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ABSTRACT. In an extensive form game, whether a player has a better strategy than in a presumed

equilibrium depends on the other players’ equilibrium reactions to a counterfactual deviation. To

allow conditioning on counterfactual events with prior probability zero, extended probabilities are

proposed and given the four equivalent characterizations: (i) complete conditional probability sys-

tems; (ii) lexicographic hierarchies of probabilities; (iii) extended logarithmic likelihood ratios;

and (iv) certain ‘canonical rational probability functions’ representing ‘trembles’ directly as in-

finitesimal probabilities. However, having joint probability distributions be uniquely determined

by independent marginal probability distributions requires general probabilities taking values in a

space no smaller than the non-Archimedean ordered field whose members are rational functions of

a particular infinitesimal.

Elinor now found the difference between the expectation of an unpleasant event,
however certain the mind may be told to consider it, and certainty itself.

— Jane Austen, Sense and Sensibility, ch. 48.

. . . a more attractive and manageable theory may result from a non-Archimedean
representation. . . . One must keep in mind the fact that the refutability of axioms
depends both on their mathematical form and their empirical interpretation.

— Krantz, Luce, Suppes and Tversky (1971, p. 29).



Non-Archimedean Probabilities

1. Introduction and Outline

Patrick Suppes is a philosopher of science in the broadest sense, which includes the

social and behavioural sciences. For many years he directed the interdisciplinary Institute

of Mathematical Studies in the Social Sciences at Stanford. He has displayed an abiding

interest in the probabilistic models that are used in many branches of science, including

physics and quantum mechanics, psychology and linguistics, as exemplified by Suppes (1984)

and the work cited therein. Some of his early work was for the Stanford Value Theory

Project, producing publications in Bayesian decision theory and subjective probability such

as Davidson, McKinsey and Suppes (1955), Davidson and Suppes (1956), Suppes (1956),

Davidson, Suppes and Siegel (1955) — see also Suppes (1961), Luce and Suppes (1965), and

other papers collected in Part II of Suppes (1969). This is the theme that will be revisited

here and in later closely related work.

Krantz, Luce, Suppes and Tversky also collaborated over many years in a large project

on the foundations of measurement, resulting in the three volume work that I shall refer

to as KLST. A crucial assumption in many of the systems of measurement they consider

is the Archimedean axiom. For the case of an ordered algebraic field such as the real line,

this axiom requires that, whenever q is a positive quantity, there exists some integer n for

which n q > 1. In the case where q is infinitesimal, this axiom is violated. KLST discuss

variations of this axiom in volume I (Sections 1.4.4, 1.5.2) and in volume III (Section

19.2.3). Furthermore, in volume III (Section 21.7) they argue that one is free to impose

the Archimedean axiom or not on most structures of measurement (see also Robinson, 1951

and Narens, 1974a). An analogy is Cohen’s demonstration that one is free to include or

exclude the axiom of choice from Zermelo-Fraenkel set theory, without fear of contradiction

in either case, as explained by Suppes (1972, pp. 250 and 252). Yet KLST chose not

to pursue the topic of non-Archimedean measurement in any depth, instead referring the

reader to the work of others. Narens (1985) in particular extends some of KLST’s ideas to

measures taking non-standard values, including infinitesimals and infinite numbers. Very

recently, however, Suppes himself has been collaborating with Rolando Chuaqui on other

ideas making use of non-standard analysis.

1



In the case of Bayesian decision theory and the associated theory of games, I am going

to argue that non-Archimedean representations of probability are absolutely essential if

one is going to avoid some crucial difficulties arising from the need to condition on events

that have probability zero. To see why this is important, Section 2 provides two examples

showing how easily paradoxes arise in extensive form games.

To avoid such paradoxes by allowing conditioning on events having probability zero,

several different kinds of ‘extended probabilities’ have been proposed in the past. So, after

some necessary preliminaries, Section 3 begins with a brief history of conditional probabil-

ity systems. Thereafter it gives formal definitions of: (i) complete conditional probability

systems, as considered by Rényi (1955), Myerson (1986), and others; (ii) lexicographic

hierarchies of probabilities with disjoint supports, as considered recently by Blume, Bran-

denburger and Dekel (1991a, b) [henceforward frequently referred to as BBD]; and (iii)

extended logarithmic likelihood ratios, as considered by McClennan (1989a, b). BBD also

made use of a fourth and richer set of lexicographic hierarchies of probabilities with supports

that may not be disjoint, which is defined as well.

Thereafter Section 4 shows that spaces (i)–(iii) above are just three different but equiv-

alent versions of one main or ‘canonical’ space of extended probabilities. By constructing

suitable metrics, the three can even be made into homeomorphic compact metric spaces.

In decision trees with uncertainty, the random moves that occur at different chance

nodes ought to be independent because any cause of dependence ought to be modelled

within the tree. Moreover, knowing the independent probability distributions at different

chance nodes should be enough to determine the entire joint distribution of random moves

in the entire decision tree. While this is all elementary in decision trees with ordinary

probabilities at each chance node, some new conceptual issues need to be resolved when

extended probabilities are being considered. Accordingly, Section 5 considers joint distribu-

tions of pairs of independent random variables. Two different definitions of independence

are considered — namely, almost sure independence, and conditional independence. The

second is more restrictive than the first. However, neither passes the test of allowing the

joint distribution to be inferred from the appropriate independent marginal distributions.

In conventional probability theory, the joint distribution of independent random vari-

ables can be constructed by simply multiplying the marginal distributions. In order that
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extended probabilities should enjoy the same property, it is argued that they should also be

given values in an algebraic field. Only an algebraic field is closed under multiplication and

division (except by zero), as well as under addition and subtraction. Section 6 therefore

begins by presenting the simplest possible non-Archimedean ordered field that includes the

real line �. This is �(ε), defined as the smallest field containing both � and the single pos-

itive infinitesimal denoted by ε. ‘Elementary’ non-Archimedean probability distributions

can then be regarded as having values in �(ε) which are determined by ‘rational probability

functions’ evaluated at ε instead of at a real value. Such probabilities represent directly the

kind of trembles considered previously by Selten (1975) and Myerson (1978). Here and in

later work such as Hammond (1992), it will be argued that no smaller set of probabilities is

adequate for Bayesian decision theory when counterfactuals need to be considered. It is also

shown that the extended probability spaces of Section 3 are equivalent to proper subsets

of this space, so that none of them is rich enough for analysing decision trees or extensive

games. Moreover, whereas ‘canonical’ extended probabilities give rise to real valued con-

ditional probabilities, for rational probability functions even the corresponding conditional

probabilities are generally non-Archimedean.

Section 7 has a brief concluding summary and points ahead to later work making use

of the non-Archimedean probabilities that are introduced in this paper.

2. Motivation: The Zero Probability Problem

2.1. A Team Example

In any equilibrium of a game in extensive form, the probability attached to each de-

viation from an equilibrium strategy is zero. Yet in order to tell whether a player has a

better strategy than in a presumed equilibrium, the reactions of the other players to this

deviation, as prescribed by their equilibrium strategies, must be known. Since the deviation

has probability zero there is no guarantee that, even in equilibrium, these reactions will be

either sensible or credible behaviour at those information sets which are reached with prob-

ability zero in equilibrium. This point has been made especially clearly and forcefully by

Selten (1965, 1973, 1975).

A simple example of the problem is the extensive form game illustrated in Figure 1.

Player I has the move at node n0 and player II at n1. This is a ‘team’ game, in the sense
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(I) (II)
n0

A
−−−−→ n1

a
−−−−→ (2, 2)�D

�d

(1, 1) (0, 0)

Figure 1

of Marschak and Radner (1972), with the two players having identical payoffs at all three

terminal nodes. The set of Nash equilibria is easily computed to consist of:

(i) the pure strategy pair (A, a);

(ii) any strategy pair of the form (D, α a + (1 − α) d) for 0 ≤ α ≤ 1/2, in which player I

chooses a pure strategy and II may have a mixed strategy.

In particular, all the equilibria of type (ii) involve II playing the weakly dominated strategy

d with positive probability. Such equilibria are also ‘subgame imperfect,‘ in the standard

terminology due to Selten (1973). Indeed, the example is very similar to the one originally

used by Selten (1965) to motivate subgame perfect equilibria.

To my mind, however, this subgame imperfection manifests a more fundamental prob-

lem — namely, that prescribed behaviour ought to be ‘dynamically consistent’ in the fol-

lowing sense (cf. Hammond, 1988a, b). Regardless of whether n1 is viewed as a decision

node of the whole tree illustrated in Figure 1, or merely of the subtree whose initial node

is n1, the ‘behaviour set’ that is prescribed for player II — which is of course a non-empty

subset of { a, d } — should be the same. Yet it is absurd to prescribe {d} in the subtree, or

to countenance II using any mixed strategy which gives positive probability to strategy d.

So in the game illustrated dynamic consistency rules out using any mixed strategy giving

positive probability to strategy d.

The example in Figure 1 also illustrates the difficulty in applying Bayesian updating

to probabilistic beliefs in extensive form games. Take the pure strategy Nash equilibrium

of type (ii), namely (D, d). It is a Nash equilibrium because the probability of reaching n1,

where player II has a move, is zero, and so it does not matter that d is not II’s optimal

strategy in the subgame. In fact, given the degenerate distribution that attaches probability

one to the players’ choosing the equilibrium strategies (D, d), the probabilities of d and a
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conditional on player I’s counterfactual choice of A instead cannot be determined just from

Bayesian updating. Nor can II’s expected payoff conditional on player I choosing A instead

of D. Yet there really are well-defined payoffs for player II in the subgame. Thus, given

these subgame payoffs, the conditional probability of d given A should really be zero. So I’s

expected payoff, conditional on deviating to A, should really be 2. This implies that A is

player I’s unique optimal strategy, and so excludes the subgame imperfect Nash equilibrium

(D, d).

To conclude, Bayesian updating breaks down in any subgame that is reached counter-

factually, with probability zero, in Nash equilibrium. Instead, some other way has to be

found of circumventing zero probabilities so that player II’s conditional expected payoffs

are well defined, and so that player I is forced to have realistic conditional beliefs about

what II’s strategic reaction would be if player I were to choose A after all. Sections 3–5

below discuss the several kinds of extended probability with which game theorists have

sought to remedy this problem. Section 6 will propose using a particular set of infinitesimal

probabilities.

2.2. A Single Person Example

The example of Figure 1 had two players — albeit two players with identical payoffs.

A similar problem arises even in single person decision theory, however, as is illustrated by

the simple one person game shown in Figure 2.

n0

0
−−−−→ n1

a
−−−−→ 2�1

�d

1 0

Figure 2

This is just a one-person version of the team game shown in Figure 1. The initial node

n0 of the decision tree is a chance node at which there is a probability one of making the

transition down to the terminal node below where the agent’s payoff is 1, and there is a

probability zero of making the transition across to the decision node n1 on the right. At

n1 the agent has the choice of moving to the terminal node on the right where the agent’s

payoff is 2, or of moving down to the terminal node below where the payoff is 0. In the
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normal form of this game the agent has two strategies a and d, each of which yields the

same expected payoff 1. Thus any mixture of the two strategies a and d is an equilibrium

of this game in normal form. Yet dynamic consistency implies that the same behaviour —

any mixture of the two strategies a and d — should be an equilibrium in the subtree which

starts with the decision node n1. In this subtree, however, the agent effectively confronts an

even simpler decision problem: the choice between a with payoff 2 and d with payoff 0. The

only appropriate equilibrium behaviour, of course, involves choosing a for sure. So there is

no way of obtaining dynamically consistent behaviour if one considers just the normal form

of the one person game illustrated in Figure 2.

One might argue, as I did in Hammond (1988a, b), that the example of Figure 2 is

easily dealt with by excluding from each single person decision tree the result of any chance

move which occurs with zero probability. Then the tree of Figure 2, for example, would

be pruned so that it contans only the initial node n0, giving rise directly to the payoff 1.

There is no need to contemplate what decision should be made at n1 until after a zero

probability even has actually occurred. This simple way out of the difficulty is no longer

available, however, when credible equilibria of multi-person games are being considered.

Indeed, Figure 1 illustrates how the same difficulty arises even in team games where there

is perfect information. In that example, it is not appropriate for player I simply to choose

D and then ignore what happens in the subgame that is reached with zero probability.

3. Four Spaces of Extended Probabilities

3.1. Preliminaries

Let Ω be the non-empty sample space Ω, which may be finite or infinite. Let ∆(Ω)

denote the set of simple probability measures p(·) on the set Ω — i.e., the set of additive

functions p(·) : P(Ω) → [0, 1] ⊂ � which are defined on the power set P(Ω) of all subsets of

Ω and which, for some non-empty finite set F ⊂ Ω, satisfy the two restrictions that

p(E) = p(E ∩ F ) (all E ⊂ Ω) and p(F ) = 1. (1)

It loses no generality to suppose that F has been chosen to satisfy p(ω) > 0 for all ω ∈ F ,

in which case F is called the support of p(·).
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Suppose that F is a non-empty and finite subset of the sample space Ω. Notice that the

set ∆(F ) is equivalent to the well defined subset of ∆(Ω) whose members satisfy (1). More-

over, ∆(F ) can be regarded as consisting of the conditional probability measures P (·|F )

on F which satisfy P (F |F ) = 1. Also, let ∆0(F ) denote the subset of interior probability

measures p(·) ∈ ∆(F ) on F satisfying p(ω) > 0 for all ω ∈ F . Thus ∆0(F ) consists of those

measures in ∆(F ) whose support is the whole set F .

3.2. Complete Conditional Probability Systems

An obvious attempt to remedy the zero probability problem is to treat conditional

probabilities as the basis of probability theory. As Rényi (1964) points out, this idea is

actually quite old, going back to works such as Keynes (1921), Koopman (1940), Barnard

(1949), and Good (1950). Some early formal treatments can be found in Popper (1934,

1938) and de Finetti (1936, 1949). The latter explicitly allowed conditioning on events with

probability zero, but did so without necessarily invoking σ-additivity.

Kolmogorov’s (1933) standard measure-theoretic framework was later generalized by

Rényi (1955, 1956, 1964, 1970) and Császár (1955), who introduced ‘conditional probability

spaces’ with a σ-algebra of events and also an algebra of ‘conditioning events.’ For a rather

different axiomatization, see Krantz, Luce, Suppes and Tversky (1971, pp. 220–8). From

the point of view of this paper, however, the key contribution came from allowing some of

the conditioning events to have probability zero. Of course, it is common for continuous

density functions to be conditioned on zero probability events — for a formal discussion of

some of the problems then raised, see Blackwell and Ryll-Nardzewski (1963) and Blackwell

and Dubins (1975). Here, such conditioning occurs even for discrete distributions, as in

Lindley’s (1965, especially p. 6) elementary textbook presentation.

In fact, Popper’s (1938) earlier article was explicitly designed to lay out a system of

axioms far more general than those of Kolmogorov or even Rényi — see Popper (1959, pp.

318–348). ‘Extended’ conditional probabilities have also been discussed by other philoso-

phers such as Stalnaker (1970), Lewis (1973), Harper (1975), and Levi (1980) who, following

Popper, were concerned with counterfactuals and conditional logic — see also the collection

of papers in Harper, Stalnaker and Pearce (1981). Some work in a similar vein, but with

game theory explicitly in mind, is due to Selten and Leopold (1982).
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What Rényi and Czászár called ‘conditional probability spaces’ were introduced into

game theory by Myerson (1986) under the name of ‘complete conditional probability sys-

tems’ (or CCPS’s for short). They have since been used by Fudenberg and Tirole (1991),

amongst others. Such systems specify probabilities conditional even on zero probability

events. Following an idea due to Kreps and Wilson (1982, p. 874), Myerson defined this

set of CCPS’s as the closure of the set of usual conditional probabilities derived from the

interior probability distributions. The definition given below is more direct than Myerson’s,

and is equivalent to Lindley’s (1965, p. 6).

First, if F is any non-empty finite subset of the sample space Ω, the domain of event

pairs for which conditional probabilities ought to be defined is

E(F ) := { (E, E′) | ∅ �= E ⊂ E′ ⊂ F }. (2)

A complete conditional probability system (CCPS) on F is a mapping P (·|·) : E(F ) → [0, 1]

that defines conditional probabilities P (E1|E2) for all (E1, E2) ∈ E(F ) which satisfy the

conditions

P (·|E) ∈ ∆(E) (all non-empty E ⊂ F ); (3)

P (E1|E3) = P (E1|E2)P (E2|E3) (all non-empty E1 ⊂ E2 ⊂ E3 ⊂ F ). (4)

When P (E2|E3) �= 0 the restrictions (4) are equivalent to Bayes’ rule that

P (E1|E2) = P (E1|E3)/P (E2|E3). (5)

Unlike (5), however, (4) is also valid and necessary even when P (E2|E3) = 0.

Let ∆C(F ) denote the set of all such CCPS’s on the finite set F . Evidently, for any

given CCPS P (·|·) ∈ ∆C(F ), there exists a unique corresponding probability distribution

p(·) ∈ ∆(F ) given by p(E) = P (E|F ) (all non-empty E ⊂ F ). Moreover, when P (E1|E2) >

0 everywhere in E(F ) it is obvious that p(·) ∈ ∆0(F ). Conversely, for any interior p(·) ∈
∆0(F ) there will be a unique corresponding CCPS P (·|·) ∈ ∆C(F ) defined for all (E1, E2) ∈
E(F ) by the obvious equation

P (E1|E2) = p(E1)/p(E2). (6)

But this definition evidently fails in the more troublesome case when p(·) �∈ ∆0(F ) and

moreover there is a subset E of F with at least two distinct members for which p(E) = 0.
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There is one remaining marginal case when p(·) �∈ ∆0(F ), but when there also exists a

unique state ω ∈ F such that p(ω) = 0. Then (6) determines P (E1|E2) throughout E(F )

except when E1 = E2 = {ω}, in which case one must of course take P ({ω}|{ω}) = 1.

3.3. Lexicographic Conditional Probability Systems

Lexicographic utilities were originally introduced by Hausner (1954), Thrall (1954).

Thereafter they were considered further by Chipman (1960, 1971a, 1971b), Richter (1971)

and Skala (1975). However, where these works consider lexicographic expected utility at

all, it is as the expected value of lexicographic utility with respect to ordinary probabilities,

rather than as the expected value of ordinary utility with respect to lexicographic probabil-

ities. Chernoff (1954, pp. 440–1), on the other hand, did provide an example of a decision

criterion which is equivalent to a form of lexicographic expected utility maximization and

is related to the use of infinitesimal probabilities. Much more systematic were the articles

of Rényi (1955, 1956) and Császár (1955). They proved the existence of a ‘dimensionally

ordered set of measures’ — i.e., a (possibly infinite) lexicographic hierarchy of probability

measures — which can be used to represent conditional probabilities when some of the con-

ditioning events are allowed to have probability zero. More recently, in a non-probabilistic

framework, Spohn (1988, 1990) has used a hierarchy of increasingly exceptional propositions

to represent some important aspects of non-monotonic reasoning.

In their work on sequential equilibrium in extensive form games, Kreps and Wilson

(1982) needed to describe beliefs conditional on reaching an information set which occurs

with probability zero. To do so they considered the ‘lexicographic consistency’ of a hier-

archy of probabilistic hypotheses. This idea has been taken much further by BBD, who

give a systematic treatment of general lexicographic hierarchies of subjective probability

distributions. They show how such hierarchies can be used to justify Myerson’s (1978) con-

cept of proper equilibrium for games in normal form, as well as Selten’s (1975) ‘trembling

hand perfect’ equilibria. The formulation below is somewhat different because this paper

discusses variable objective probabilities, rather than a single fixed subjective probability

distribution over uncertain states of the world.

Formally, let F be any finite non-empty subset of the sample space Ω. Then a lex-

icographic probability system (or LPS) on F is any ordered finite collection or hierarchy
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p = 〈pk〉Kk=0 of probability distributions pk(·) ∈ ∆(F ) satisfying the restriction that, for

each ω ∈ F , there exists at least one integer k in the range k = 0 to K for which pk(ω) > 0.

In other words, every state ω ∈ F is given positive probability by at least one distribution

in the hierarchy. Equivalently, it must be true that
∑K

k=0 pk(ω) > 0. Let ∆∗
L(F ) denote

the set of all such LPS’s.

The intended interpretation of any such hierarchy is that pk takes infinite precedence

over pk′ whenever k < k′. It should be noted that BBD (p. 66) did not impose the restriction

that
∑K

k=0 pk(ω) > 0 for every ω ∈ F . But they did observe that it would be satisfied for

events which are not ‘Savage null’ in their theory of subjective probability. In Hammond

(1988b, 1992) I argue that no events should be Savage null anyway.

BBD also suggested restricting further the set of LPS’s by requiring the distributions

pk(·) ∈ ∆(F ) (k = 0 to K) to have pairwise disjoint supports Fk = {ω ∈ F | pk(ω) > 0 },
which therefore partition the set F . This additional restriction turns out to be important,

and those LPS’s which satisfy it are called lexicographic conditional probability systems (or

LCPS’s) (BBD, p. 71). The space of all such LCPS’s will be denoted by ∆L(F ).

At first, the disjoint supports requirement seems only natural. Any ω ∈ Fk must be

given positive probability by the k-th member of the LPS hierarchy, so there seems no

good reason to include it in any other Fk′ that has k′ > k. This intuition turns out to be

inadequate, however, as will be seen later in Section 5 and in later work. Moreover, BBD

(p. 89) show how imposing disjoint supports may exclude all possible ‘lexicographic’ Nash

equilibria from a game in normal form.

It will turn out that there is a one-to-one correspondence between ∆C(F ) and ∆L(F ).

This will be demonstrated in Section 4 below, making use of a third kind of extended

probability that is introduced next.

3.4. Logarithmic Likelihood Ratio Functions

The last set of extended probabilities to be considered is McLennan’s (1989a) space of

‘consistent conditional systems.’ These specify, for all possible pairs ω, ω′ ∈ F , the logarithm

of the likelihood ratio. Thus, given the orthodox probability distribution p(·) ∈ ∆(F ), one

should have

µ(ω, ω′) = ln[p(ω)/p(ω′)] (7)
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unless either p(ω) or p(ω′) is zero. But µ(ω, ω′) is also allowed to have one of the two

‘extended’ real values −∞ and +∞, so that (7) is a valid definition unless p(ω) = p(ω′) = 0.

Thus µ(ω, ω′) will be either −∞ or +∞ if just one of the two probabilities p(ω) and p(ω′)

is zero. But µ(ω, ω′) cannot be determined from p(ω) and p(ω′) alone if both are zero,

in which case it becomes necessary to consider the conditional probabilities of ω and ω′

given the zero probability event {ω, ω′ }. These conditional probabilities, of course, are not

defined for orthodox probability distributions, but must be for the extended probabilities

which are the subject of this Section.

For any ω, ω′, ω′′ ∈ F , and whenever all the logarithmic likelihood ratios are well-

defined by (7), the standard properties of logarithms imply immediately that

µ(ω, ω) = 0; µ(ω, ω′) + µ(ω′, ω) = 0; µ(ω, ω′) + µ(ω′, ω′′) + µ(ω′′, ω) = 0. (8)

But even if some of these logarithmic likelihoods are not well-defined by (7), the restrictions

(8) are still imposed, naturally enough. Note that the second and third equations of (8)

should embody the convention that

−∞ + ∞ + x = 0 for all x ∈ [−∞,+∞]. (9)

Formally, let �∗ denote the extended real line [−∞,+∞]. Then, given any finite subset

F of the sample space Ω, a logarithmic likelihood ratio function (or LLRF) is a mapping

µ(·, ·) : F × F → �∗ which is defined for all ordered pairs (ω, ω′) ∈ F × F , and which

also satisfies the linear restrictions (8), interpreted according to the convention (9) where

necessary. The space ∆M (F ) is defined as the set of all such LLRF’s. This space is linear,

as the closure in (�∗)F×F of a linear subspace of �F×F . Since ∆0(F ) is evidently #F − 1-

dimensional, and is isomorphic to a dense subset of ∆M (F ), it follows that ∆M (F ) must

be a subspace of dimension #F − 1.
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4. Equivalence and Homeomorphism

4.1. An Equivalence Theorem

Three natural mappings

ψLC : ∆L(F ) → ∆C(F ), ψCM : ∆C(F ) → ∆M (F ), ψML : ∆M (F ) → ∆L(F ) (10)

will now be defined. It will then be shown that these mappings have the property that the

threefold composition ψML ◦ ψCM ◦ ψLC is the identity mapping from ∆L(F ) into itself.

So, given any member of any one of the three spaces ∆L(F ), ∆C(F ), and ∆M (F ), there

exist unique corresponding members of each of the other two. Thus, of the four spaces of

extended probabilities introduced in Section 3, the three smallest are actually equivalent.

First, the mapping ψLC will be defined. For any hierarchy p = 〈pk〉Kk=0 ∈ ∆L(F ) and

any non-empty E ⊂ F , let kp(E) := min { k | pk(E) > 0 }. Now suppose that ∅ �= E ⊂
E′ ⊂ F . Evidently kp(E) ≥ kp(E′). So define P (E|E′) = ψLC(p)(E|E′) to satisfy

P (E|E′) =

{
0 if kp(E) > kp(E′);

pk(E)/pk(E′) if kp(E) = kp(E′) = k.
(11)

Then it is routine to check that P (·|·) satisfies both (3) and (4), so that ψLC(p) ∈ ∆C(F ).

Second, the mapping ψCM will be defined so that, for any CCPS P (·|·) ∈ ∆C(F ) and

any pair ω, ω′ ∈ F , one has

µ(ω, ω′) = ψCM (P )(ω, ω′) = ln
[

P ({ω}|{ω, ω′ })
P ({ω′}|{ω, ω′ })

]
. (12)

Now, for all triples E = {ω, ω′, ω′′ } ⊂ F , condition (4) and definition (12) imply that

ln
[

P ({ω}|E)
P ({ω′}|E)

]
= ln

[
P ({ω}|{ω, ω′ })
P ({ω′}|{ω, ω′ }) × P ({ω, ω′ }|E)

P ({ω, ω′ }|E)

]
= µ(ω, ω′) (13)

unless P ({ω, ω′}|E) = 0 and so P ({ω′′}|E) = 1. Then it is trivial to check that (8) holds

except when there exists at least one state ω∗ ∈ E for which P ({ω∗}|E) = 0. Even in this

case, however, there must still be some extended real number x ∈ [−∞,+∞] such that

µ(ω, ω′) + µ(ω′, ω′′) + µ(ω′′, ω) = −∞ + ∞ + x (14)

which must be zero because of the convention (9). Therefore (8) is true in every case, and

so µ = ψCM (P ) must indeed be an LLRF belonging to the space ∆M (F ).

12



Third, the mapping ψML : ∆M (F ) → ∆L(F ) will be defined in several stages. To

begin with, for any given LLRF µ ∈ ∆M (F ), define the binary relation � on F by

ω � ω′ ⇐⇒ µ(ω, ω′) > −∞. (15)

Note that � is complete and transitive because of the restrictions (8). So one can construct

the hierarchy Sk, Fk (k = 0, 1, 2, . . .) recursively, starting with S0 := F , and then setting

Fk := {ω ∈ Sk | ω′ ∈ Sk =⇒ ω � ω′ }; Sk+1 := Sk \ Fk. (16)

For k = 0, 1, 2, . . ., the constructed sets must satisfy Sk+1 ⊂ Sk and also, because � is

complete and transitive, Sk \ Sk+1 = Fk �= ∅ whenever Sk �= ∅. Because F is finite and

F = S0 ⊃ S1 ⊃ S2 ⊃ . . . ⊃ Sk ⊃ Sk+1 . . ., it follows that FK = SK and so SK+1 = ∅ for

some finite K. Note too that the sets Fk = Sk \ Sk+1 (k = 0 to K) are pairwise disjoint,

and so form a finite partition of F . Now define the unique hierarchy 〈pk(·)〉Kk=0 = ψML(µ)

corresponding to µ ∈ ∆M (F ) so that, for all k = 0 to K and ω ∈ F , one has

pk(ω) =

{
0 if ω �∈ Fk;

1/
∑

ω′∈Fk
exp[µ(ω′, ω)] if ω ∈ Fk.

(17)

Because µ(ω′, ω) < +∞ for all ω′, ω ∈ Fk, it follows that pk(ω) > 0 for all ω ∈ Fk. Moreover,

given any fixed ω̄ ∈ Fk, together (17) and (8) imply that, for all ω ∈ Fk, one must have

1
pk(ω)

=
∑

ω′∈Fk

exp[µ(ω′, ω)] =
∑

ω′∈Fk

exp[µ(ω′, ω̄) + µ(ω̄, ω)]

= exp[µ(ω̄, ω)]
∑

ω′∈Fk

exp[µ(ω′, ω̄)].
(18)

Now (18) and (8) imply that

pk(ω) = exp[µ(ω, ω̄)]/
∑

ω′∈Fk

exp[µ(ω′, ω̄)]. (19)

Hence
∑

ω∈Fk
pk(ω) = 1, confirming that pk(·) ∈ ∆0(Fk). Thus ψML(µ) is indeed an LCPS

in the space ∆L(F ), and so ψML : ∆M (F ) → ∆L(F ).

Finally, it must be shown that the threefold composition ψML ◦ ψCM ◦ ψLC is the

identity mapping from ∆L(F ) into itself. Starting with any LCPS p = 〈pk〉Kk=0 ∈ ∆L(F ),

the corresponding CCPS P (·|·) = ψLC(p) ∈ ∆C(F ) is given by (11). For each ω ∈ F ,

13



let kp(ω) denote the unique integer k for which pk(ω) > 0. Because of (12) and (13), the

unique corresponding LLRF µ = ψCM ◦ ψLC(p) ∈ ∆M (F ) must be such that, whenever

ω, ω′ ∈ F , then

µ(ω, ω′) = ln
[

P ({ω}|{ω, ω′ })
P ({ω′}|{ω, ω′ })

]
=




+∞, if kp(ω) < kp(ω′);

ln[pk(ω)/pk(ω′)], if kp(ω) = kp(ω′) = k;

−∞, if kp(ω) > kp(ω′).

(20)

Next, we find the unique LCPS q which results from applying the mapping ψML◦ψCM ◦ψLC

to the LCPS p. Because of (20), the corresponding ordering of states ω ∈ F given by (15)

must satisfy

ω � ω′ ⇐⇒ µ(ω, ω′) > −∞ ⇐⇒ kp(ω) ≤ kp(ω′). (21)

For k = 0 to K, (20) and (21) evidently imply that the construction (16) leads to

Fk = {ω ∈ Sk | ω′ ∈ Sk =⇒ kp(ω) ≤ kp(ω′) } = arg min
ω

{ kp(ω) | ω ∈ Sk };

Sk+1 = Sk \ Fk = {ω ∈ Sk | ∃ω′ ∈ Sk : kp(ω) > kp(ω′) }.
(22)

But then it follows by induction on k that

Fk = {ω ∈ F | kp(ω) = k } and Sk+1 = F \ ∪k
j=1 Fj = {ω ∈ F | kp(ω) > k } (23)

for k = 0 to K. However, for all ω ∈ Fk, the construction (17) and the equation (20) above

together imply that q = ψML(µ) must satisfy

1
qk(ω)

=
∑

ω′∈Fk

exp[µ(ω′, ω)] =
∑

ω′∈Fk

pk(ω′)
pk(ω)

=
1

pk(ω)
. (24)

Thus, ψML ◦ψCM ◦ψLC is indeed the identity mapping from ∆L(F ) into itself. So the three

spaces must be equivalent, as claimed.
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4.2. Homeomorphic Metric Spaces

A collection of metrics for each of the three spaces of extended probabilities ∆L(F ),

∆C(F ), and ∆M (F ) will now be constructed in a way that creates a homeomorphism

between each pair of spaces. This collection will be based upon the particular metric dC

for the space ∆C(F ) which is defined, for all pairs P, Q ∈ ∆C(F ), by

dC(P, Q) := max
ω,ω′∈F

{∣∣P ({ω}|{ω, ω′ }) − Q({ω}|{ω, ω′ })
∣∣} . (25)

After this definition for ∆C(F ), the metrics on the other two spaces will be constructed

to ensure that homeomorphism is automatically satisfied. This involves defining the corre-

sponding metric dM for ∆M (F ) by

dM (λ, µ) := dC(ψ−1
CM (λ), ψ−1

CM (µ)) = max
ω,ω′∈F

{∣∣∣∣ 1
1 + expλ(ω′, ω)

− 1
1 + expµ(ω′, ω)

∣∣∣∣
}

(26)

for all λ, µ ∈ ∆M (F ). The corresponding metric dL for ∆L(F ) is given by

dL(q, r) := dC(ψLC(q), ψLC(r)) = max
ω,ω′∈F

{|δq(ω, ω′) − δr(ω, ω′)|} (27)

for all q, r ∈ ∆M (F ) where, given any p ∈ ∆L(F ) and any pair ω, ω′ ∈ F ,

δp(ω, ω′) := ψLC(p)({ω}|{ω, ω′ }) =




1 if kp(ω) < kp(ω′);

pk(ω)/[pk(ω) + pk(ω′)] if kp(ω) = kp(ω′) = k;

0 if kp(ω) > kp(ω′).

denotes the corresponding conditional probability of ω given {ω, ω′ }.

Note first that all the three corresponding functions dC , dM , and dR really are metrics.

This is because each satisfies the usual triangle inequality, and because dM (λ, µ) = 0, for

instance, implies that λ(ω, ω′) = µ(ω, ω′) for all ω, ω′ ∈ F , so that λ = µ in ∆M (F ). Then

it is obvious from these constructions that the three metric spaces

(∆C(F ), dC), (∆M (F ), dM ), (∆L(F ), dL) (28)

are homeomorphic. Moreover, (∆C(F ), dC) is clearly compact in the finite dimensional

Euclidean space �E(F ), as a closed subset of the Cartesian product set [0, 1]E(F ). Therefore

all three spaces are compact. In fact, it follows from McLennan (1989b) that all three spaces

can be made homeomorphic to the closed unit ball in �#F−1.
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5. Independence and Joint Distributions

5.1. Almost Sure Independence

Consider a sample space in the form of a twofold Cartesian product Ω = ΩA × ΩB .

Suppose too that the non-empty finite subset F ⊂ Ω can be expressed as F = FA × FB

where FA ⊂ ΩA and FB ⊂ ΩB . For example, FA and FB could be thought of as the moves

which nature might make at two different chance nodes nA and nB of a particular decision

tree. The latter part of BBD (1991a) distinguishes three different ways in which a joint

extended probability distribution on pairs (ωA, ωB) ∈ FA×FB might be independent. This

section considers two of those ways, or minor variations of them; the third way is the topic

of Section 6.5.

Of BBD’s three forms of independence, the weakest is when the joint distribution is

an ‘approximate product measure’ (p. 75). This is identical to the following definition. Say

that the joint complete conditional probability system P (·|·) ∈ ∆C(FA × FB) is almost

surely independent if its support is the Cartesian product of two subsets FA
0 ⊂ FA and

FB
0 ⊂ FB , and if there exist marginal distributions P i(·) ∈ ∆(F i

0) (i = A, B) for which

P (EA × EB |FA
0 × FB

0 ) = PA(EA) × PB(EB)

whenever EA ⊂ FA
0 and EB ⊂ FB

0 . Really, this merely amounts to having the two random

variables ωA and ωB be independent on their joint support FA
0 × FB

0 .

5.2. Conditional Independence

Given two non-empty finite subsets FA and FB of the respective sample spaces ΩA

and ΩB , say that the joint CCPS P (·|·) ∈ ∆C(FA × FB) is conditionally independent

if there exist two component CCPS’s P i(·|·) ∈ ∆C(F i) (i = A, B) such that, whenever

∅ �= Ei
1 ⊂ Ei

2 ⊂ F i for i = A, B, then

P (EA
1 × EB

1 |EA
2 × EB

2 ) = PA(EA
1 |EA

2 ) PB(EB
1 |EB

2 ). (29)

A similar definition has been put forward independently by Battigalli (1991, 1992). Also,

conditional independence is similar to BBD’s (p. 74) concept of ‘stochastically independent

preferences.’ In fact Battigalli and Veronesi (1992) have recently proved that, under suitable
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decision-theoretic assumptions, preferences are stochastically independent if and only if

subjective probabilities of states that are not Savage null are conditionally independent.

Note in particular how (29) implies that when EB = EB
1 = EB

2 , then

P (EA
1 × EB |EA

2 × EB) = PA(EA
1 |EA

2 ). (30)

So knowledge of the event EB in the sample space ΩB gives no information to affect the

CCPS PA on FA. Nor does knowing the event EA ⊂ ΩA give any information to affect PB

on FB , because

P (EA × EB
1 |EA × EB

2 ) = PB(EB
1 |EB

2 ). (31)

Conversely, the two conditions (30) and (31) jointly imply (29) because

P (EA
1 × EB

1 |EA
2 × EB

2 ) = P (EA
1 × EB

1 |EA
2 × EB

1 ) P (EA
2 × EB

1 |EA
2 × EB

2 ). (32)

It should be noted that conditional independence really is a strengthened form of almost

sure independence. For suppose that the joint CCPS P (·|·) ∈ ∆C(FA×FB) is conditionally

independent, and so satisfies (29) for a suitable pair of CCPS’s P i on F i (i = A, B). Now

let Ei (i = A, B) be the support of P i(·|F i). Then (29) implies that

P (EA × EB |FA × FB) = PA(EA|FA) PB(EB |FB) = 1 (33)

and also

P ({(ωA, ωB)}|EA × EB) = PA({ωA}|EA) PB({ωB}|EB) > 0 (34)

for all pairs (ωA, ωB) ∈ EA × EB , as required for almost sure independence of the joint

CCPS on the support EA × EB .

Almost sure independence, however, does not imply conditional independence. To see

this, suppose that F i = {ωi
j | j = 1, 2, 3 } for i = A, B. Consider the joint LCPS 〈p0, p1〉

on the product space F := FA × FB which has

p0(ωA
1 , ωB

1 ) = p0(ωA
1 , ωB

2 ) = 1
3 ; p0(ωA

2 , ωB
1 ) = p0(ωA

2 , ωB
2 ) = 1

6

on the support F0 = {ωA
1 , ωA

2 } × {ωB
1 , ωB

2 }, together with

p1(ωA
3 , ωB

1 ) = p1(ωA
3 , ωB

2 ) = p1(ωA
1 , ωB

3 ) = p0(ωA
2 , ωB

3 ) = 1
6 ; p0(ωA

3 , ωB
3 ) = 1

3
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on the support F1 = F \ F0. Then the first order joint distribution p0 ∈ ∆(FA × FB) is

independent on its support F0 because it corresponds to the product of the two distributions

pA
0 ∈ ∆(FA) and pB

0 ∈ ∆(FB) given by

pA
0 (ωA

1 ) = 2
3 ; pA

0 (ωA
2 ) = 1

3 ; pA
0 (ωA

3 ) = 0;

pB
0 (ωB

1 ) = 1
2 ; pB

0 (ωB
2 ) = 1

2 ; pB
0 (ωB

3 ) = 0.
(35)

Nevertheless, the three corresponding conditional LCPS’s 〈pA
0 (·|ωB

j ), pA
1 (·|ωB

j )〉 ∈ ∆L(FA)

(j = 1, 2, 3) must satisfy

pA
0 (·|ωB

1 ) = pA
0 (·|ωB

2 ) = pA
0 (·); pA

0 (ωA
1 |ωB

3 ) = pA
0 (ωA

1 |ωB
3 ) = 1

4 ; pA
0 (ωA

3 |ωB
3 ) = 1

2 .

The corresponding conditional CCPS’s are evidently not conditionally independent. Sim-

ilarly, the three corresponding conditional LCPS’s 〈pB
0 (·|ωA

j ), pB
1 (·|ωA

j )〉 ∈ ∆L(FB) (j =

1, 2, 3) must satisfy

pB
0 (·|ωA

1 ) = pB
0 (·|ωA

2 ) = pB
0 (·); pB

0 (ωB
1 |ωA

3 ) = pB
0 (ωB

1 |ωA
3 ) = 1

4 ; pB
0 (ωB

3 |ωA
3 ) = 1

2 .

Once again, the corresponding conditional CCPS’s are not conditionally independent.

5.3. Determining Joint Distributions

One defect of both LPS’s and LCPS’s is that in extensive games one often wants

different players’ strategies at different information sets to be stochastically independent.

While the joint distribution of all the players’ strategy choices can be specified as a LPS,

this cannot easily be expressed in the usual way as the product of the LPS’s attached to

each individual player’s strategy choice. Probabilities at different information sets need to

be multiplied in order to compound them into the probabilities of different pure strategy

profiles. With an entire lexicographic hierarchy of probabilities to keep track of, a suitable

rule of multiplication is not immediately obvious.

In fact, a rather serious problem remains. For suppose that FA = {ωA
1 , ωA

2 } and

FB = {ωB
1 , ωB

2 }. Consider the two marginal CCPS’s given by

PA({ωA
1 }|FA) = PB({ωB

1 }|FB) = 1; PA({ωA
2 }|FA) = PB({ωB

2 }|FB) = 0. (36)

Now we face the question of what the joint distribution on the space F = FA×FB must be.

Unlike ordinary independent probabilities, however, knowledge of the independent marginal
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CCPS’s is insufficient to determine the joint distribution. Indeed, consider the following

one dimensional continuum of joint LCPS’s pα = 〈pα
k (·)〉Kα

k=0 ∈ ∆L(F ) parametrized by α

(0 ≤ α ≤ 1). Suppose that K0 = K1 = 3, Kα = 2 (0 < α < 1), while

pα
1 (ωA

1 , ωB
2 ) = 1 − pα

1 (ωA
2 , ωB

1 ) = α (0 < α < 1)

and that the hierarchical supports 〈pα
k (·)〉Kα

k=0 satisfy

Fα
0 = { (ωA

1 , ωB
1 ) } (0 ≤ α ≤ 1); Fα

1 = { (ωA
1 , ωB

2 ), (ωA
2 , ωB

1 ) } (0 < α < 1)

F 0
1 = F 1

2 = { (ωA
1 , ωB

2 ) }; F 1
1 = F 0

2 = { (ωA
2 , ωB

1 ) };

Fα
2 = F 0

3 = F 1
3 = { (ωA

2 , ωB
2 ) } (0 < α < 1).

All unspecified probabilities must then be either 0 or 1. As LCPS’s, all these distributions

are quite different, of course. Yet the corresponding conditional distributions are given by

(36) and so all satisfy the independence conditions (29) above, as is easily verified. The

problem is that our spaces of extended probabilities are still not rich enough to allow joint

distributions to be inferred uniquely from their independent marginal distributions. Nor

are the first two definitions of independence strict enough.

BBD (p. 74) suggest the obvious remedy, which is to consider products of (non-

Archimedean) probability measures. Yet they do not consider in any detail which of the

multitude of different possible non-Archimedean ordered fields should represent such mea-

sures (though the proof of their Theorem 6.1 relies on an ultrafilter construction due to

Richter (1971), thus suggesting that they are willing to allow the full nonstandard space of

hyperreals). The next section considers one very particular candidate for the field whose

members should represent probabilities — namely, the smallest and simplest ordered field

that has a chance of meeting all the requirements of decision and game theory because it is

non-Archimedean and also extends the real line.
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6. Non-Archimedean Probabilities

6.1. An Elementary Non-Archimedean Ordered Field

An (algebraic) field is a set G, together with the algebraic operations + (addition), ·
(multiplication), and the two corresponding identity elements 0 and 1. The set G must be

closed under these two algebraic operations. The usual properties of real number arithmetic

have to be satisfied — i.e., addition and multiplication both have to be commutative and

associative, the distributive law must be satisfied, and every element of x ∈ G must have

both an additive inverse −x and a multiplicative inverse 1/x, except that 1/0 is undefined.

An ordered field also contains a binary relation > which is a total order of G satisfying 1 > 0,

as well as the obvious properties that x+y > x+z =⇒ y > z and that x ·y > x ·z =⇒ y > z

whenever x > 0. Equivalently, it should be true that y > z ⇐⇒ y−z > 0, and that the set

of positive elements in G is closed under addition and multiplication — as Robinson (1973),

for instance, points out. Both the real line and the rationals are examples of ordered fields.

Robinson (1973, p. 88–9) also discusses the particular elementary ordered field which I

shall denote by �(ε). It is the smallest field generated by combining the real line � with the

single positive infinitesimal ε. It may help to think of ε as respresenting a fixed sequence of

positive real numbers that converges to zero, such as ε = 〈1/n〉∞n=1, or ε = 〈10−n〉∞n=1. Note

first that, since �(ε) must be closed under addition and multiplication, its members have

to be all the ‘rational’ functions which can be expressed as ratios

f(ε) =
A(ε)
B(ε)

=
a0 + a1 ε + a2 ε2 + · · · + an εn

b0 + b1 ε + b2 ε2 + · · · + bm εm
=

∑n
i=0 ai εi∑m
i=0 bi εi

(37)

of two polynomial functions A(ε), B(ε) of the indeterminate ε with real coefficients; moreover

not all the coefficients of the denominator B(ε) can be zero. Actually, after eliminating any

leading zeros a0 = a1 = . . . = ak−1 = b0 = b1 = . . . = bj−1 = 0 and then dividing

all coefficients of both the numerator and denominator of (37) by the leading non-zero

coefficient bj of the denominator, any member of �(ε) assumes the normalized form

f(ε) =
∑n

i=k ai εi

εj +
∑m

i=j+1 bi εi
(38)

for some integers j, k ≥ 0, where ak �= 0 unless f(ε) = 0. Note too that each real number

r ∈ � can be expressed as r = r/1, and so has the form (38) with j = k = m = n = 0 and

a0 = r. Thus � ⊂ �(ε).
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It remains to be shown that �(ε) really is an ordered field. The relation > will be defined

so that, when f(ε) is in the normalized form (38), then f(ε) > 0 if and only if ak > 0. This

is entirely natural when ε is an infinitesimal, because this condition is equivalent to having

the corresponding real valued rational function f(x) be positive for all small positive real

x. From this definition, it follows easily that either f(ε) > 0 or f(ε) < 0 unless f(ε) = 0, so

that the order is indeed total. And it is easy and routine to check that the corresponding

set of positive elements is closed under addition and multiplication. In particular, x−y > 0

and y − z > 0 imply that x − z = (x − y) + (y − z) > 0, thus verifying that > is transitive.

Finally, �(ε) is non-Archimedean because n ε < 1 for every integer n.

The non-Archimedean ordered field �(ε) is obviously much smaller and easier to de-

scribe than many others, including the hyperreal line ∗� which is generally used in non-

standard analysis. It is also simpler than the field L introduced by Levi-Civita (1892/3),

whose members can be expressed as generalized power series
∑

k=1 ak ενk with real coef-

ficients ak and real powers νk (ν = 1, 2, . . .), such that the infinite sequence νk is strictly

increasing and unbounded above. For other properties of the field L, see Laugwitz (1968)

and also Lightstone and Robinson (1975). For interesting historical and philosophical dis-

cussions of the infinitesimals, see Robinson (1966, ch. 10) as well as Stroyan and Luxemburg

(1976).

This paper considers only probability distributions over finite sets. Probabilities will

be represented by members of �(ε), satisfy finite additivity, and sum to 1 exactly. For

countably additive non-Archimedean probability measures over general measurable spaces,

however, it would be natural to extend �(ε) to a field that is closed under countable as

well as finite summation. This suggests the need to consider the space �∞(ε) of normalized

ratios of power series having the form

f∞(ε) =
∑∞

i=k ai εi

εj +
∑∞

i=j+1 bi εi
. (39)

for some integers j, k ≥ 0. For example, probabilities with values in �∞(ε) may prove

important for the theory of games with compact strategy sets in arbitrary metric spaces —

cf. Simon’s (1987) discussion of ‘local’ trembling hand perfection.

Since each member of �∞(ε) can in fact be expressed as a single power series, it must

be true that �∞(ε) ⊂ L. Thus �(ε) ⊂ �∞(ε) ⊂ L ⊂∗ �.
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6.2. Rational Probability Functions

At first Selten (1965, 1973) overcame the zero probability problem in games of perfect

information by imposing ‘perfectness’ in proper subgames — i.e., subgames in which all

players start with complete information. Later Selten (1975) introduced the concept of

‘trembling-hand perfect’ equilibria in which no player can ever be entirely sure what strategy

another player is going to use. Instead there is always a small possibility of any strategy

being played by mistake, no matter how bad the consequences of that strategy may be. A

similar idea underlies Myerson’s (1978) concept of ‘proper equilibrium.’ It seems natural

to represent ‘a small possibility’ by an infinitesimal probability, rather than by the kind of

limiting small positive real probability which Selten and Myerson consider.

So suppose that, before normalization, the relative likelihoods L(ω; ε) of different states

ω ∈ F are represented by polynomials

L(ω; ε) := *0(ω) + *1(ω) ε + *2(ω) ε2 + · · · + *K(ω) εK =
∑K

k=0
*k(ω) εk (40)

of degree K in the fixed positive infinitesimal ε. Here the coefficients *k(ω) (k = 0 to K;

ω ∈ F ) are all assumed to be non-negative real numbers. Also each possible outcome ω in

the finite set F is assumed to have a strictly positive likelihood. This is true, of course, if

and only if
∑K

k=0 *k(ω) is positive for every ω in F . When ε is regarded as a small positive

number, such polynomial likelihood functions of degree one occur in Selten’s definition of

trembling-hand perfect equilibrium. Polynomial likelihood functions of higher degree occur

in Myerson’s definition of proper equilibrium. Note finally that we shall always assume that

∑
ω∈F

*0(ω) > 0 (41)

because there should be at least one ω ∈ F with a positive non-infinitesimal likelihood.

In order to transform them into rational probability functions, such polynomial likeli-

hood functions must be normalized to make the sum over ω of the values of (40) identically

equal to one. Thus, (40) needs to be divided by the obvious normalizing factor

L(ε) :=
∑

ω∈F
L(ω; ε) = *0 + *1 ε + *2 ε2 + · · · + *K εK =

∑K

k=0
*k εk (42)

where *k :=
∑

ω∈F *k(ω) for k = 0 to K, and so *0 > 0 because of our assumption (41).

The result of this normalization will be a strictly positive rational probability function (or
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RPF) on F . This takes the form

f(ω; ε) :=
L(ω; ε)
L(ε)

=
*0(ω) + *1(ω) ε + *2(ω) ε2 + · · · + *K(ω) εK

*0 + *1 ε + *2 ε2 + · · · + *K εK
=

∑K
k=0 *k(ω) εk∑K

k=0 *k εk
(43)

and so specifies a positive non-Archimedean probability f(ω; ε) ∈ �(ε) for each ω ∈ F . It

does no harm to normalize (43) further by dividing every coefficient in either the numerator

or the denominator by the positive number *0. The effect will be a normalized RPF taking

the form

f(ω; ε) :=
*0(ω) + *1(ω) ε + *2(ω) ε2 + · · · + *K(ω) εK

1 + *1 ε + *2 ε2 + · · · + *K εK
=

∑K
k=0 *k(ω) εk

1 +
∑K

k=1 *k εk
(44)

for suitably redefined constants *k(ω) (ω ∈ F ) and *k (k = 0 to K) that still satisfy the

requirements that 0 ≤ *k(ω) and
∑

ω∈F *k(ω) = *k (k = 0 to K), where *0 = 1. Thus

each f(ω; ε) has been expressed in the normalized form (38). Note that *0(ω) (ω ∈ F ) is an

ordinary probability distribution in ∆(F ). Moreover
∑K

k=0 *k(ω) > 0 for each ω ∈ F .

Let ∆0(F ; ε) denote the set of all such RPF’s on the finite set F . Note that neither

( 1
2 , 1

2 , ε) nor (1 − ε, ε) are possible values of RPF’s. The first needs normalizing to become

(1+ ε)−1( 1
2 , 1

2 , ε). The second is excluded because it has a negative coefficient; a similar but

different effect is produced by the valid RPF with values (1 + ε)−1(1, ε).

Of course, each distribution p(·) ∈ ∆0(F ) can be identified with the particular RPF of

the form (44) above, with K = 0 and *0(ω) = p(ω) > 0 for all ω ∈ F . Thus ∆0(F ; ε) is an

extension of the set ∆0(F ) of interior probability distributions on F .

Now, one might be tempted to eliminate redundancy among the different terms of the

likelihood polynomial (44) by requiring every *k in the denominator to be positive. Of

course, the set of all such restricted RPF’s is still closed under addition and multiplication.

However, it is not closed under division, as is required for all conditional probabilities to be

in the same space. Indeed, suppose that F = {ωj | j = 0, 1, 2 } and that f(ω; ε) ∈ ∆0(F ; ε)

is given by

f(ωj ; ε) =
εj

1 + ε + ε2
(45)

for j = 0, 1, 2. Then the common denominator of the corresponding non-Archimedean

conditional probabilities

f(ω0|{ω0, ω2 }; ε) =
1

1 + ε2
; f(ω2|{ω0, ω2 }; ε) =

ε2

1 + ε2
(46)
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has terms in ε2, but an important and crucial absence of any term in ε. For this reason, it is

important to consider the whole space ∆0(F ; ε) of all possible RPF’s, without any further

restrictions. This will be confirmed in later work that considers consequentialist behaviour

norms in decision trees having RPF’s at their chance nodes.

6.3. Lexicographic Rational Probability Functions

In order to have them correspond to LPS’s, rational probability function have to be

normalized once more. This second normalization requires making the different coefficients

*k(ω) (ω ∈ F ) of each power εk (k = 0 to K) in the numerator of ε in (43) into the

probability distribution pk ∈ ∆(F ) over all the possible values of ω defined by

pk(ω) = *k(ω)/*k. (47)

The coefficient of εk in the denominator becomes 1. This is only possible, of course, in

case *k > 0 (k = 0 to K), and so we assume that this is true. The result of this second

normalization will be a lexicographic RPF of the form

f(ω; ε) :=
p0(ω) + p1(ω) ε + p2(ω) ε2 + · · · + pK(ω) εK

1 + ε + · · · + εK
=

∑K
k=0 pk(ω) εk∑K

k=0 εk
. (48)

Let ∆∗
R(F ) denote the set of all such lexicographic RPF’s. The normalized coefficients

which appear in the numerator of (48) clearly correspond uniquely to the LPS 〈pk〉Kk=0 ∈
∆∗

L(F ). So there is an obvious one-to-one correspondence ψLR between the space ∆∗
L(F )

of LPS’s and the space ∆∗
R(F ). Since ∆∗

L(F ) is too restrictive for our theory, so is ∆∗
R(F ).

6.4. Conditional Rational Probability Functions

When the same one-to-one correspondence ψLR : ∆∗
L(F ) → ∆∗

R(F ) is restricted to the

domain ∆L(F ) of LCPS’s, it has a range that will be denoted by

∆R(F ) := ψLR(∆L(F )) ⊂ ∆∗
R(F ). (49)

Then it is obvious that the members of ∆R(F ) are lexicographic RPF’s meeting the extra

requirement that the probability distributions pk(·) ∈ ∆(F ) (k = 0 to K) whose values

appear in the numerator of (48) have disjoint supports, which will be denoted by Fk (k = 0

to K). In fact, given any LCPS 〈pk〉Kk=0 ∈ ∆L(F ), for each ω ∈ F there must be a unique
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integer k(ω) in the range k = 0 to K such that ω ∈ Fk(ω) and so pk(ω)(ω) > 0. Thus, for

each ω ∈ F , the numerator of (48) must have only one term pk(ω)(ω) εk(ω) with a positive

coefficient. Therefore each member of ∆R(F ) can be regarded as a unique conditional RPF

of the simple form

f(ω; ε) =
pk(ω)(ω) εk(ω)

1 + ε + ε2 + · · · + εK
. (50)

Of course, all the powers of ε between 0 and K must occur in the numerator of (50) for some

ω ∈ F . So the maximum possible power εK must satisfy K + 1 ≤ #F , the size of F . Also

the mapping ψLR restricted to ∆L(F ) is obviously a one-to-one correspondence between

the two sets ∆L(F ) and ∆R(F ). Now, Section 4 showed how ∆L(F ) is equivalent to both

the spaces ∆C(F ) and ∆M (F ) of ‘canonical form’ extended probabilities. So therefore is

∆R(F ). That is why its members are called ‘conditional’ RPF’s.

6.5. Multiplicative Independence

Let FA and FB be two non-empty finite subsets of the respective sample spaces ΩA

and ΩB . Now that probabilities have been given values in a non-Archimedean field, the

joint RPF f(ωA, ωB ; ε) ∈ ∆0(FA × FB ; ε) can be defined as multiplicatively independent if

there exist RPF’s fA(ωA; ε) ∈ ∆0(FA; ε) and fB(ωB ; ε) ∈ ∆0(FB ; ε) for which

f(ωA, ωB ; ε) ≡ fA(ωA; ε) fB(ωB ; ε). (51)

Of course, this is a natural extension from ∆(FA × FB) to ∆0(FA × FB ; ε) of the usual

definition of independence. And it is immediately obvious that it strengthens the definition

of conditional independence given in Section 5.2. It is the strongest of the three definitions of

independence given by BBD (p. 74). Finally, given two multiplicatively independent RPF’s,

the corresponding joint RPF is simply found by multiplication. This is the definition of

independence which I shall use in later work.
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7. Summary and Conclusion

This paper commenced with two examples showing the inadequacy of ordinary prob-

abilities for the purposes of orthodox decision and game theory. Thereafter it considered

extended probabilities in the following three spaces:

(a) ∆C(F ) of complete conditional probability systems (or CCPS’s), as defined in Section

3.2 (cf. Myerson, 1986);

(b) ∆L(F ) of lexicographic conditional probability systems (or LCPS’s), restricted so that

the distributions in each hierarchy have disjoint supports, as defined in Section 3.3 (cf.

Blume, Brandenburger and Dekel, 1991a, b);

(c) ∆M (F ) of ‘consistent conditional systems’ of logarithmic likelihood ratio functions (or

LLRF’s), as defined in Section 3.4 (cf. McLennan, 1989a, b).

It was shown in Section 4 that all these three spaces are actually equivalent, and can also be

given metrics which make them homeomorphic and compact. Thus they are really a single

space of ‘canonical’ extended probabilities.

Section 3.3 also introduced the space:

(d) ∆∗
L(F ) of unrestricted lexicographic probability systems (or LPS’s), whose supports

may overlap.

This is somewhat more extensive than the canonical space described by (a)–(c) above.

When there are several random variables, Blume, Brandenburger and Dekel (1991a)

proposed three different definitions of independence. These were characterized as:

(i) almost sure independence, which is the weakest (Section 5.1);

(ii) conditional independence, which seems the most natural for complete conditional prob-

ability systems, at least (Section 5.2);

(iii) multiplicative independence, which is the strongest (Section 6.5), but is not well defined

in the space of canonical extended probabilities, nor in the space ∆∗
L(F ) of general

unrestricted LPS’s.

It turns out that the difficulty with the third definition of independence is crucial. For an im-

portant property of standard probabilities is that, once independent marginal distributions

are known, so is the joint distribution. In decision trees, for instance, the joint distribution
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of random moves at all chance nodes of the tree can be inferred from the distributions of

independent random moves at each separate chance node. For extended probabilities, the

first two notions of independence set out above fail this test.

In order to overcome this deficiency, Section 6 introduced the elementary non-Archimed-

ean ordered field �(ε) generated by the real line � together with the single positive infinitesi-

mal ε. Its members are values of rational functions evaluated at ε. This suggests considering

rational probability functions — i.e., probabilities represented by rational functions in �(ε).

Because �(ε) is much simpler than the space ∗� of hyperreals, such probabilities are much

simpler than those considered by Narens (1974b, 1985 pp. 282–293) or Skala (1975, p. 119).

Finally, Section 6 introduced three new spaces of probabilities with values in �(ε):

(e) ∆0(F ; ε), consisting of general rational probability functions (or RPF’s), as defined in

Section 6.2;

(f) ∆∗
R(F ), consisting of lexicographic RPF’s, as defined in Section 6.3;

(g) ∆R(F ), consisting of conditional RPF’s, as defined in Section 6.4.

In fact ∆R(F ) was constructed so as to be equivalent to each of the first three equivalent

spaces of canonical extended probabilities that were described in (a)–(c) above. Obviously

∆R(F ) is a proper subset of ∆∗
R(F ), which was constructed to be equivalent to the space

∆∗
L(F ) of unrestricted LPS’s. But ∆∗

R(F ) in turn is a proper subset of ∆0(F ; ε), which is

the only one of these spaces that is rich enough for the crucial property of multiplicative

independence to make sense. For this reason, none of the first four spaces (a)–(d) of extended

probabilities is adequate. Nor are the spaces (f) and (g). Instead, only the complete space

(e), or some other space of even further enriched non-Archimedean measures of probability,

will work. That is the main conclusion of the paper.

The basic theory of ‘consequentialist’ behaviour in decision trees with both random

moves and uncertain states of the world was presented in Hammond (1988b). A natural

extension of that theory, to be explored in Hammond (1992) and later work, attaches non-

Archimedean probabilities to random moves at each chance node of any finite decision tree.

Thereafter will come the extension of consequentialist decision theory to games. This will

prove the crucial test of whether the non-Archimedean probabilities proposed here really

are sufficient to overcome the zero probability problem which has motivated this paper.
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