEθ,b ∩ F̃ ) = dimB(LINEθ,b ∩ F̃ )

and the box dimension exists.
We fix a := (a1, . . . , an0

) ∈ {0, 1, 2}n0 as constructed in Proposition 18. We use
the definitions of Section 3.2.1 (see Figure 4). For every j ∈ {1, . . . ,K}, in Sa there
are altogether 3n0 level n shapes j. These were denoted (see (36)) by

Q�
a(j) : � = (�1, . . . , �n0

) ∈ {0, 1, 2}n0 .

When we consider F̃n0 ∩ Sa some of these shapes are completely deleted by the

construction of the n0 approximation F̃n0 of the translated copies of the Sier-
pinski carpet while some other level n0 shapes are preserved completely by this
construction. Thus for every j ∈ {1, . . . ,K} we can define the set of indices
I1(j) ⊂ I(j) ⊂ {0, 1, 2}n0 such that

(143) F̃n0 ∩ Sa =
K⋃
j=1

⋃
�∈I(j)

Q�
a(j) and F̃n0 ∩ Sa ∩Q1 =

K⋃
j=1

⋃
�∈I1(j)

Q�
a(j).

It follows from the special choice of a that we have

(144) I1(j) 
= ∅.
By self-similarity for every b ∈ [0, 1] and 1 ≤ j ≤ K,
(145)

if Q�
a(j) ⊂ F̃n, then dim

(
LINEθ,b ∩ F̃ ∩Q�

a(j)
)
= dim(LINEθ,3n0b ∩Qj ∩ F̃ ),

where 3n0b is written for 3n0b mod 1. Using (144) and (145) we see that

for every b ∈ Ia :=

[
n0∑
k=1

ak3
−k,

n0∑
k=1

ak3
−k + 3−n0

]
we have

(146) dim(Eθ,b) = max
j

dim(LINEθ,3n0 b ∩Qj) = dim(LINEθ,b ∩ F̃ ).

Using this, (142) and (135) we obtain that for νθ-almost all b ∈ Ia we have

dimH(Eθ,b) = dimB(Eθ,b)

and the box dimension exists. Clearly, νθ(Ia) > 0. This and Proposition 3 together
imply that the conclusion of Proposition 8 holds. �

4.3. The local dimension of νθ and the box dimension of the slices. Let
θ ∈ [0, π/2) be arbitrary. For a ∈ Iθ, let Nθ,a(n) be the number of level n squares
of Fn that intersect Eθ,a. By definition,

(147) dimB(Eθ,a) = lim inf
r→0

logNθ,a(n)

n log 3
and dimB(Eθ,a) = lim sup

r→0

logNθ,a(n)

n log 3
.
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We write Lineθ,a(3
−n) for the 3−n vertical neighborhood of Lineθ,a. That is,

Lineθ,a(3
−n) :=

{
(x, y) : |y − (x · tan θ + a)| < 3−n, x ∈ [0, 1]

}
.

For arbitrary n we shall estimate the ν measure of Lineθ,a(3
−n) by the ν measure

of those squares of level n or close to n that intersect Lineθ,a. First we fix k0 such
that 1+ tan θ < 3k0 and observe that if a level n+ k0 square from Fn+k0 intersects
Eθ,a, then this square is contained in Lineθ,a(3

−n). Since the ν measure of such a

square is equal to 8−(n+k0) we see that

(148) ∀θ, a : 8−(n+k0) ·Nθ,a(n+ k0) ≤ ν
(
Lineθ,a(3

−n)
)
.

Now we prove an opposite inequality.

Lemma 57. Let θ ∈ [0, π/2) and a ∈ Iθ be arbitrary. We have

(149) ν
(
Lineθ,a(3

−n)
)
< 1000 ·

(⌊
1

tan θ

⌋
+ 1

)
· 8−n ·Nθ,a(n).

Proof. In this proof we write Gθ,a(n) for the collection of those “good” level n
squares from Fn that intersect Eθ,a. Further we write Bθ,a(n) for the collection
of those “bad” level n squares from Fn that do not intersect Eθ,a but do intersect
Lineθ,a(3

−n). Since all the level n squares from Fn have ν-measure 8−n, to prove
this lemma it is enough to show that

(150) #Bθ,a(n) < 1000 ·
(⌊

1

tan θ

⌋
+ 1

)
·#Gθ,a(n).

Choose U ∈ Bθ,a(n). Without loss of generality we may assume that U is situated
below the line Lineθ,a. Write

(151) UW , UW 2

, . . . , UWk

for the sequence of consecutive level n squares on the left of U with k chosen so

that UWk

is the first that intersects Lineθ,a. Then k ≤
⌊

1
tan θ

⌋
+ 1. If we write UN

for the level n square above U and

(152) UN , UNW , . . . , UNWk

for the consecutive level n squares to the left of UN , all of which meet line Lineθ,a,
then either one of them, V say, is in Fn and we will say that V is associated with
U or none of them is in Fn. This is possible only if there is � < n such that
3−� > k · 3−n and a level � square, let us call it X, which is situated in such a way
that its bottom line contains the bottom lines of all the squares from (152). Then
the level � square XS below X is in F � and the level n squares in (151) are in the

top row in XS and lie in Fn. Then UWk

belongs to Gθ,a(n) and we say that it is
associated to U . In this way we have seen that for every “bad” square U there is an
associated “good” square V within distance

(⌊
1

tan θ

⌋
+ 1

)
· 3−n. It follows that all

the elements of Gθ,a(n) can be associated with less than 1000 ·
(⌊

1
tan θ

⌋
+ 1

)
squares

from Bθ,a(n), which completes the proof of the lemma. �

Proof of Proposition 4. Putting formulas (148) and (149) together we obtain that
for all θ ∈ [0, π/2) we have

(153) 8k0Nθ,a(n+ k0) ≤ 8nνθ([a− 3−n, a+ 3−n]) ≤ k1Nθ,a(n),
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where

(154) k0 =

⌊
log(1 + tan θ)

log 3

⌋
+ 1, k1 = 1000

(⌊
1

tan θ

⌋
+ 1

)
.

Taking logarithms and dividing by log 3n we obtain

�(155) s− o(n) ≤ logNθ,a(n)

log 3n
+

log νθ([a− 3−n, a+ 3−n])

log 3−n
≤ s+ o(n).

Proof of Theorem 5. The assertion immediately follows from (3) and Proposition
4 since dimH(ν

θ) ≤ 1. �

Proof of Theorem 11. This is immediate from Theorem 5 and Proposition 8. �

Proof of Corollary 10. This follows from Theorem 9 and Proposition 4. �

Proof of Theorem 6. We only need to prove part (a). νθ ∼ Leb follows from [16,
Proposition 3.1], which states that every self-similar measure is either equivalent
to the Lebesgue measure or singular. Using the argument from [12, p.140] we see
that for Leb almost all a ∈ Iθ the conditional measure

νθ,a(B) := lim
δ→0

ν(B(δ))

2δ
, B ⊂ Eθ,a Borel

exists and is finite and positive from [12, (10.2)]. Now (9) follows from (153). �
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Poincaré Probab. Statist. 28 (1992), 131–148. MR1158741 (93g:60012)

http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=0373040
http://www.ams.org/mathscinet-getitem?mr=886674
http://www.ams.org/mathscinet-getitem?mr=886674
http://www.ams.org/mathscinet-getitem?mr=2118797
http://www.ams.org/mathscinet-getitem?mr=2118797
http://www.ams.org/mathscinet-getitem?mr=2560042
http://www.ams.org/mathscinet-getitem?mr=2560042
http://www.ams.org/mathscinet-getitem?mr=2747343
http://www.ams.org/mathscinet-getitem?mr=0163345
http://www.ams.org/mathscinet-getitem?mr=0163345
http://www.ams.org/mathscinet-getitem?mr=0213508
http://www.ams.org/mathscinet-getitem?mr=0213508
http://www.ams.org/mathscinet-getitem?mr=625600
http://www.ams.org/mathscinet-getitem?mr=625600
http://www.ams.org/mathscinet-getitem?mr=1106751
http://www.ams.org/mathscinet-getitem?mr=1106751
http://www.ams.org/mathscinet-getitem?mr=2215298
http://www.ams.org/mathscinet-getitem?mr=2215298
http://www.ams.org/mathscinet-getitem?mr=2334955
http://www.ams.org/mathscinet-getitem?mr=2334955
http://www.ams.org/mathscinet-getitem?mr=1333890
http://www.ams.org/mathscinet-getitem?mr=1333890
http://www.ams.org/mathscinet-getitem?mr=0063439
http://www.ams.org/mathscinet-getitem?mr=0063439
http://www.ams.org/mathscinet-getitem?mr=2031217
http://www.ams.org/mathscinet-getitem?mr=2031217
http://www.ams.org/mathscinet-getitem?mr=1158741
http://www.ams.org/mathscinet-getitem?mr=1158741


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

250 ANTHONY MANNING AND KÁROLY SIMON
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