APPROXIMATE MEASURES OF SOCIAL WELFARE
AND THE SIZE OF TAX REFORM*

Peter J. Hammond, Stanford University

Abstract*#*: This paper deals with second order approximations to
changes of welfare measured by social welfare functions. In the frame-
work of piecemeal policy the impacts of tax reforms to social welfare
are considered. Three different kinds of social welfare. functions are
employed: an arbitrary Bergsonian, a social welfare function based on
money metric utility for individuals, and a money metric of social
welfare. Furthermore Pareto improving reforms are discussed. If
.possible, the optimal direction and the optimal size of a tax reform
are determined. :

1. Introduction

In Hammend (1984), I have noted how welfare economics has recently
come very much closer to public finance theory because of its recogni-
tion of incentive constraints. In particular, the optimal lump-sum
- transfers which were often assumed in welfare economics are incentive
incompatible. Instead, redistribution of real income to avoid extremes
of=poverty or to promote equality has to be achieved by distortionary
taxes such as commodity or income taxes. Such taxes are not necessarily
Pareto inefficient, as is usually alleged, because there may be no
incentive compatible procedure for reaching a Pareto superior allocaticn.

In a "second-best" economy with incentive constraints, it becomes
vefy,hard to characterize a welfare optimum, let alone calculate opti-
mal tax rates, etc.. For this reason, theorists as well as praétical
economists would do well to seek improvements to -existing tax structures,

rather than the elusive welfare optimum. This calls for a theory of tax
reform.

* This paper was started during a visit to the Institute of Public
Economics at the University of Graz and completed at the Institute
for Advanced Studies of the Hebrew University, Jerusalem. Financial
support from the Institute of Advanced Studies and the Usterreichi-
sche Lénderbank is gratefully acknowledged, as are the helpful
suggestions of conference participants, especially Dieter Bds, and
also of Edward Green.

**% This abstract was arranged by the editors.

Studics in Contempornry Foonomica, Vol 7

. Beitrlige zur ncucren Steuertheoric
Herausgegeben von D. Bis, M. Rose und Ch. Seidt
© Springer-Verlag Berlin Heidelberg 1984



As I point out in Section 2 below, a basic framework for identi-
fving directions for favourable or welfare improving tax reform is due
‘essentially to Meade {1955). The article which did most to generate a
revival of interest in the theory of tax reform is Guesnerie (1977).
This work, however, is concerned solely with the direction of tax re-
form; in this paper, I shall discuss the appropriate size of tax reform
in a given favourable direction. This can be done by considering gquad-
ratic or second-order'approximations to measures of social welfarer
rather than just the linear or>first~order approximations which identi-
fy favourable directionsrof reform. The use of such guadratic approxi-
mations underlies numerical algorithms such as Newton's method or con-
jugate gradient methods, as explained in Hestenes (1980), for example.
The guadratic approximations are derived in a manner analogous to that
of -Hammond (1983). The main'difference‘is_that, as Chipman and Moore
{1980) point out, measures of equivalent rather than compensated vari-
ation are required in order to be able to compare different reforms.
Here, of course, I am concerned with reforms of different sizes in the
same direction, so I do need to approximate the equivalent rather than
the compensated variation. More precisely, I calculate quadratic ép— '
proximations to a money-metric social welfare function (cf. Samﬁelson,
1974). I should'mention the work of McKenzie (1983), baséd on McKenzie
and Pearce (1976, 1982), which shows how to calculate higher order
approximations - notably third order approximations - which could be
used to find more accurate measures for the suitable size of a tax re-
form. Their work, however, rests on knowledge of second order deriva-
tives of demand functions, wheréas mine requires knowledge oniy of the
first order effects of the reform on prices and quantities and of con~

sumers' demand responses to income changes. Of course, both they and I
V also need the interpersonal comparisons which are imblicit in a Bergson
Social Welfare function in order to construct approximate measures of

social welfare.

Section 2 summarizes the usual first-order theory of tax reform.
Section 3 introduces second order approximations and shows how they
suggest, in some cases, an optimal size for a tax reform in a given
direction. Section 4 considers how to calculate the second order ap-
proximations used in Section 3, based on money metric utility approxi-
mations for individuals. Section 5 derives a money metric approximate
. measure of social welfare, using an approach similar to that of Hammond
(1983). Section 6 considers Pareto 1mprov1ng reforms, and Sectlon 7
discusses the choice of the direction as well as the size of tax reform,



based on second order approximations stiil.

2. First Order Approximations and the Size of Tax Reform

Up to now, the theory of tax reform as in Guesnerie (1977) etc.,
has. concentrated on first order approximations, and on identifying
favourable directions of tax reform. For example, there may be a modi-
fied Walrasian equilibrium, or "tight semi-market eguilibrium" described
by a system of equations of the form:

x(p,t) =0 . m

where p is the suitably normalized consumer price vector, t is a vector
of tax parameters, and x(p,t}) is the vector excess demand funétion, ex-
pressing the aggregate excess demands for each commodity as a function
of consumer prices and taxes. Consumers i=1,2,...,N or ieN are assumed
to face a budget constraint of the form:

P-qi = mi(prt) {2)

when the price vector is p, where q; denotes consumer i's net demand
vector, and mi(p,t) is i's unearned income (from dividends and govern-
ment transfers or tax allowances or tax credits) as a function of the
price vector p and the tax system t. In (2), P-q; denotes the inner
product of the price norm p with the gquantity column vector dy-

I shall assume that the economy starts with a tax regime t® and
equilibrium prices po, quantities qio(isN) and incomes mio(ieN). I
also assume that the conditions of the implicit function theorem are
met‘by the function y in a heighbourhood of (po,to) so that there
exists a unique normalized price -vector p(t) for each t in that neigh-
bourhcod which satisfies:

x(p{t),t) =0 . ' ' (3)

In addition, p will then be differentiable as a function of t, at to,
with a matrix P0 of derivatives, so that we have the following first-
order or linear approximation:

(o

Ap X PO At (4)

where At denotes a tax reform or change in the tax regime t from t2 to

t1, and Ap is the corresponding approximate change in the equilibrium
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price vector. Assuming that the income functions mo (p,t) are differen-
tiable at p . t° , and that consumers have demand functlons which are
differentiable at (p sy ) {for each i€ N), it follows too that:

Aq ¥ Diodp + bioAmi o (5)
or that
bq, ¥ o,%¢ _ (6)

whére DiO is the matrix of responses of consumer i's demand to price
changes, and bio is the vector of responses to income changes - i.e.,
the vector of Engel curve slopes - while.Qio is also a matrix. The
effect of these changes on a suitably normalized utility function Ui
for consumer i is then given approximately by:

1 )

v 0 -
AUi = p .Aqi Ami - Ap.qi

or by

Ay, ¥ uio.At 7 (8)

where uiO = pOQio in this semi-Walrasian framework. Finally, the effect
on social welfare is given approximately by:

%) .at ’ : _ (9)

" ° =
AW ¥ ZiBi AUi (T, B ul
_where ‘Bio)i,eN is a vector of welfare weights representing the "mar-
ginal social significance" of each consumer's income. These weights
reflect ethical values, of course. Then, substituting for (7) in (9)
gives: ' '
1

v © _ o _
AW ¥ LBy Ami> 4p.Z, B, 93 .{10)

so that Bio = aw/ami, in effect, evaluated at the initial equilibrium.

Such formulae were already available in Meade (1955). Guesnerie's
(1977) concern was to find directions of tax reform dt which were
Pareto improvements in the sense that (corresponding to (8) above),
du, = uio.dt is positive for all i ¢ N. He collaborated later in

i
Fogelman, Guesnerie and Quinzii (1978) to develop gradient processes



of continuous tax reform which were steadily Pareto improving until
- some Pareto efficient allocation was reached among those allocations
which were achievable given the allowable tax instruments described in
the vector t. Diewert (1978) sought directions of small tax pertur-
bations dt which would produce the largest possible welfare improve-
ment dW = fZiBiOuio).dt {(corresponding to (9} above) for a given size
of the reform dt, and showed that the answer depended upon the units
in which the components of the vector t were measured. That work was
considerably refined by Tirole and Guesnerie (1981}.

These linear or first-order approximations which lead to formulae
such as (8) and (9) serve only to identify favourable directions dt of
tax reform. No indication is given of how large a reform in a favour-
able direction dt should be undertaken. If the linear approximations
were all exact, an infinite reform in the direction dt would be called
for, to produce an infinite improvement. Since infinite improvements
are clearly not possible, the linear approximations cannot be exact,
-and all that this first-order analysis tells us is that’small enough
reforms in any favourable direction will be favourable. To say more
than this higher order approximations must be considered, and I turn
next. to some relatively simple second order apgroximations which are
quite closely related to those derived in Hammond (1983}).

3. Second-Order Approximations and the Size of Tax Reform

~Suppose that we extend the first-order or linear approximation

(9) to.a second-order or quadratic approximation:
aw 2 wl.at + 172 at.%at , (11)

where w°;: = EiBiouio as in (9) and H® is the Hessian matrix of secohd—
order partial derivatives, evaluated at t°, of the function F(t) which
expresses the dependence of social welfare W on the vector of tax param-
eters t. H° also reflects ethical vaiues, just as the wvector (32)- -

ieN
does. Now consider a reform:

At = A dt - (12)

of size A in the direction dt. Suppose that the direction dt is a :
favourable one, according to first-order analysis, which means that:

w.dt > 0 . ' _ ‘ (13)
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Substituting (12) into (11) gives:

aW X a(wl.at) + 172 32 (at.m%a¢e) . | (14)

Assume that dt.H°dt < 0; conditions to ensure this are discussed later
at the end of this section. Then the approximation in (14) reaches a
maximum with respect to A at a step size A* given by:

A* = - (wP.at) / (at.B%¢) (15)

which is positive, given our assumptions. This simple calculation not
only suggests that A* is the optimal step size; it also suggests that
~any step of size A > X* is too large even though it may still increase
. welfare; only steps of size A £ A* would appear to merit attention.
Remember that smaller steps are more likely to be truly favourable,
bearing in mind the errors in the second-order approximation.

To ensure that A* is positive, and that the approximation (14)
reaches a maximum at A*, it is necessary that dt.H°dt be negative for
the direction dt. This.would automatically be true if the function:
F(t) were differentiably strictly concave, of course, for then H®
. would be negative definite. But there is no guarantee of this. Indeed,
‘Atkinson and Stiglitz (1980) were able to make a case for random

taxation precisely because the function F may well not be even quasi-
concave, let alone differentiably strictly concave.

Nevertheless; given the fixed direction dt, and given that F is
twice continueusly differentiable at to; it is possible to apply a
suitable sufficiently concave transformation W = ¢(W) to the social
welfare measure W in order to ensure that dt.f%t < 0 for the new
Hessian matrix A° of W evaluated at t°. Indeed, choose a strictly
increasing ¢ so that ¢'{W°) = 1 and ¢“(W°) = - § < 0, Then the gradient
vector w° of W is the same as w°, the gradient vector of W, and the
Hessian matrix fi° is given by:

f° = 8® - w2 (%) (16)

where (w®)' is the row vector which is the transposition of the column
gradient wvector wC. Given the direction dt, it follows that:

at.#°at = at.x%t - §(wC.at) > | (17)
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which is certainly negative provided that § is chosen large enough,
because of our assumption that w®.dt > 0. This suggests a step size
3*(8) which depends on §:

A% (8) = - (w°.dt}/at.m%t-s (w°.ae) %) . 8

Here A*(8) is positive for all large enough §.and decreases as § in-
creases, tending to zerec as ¢ tends to infinity. If dt. g%t 2 0, which
is the case which gives rise to the need for this kind of transforma-
tion, then A*(§) can take any value between zeroc and infinity for
suitable values of §, which is not very helpful.

Another approach which is less arbitrary and may be better is to
use some "money-metric" measure of welfare (cf. Samuelson, 1974 and
McKenzie, 1983) as explained below in section 5. Then W has natural
monetary units and should not be subjected to a strictly concave trans-
formation of the form W = ¢(W). The step size A* is then uniquely-
determined by (15}, provided that at.H%t < 0, and will maximize the
quadratic approximation to the money;metric measure of welfére for a’
step in the direction dt. If dt.H°dt > 0, on the other hand; choosing
A* given by (15) will minimize the quadratic approximation and, since
A* < 0, will also produce an unfavourable reform. This suggests making

a fairly large step in the direction dt away from the minimum. To say
much more about the most appropriate step size would require a third-

order analysis along the lines of McKenzie (1983). A cubic épproximation
" may well have a local maximum in the step size ) even when the quadratic
.approximation (14) does not. The extra work of calculation is likely to
bé very considerable, however, and to require estimates of second-
-order derivatives of consumer's demand functions. Moreover, the trans-
formation ¢ considered above can always be chosen so that the third-
order term in A3 which would be added to the second-order approximation
(14) actually vanishes. So a third-order approximation is only helpful
ﬁhen it is applied to a measure of welfare that has some cardinal
significanée, such as a money-metric measure.
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4. Calculating-Second-Order Approximations

In order to use the approximation (14), it is necessary to célcu—
late the Héssian matrix H® of the function W = F(t). While this may
~ seem very complicated at fifst sight; in fact it is quite straight-
forward provided one makes just a few simplifying assumptions, as I
shall now explain.
Given a general Bergson social welfare function W = G((Ui)ien).
which depends on individual utilities alcone, a second order approxi-
mation is:

o (o] (o] - p
oW ¥ 38,780, + 1/2 EiEjAUiinj AUy (19)

where the weights Bio are as in (9), and e . [Yijol is the Hessian
matrix of the function G evaluated at the initial utility levels

It is worth repeating that I'° and (Bio) both depend on

o
(U3 jene ieN
the ethical value judgements that determine the Bergson Socia; Welfare

function G.

To convert (19) intorthe form (14) we used in section 3, it is
peceésary to express each individual's utility change AUi as an approx-
imate function of the tax reform A dt. For the second-order approxima-
tion we are using, it is clear that it is sufficient to calculate the
approximation:

n o 2., . o
A{Ji = Aui At + 1/2 A dt.Hi dt : {20)

where Hio is the Hessian matrix at t° of the function which expresses
consumer i's utility Ui in terms of t, and where uio is as in equation
{8) above. In fact substituting (20) into {19) tells us at once that,
in the quadratic approximations (11} and (14}, HC is given by:

o _ 0, © o (o) ' '
H = Zigi H,” + zizj Yij (ui ~uy | B | {21)

It therefore remains only to calculate each individual's Hessian

matrix Hio, to which the rest of this section is devoted.

Evidently the matrix Hio will depend upon the particular utility
function which we use to represent i's preferences, as indeed does the
magnitude (though not the direction) of the gradient vector‘uio = poQio.'

An appropriate normalization for this purpose is Allen's (1949) and
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Samuelson's (1974) "money-metric" utility function, defined as
Ei(po,ui}, the expenditure needed at the fixed price vector po in
order to achieve the utility level u,. Obviously, in discussing tax
reform, the status quo price vector p0 is the most sensible choice of
the reference price vector.

) For the rest of this section, I shall consider only a typical
single individual, and will therefore omit the subscript i throughout.
It will be reintroduced later when we consider the set of all individ-

uals once again.

1

If u denotes the individual's utility with the tax reform, and
u® without, the change in money-metric utility is given by:
AU = E(po,u1) - E(po,ué) : ' (22)
= E(°u") - E(p',u") +m' - n° C(23)
o 1 , ‘
= IP1 dp.X(p,u') + Am . : : - (24)
P

{23) follows from (22) because m° = E(po,uo) and m1 = E(p1,u1). Then
(24) follows from the envelope property of the expenditure function E,
with x(p,u1) denoting the vector compensated demand function of the in-
dividual, equal to the gradient of E. The integral is a line integral

1 to po; Slutsky symmetry guarantees that the

along any path from p
integral is path indepent. In fact, the integral in (24) is merely
minus the equivalent variation of the price change from pO to 91 in

' the sense of Hicks (1942). It is important to use the egquivalent varia-
~ tion here rather than the compensating variation I used in Hammond
(1983) because, as Chipmah and Moore (1980) explain, comparisons of

utility with a reform require the equivalent variation to be used.

We need a second-order approximation to (24),'fdr which it
suffices to use a first-order approximation to the compensated demand

- funection:

e

x(p,u1} xtp1,-u1) + -S1(p-p1)

g+ sp-p" , (25)

where q‘i is the vector of guantities with the tax reform, and S1'is the
Slutsky matrix evaluated at (p1,u1). The approximation is taken from
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p1 rather than from p° because q1 = x(p1,u1) depends directly on the
eventual outcome of the reform, whereas x(po,u1} does not.

Substituting the approximétion (25) into (24) and integrating
gives: )

Am - Ap.q1 + 1/2 Ap.S1Ap . (26)

ne

AU

But, from the budget equations m® = poqo and m1 = p1q1; it follows that:

am - Ap.q' = p°.Aq (27)
which leads to:

sU 2 p°.aq + 1/2 Ap.S'ap . (28)

The first term corresponds to equation (7), as is to be expected. The
second term depends upon the Slufsky matrix S‘, and this must be calcu-
lated next. It is given by: '

s' =p' +b'(g") : (29)
where D1 is the matrix of uncompensated demand responses to price
changes, and b1 the vector of responses to income changes, both evalu-
ated at the price-income pair {91,m1) which is reached by the reform.
Next, notice that using a first-order approximation to the consumer's
uncompensated demand function leads to:

1

AqQ ¥ D1Ap + b'Am

S1Ap + b1(Aﬁ-Ap.q1}

sTap + bt (p°.8q) | (30)

(substituting from (29) and (27) in turn). So, substituting (30) into

(28} to eliminate the term in S1 leads to:

AU

e

(1-1/2 ap.b') (p°.8q) + 1/2 Ap.aAq

(° + 1/2 sp).bg - 1/2(sp.b") (p%.8@) . (31)
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'ifor\a suitable matrix [BPh,b ] of second-order partial derivatives of

‘app ox1matlon'

g (po +1/2 Ap) .0g - 1/'2 (Ap.bo) (po. Aq) S L B (33)

which depends on b° ‘ the vector of demand responses to 1ncome changes
ievaluated at’ “the price 1ncome pair (p_,m } without the refo m. It is
ﬁtrue that b° cannot ‘be directly calculated ‘from’ now. e»g”-_ e 3
—:parative static equations (3) .0r .the- consequent linear approximations_

3(4} and (6), nevertheless, there is plenty of empirical evidence’ on h
ic good e timates»of b ¥ estimates which are likely to -be

e»(é) and (5) as suggested by the appfarancev

. : Substituting from (33) -for each separate individual and using (19)
gives, to second order. )

n 4. O \ o _ o o, , 0
' o o o -
x*‘l/z,zi;'(Pr’Aqi)-Tij-H(P .Aq.),uf L 3

Substituting from (4) and (6) into this then gives the follow1ng
approximation, which determines the Hessian matrix in (11):
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aw ¥ (p° + 172 POAt).}ZiBiOQiO)At -

- 172 £,8,° e%¢.b, %1 p°. (@, %At) +

+1/2 Eizj'{pb.(QiOAt)] vy 0,080 )
" For a favourable reform At = A dt in the given direction dt, an

- explicit formula for the optimal step size A*, as given by (15}, can
also be calculated. '

Define:
_ .0 _ .0
dp : = p dt, dq; : = Q, dt (all i) , {36)

for the price and quantity changes induced by a reform in the direction
dt. Then (35) becomes:

X o] o] 2 ) . 37
AW % A p .I; B, dq; + 1/2 A“H | (37)
‘where
_ o _ o 0, ., ©
H: = dp.ZiBi dqi Eisi (dp.bi ) (p .dqi) +
o o, 0
+ Eizj(p .dqi) Yig (p .dqj) - (38)
This suggests choosing:
__ .o , O :
A% = - p LI.By dqi/H o {39)
provided, of course, that H is negative, which makeé A* positive because

p°.ziBi°dq is positive for a favourable direction of reform dt. The
problems that arise when H is nonnegative were discussed in Section 3.
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5. A Money-Metric Measure of Social Welfare

At the end of Section 3 I argued that a money-metric measure of
social welfare would be desirable. The measures derived from (19) in
Section 4 do not have this proPerty,-excépt for a very special form of
the Hessian matrix r° of G. In this section I shall show how to calcu-
late a money-metric form, arguing along the lines of section 4 of ° '
Hammond (1983). Thus, I shall treat the whole society as a single
consumer of a profile x of consumption vectors, one for each indi-
vidual. Following Sen (1976, 1979), different individuals® consumptions
of the same good are effectively treated as different goods, with
different prices which vary in proportion to the welfare weights. Thus,
society becomes a single fictitious consumer who maximizes the Bergson
measure of W(%) subject to a budget consfraint of the form

L;Bip.%; & M where B8 is the "virtual" price of individual i's con-

i P
sumption of good g. ;hg allocation % which results £rom this maxi-
mization problem is the same as that in which each individual i
maximizes Ui(xi) subject to p.xi < m, . andrthe distribution of incomes
m is chosen to maximize the indirect social welfare function V{p,m)
subject to I;Bsmy < M. In particular, the welfare weight By must be
proportional to av/ami, the marginal social welfare of i's income, soO
we can write:

Bi = a BV/Bmi {40}

- for some positive constant a. In order that M really should represent

total money income in the economy, o« should be chosen so that:

M=tfm =ZI,8m =a zimi(av/ami} . 7 ) (41}

Thus o = M/zimi(av/ami) which implies that, for each is

M(aV/ami)
By = (42)
m. (9V/3m.) -
i ijj( / mJ)
Now a money metric measure of social welfare is given by:
(g%, p%,W: = m%n{ziﬂiopo.xi | wig)z Wi
s o o ' :
= m%n{zisi ™ | vip~,m) 2 W} _ _ {43)

based on the reference vector of prices (Biopgo). Arguing as in Section

4, it follows that the following second-order approximation to (43) can
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be derived analogously to (33):
a (=2Ke] qa 1.1_, 00 -

AW ¥ I, [B8,7p + 1/2(.8i P -B;P )].Aqi

- 1/2lzi(Bi’p1-Bi°p°).bi°ﬁi°1{zk8k°(p°;Aqk)1 . O (44)
Here the vector Eo is given as in Hammond (1983), eq. 4.13) by:
o _ o,-1,0 o n0,~1,0 -
o= (r-) % / g +A(T7) 5. - (45}
where I'° is the Hessian matrix of second order partial derivatives

aZV/amiamj of V(p,m) evaluated at (po,go). To calculate the other
terms in (44), notice first that, for each i:

1.1

B, 'p' - 8,°0° = a8,p' + 8,%p (46)

s¢ that (44) becomes:

o

e

AW z

38:° 1(e%+1/20p) .81 + 1/2 2,88, (07 .0q,) -

- 17212, (8;%Ap+a8,p") .b, %, 111, 8,°(p°. g, )1

~

e

a) o o
EiBi [{p +1/2Ap).Aqi] + 1/2.EiABi(p .Aqi} -

- 1/242;18,%p.b;%) + 883w °}iz, 8 0% 8q . | (47)

1

to second~order, using the fact that p can be replaced by po in this

- approximation, and that po;bio = 1 for all i.

To complete the calculation; it is necessary to derive an ex-
pression for ABi, the change in individual i's welfare weight, for each
individual i. For a second-order approximation to AW, a first-order
approximation to Asi'suffices, and this can be calculated by total

differentiation of (42). In the appendix it is shown that, to first
order: :

8By T Ty vy, - (8, /1) (2ym Oy, 00 (0% 8qy) + B,° HaM/MO) - (8p.bON -
- (8,°/4°) 5, 8, tAmy -m, ® (8p. b, O (48)
where y;; © = 2%v/om om_ (all i,k) - 49
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is the typical element of re, Substituting (48} into (47) then gives:

N o] (o] - o] O (o] :
AW 2 ziﬁi f(p +1/2Ap).Aqi] 1/2 ZiBi (Ap.bi Y (p .Aqi) +

o . (o} o, O o, 0O C
+ 1/2 b pmabgy) - uy L8 (P .Aqk)ltzjvij (p .qu) + B; D] {SO)

- _ o o, 0 _ o] 0 o) o
where D : fAM zjzkmj Y3k (p~.4q,) 2 8" [Amy -m " (Ap.by 11I/M . (51)

N o o o o
Thus AW = Zisi [{p +1/2Ap).Aqi - T/Z(Ap.bi Y {p .Aqi)] +
o 0, 0
+ 1/2.ZiZj(p -Aqi)vij (p .quj +

o, © oo : o o, 0
+ 1/2 L8, (p .Aqk){DU-ZiBi v, ) - Iouy E'Yij (p .qu)} .

i 7
{52)

Notice that the first two lines of the right hand side of (52) corre-
~ spond to the earlier formula (34). For the reform At = A dt in a given
direction dt, (52) can be written as:

A0 o 24 '
AW Y Ap~.X,B,%dq; + 1/2 A°H (53)
wheré now, in contrast to (38), H is given by:
a o - o ©,, 0 o o, 0
H := dp.ZiBi dq, £.84 (dp.bi Y {p~.dqy) +uzizj(p .dqi)Yij {p .dqj) +

0, 0 * o, © o 0, 0 ,
Ct LB (p .qu){D (1-Z,8,71;7) = Iny ijij (p .dqj)} | {54)

Gith D* as the differential form of D:

* .. _ o. 0,0 Yo o __© o o
D* := {aM zjzkmj ik (p~.dq) I B, fdm -m " (dp.by y1}/m° . (55)
The first line of the right hand side of (54) corresponds to H in
(38), of course. (53) suggests chocsing a tax reform of size:

¥ o o a »
A = -p .EiBi dqi/H _ _ (56)
provided that dt is a favourable direction {(which implies that
po.ZiBiodqi > 0) and provided that # is negative. Again, the prcblem
.of what to do if H 2 0 was discussed in Section 3. L
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6. Pareto Improving Reforms

A direction of Pareto improvement 4t is one that satisfies:
o s ‘ ' :
u; .dt > 0 (all i) . (57)

where uio = poQio as in Section 2. For a reform At = A dt in this“
‘direction, the money metric measure of individual i's gain is given
by (33):

[@] O o]

AUy X (p + 1/2 Ap}.Aq; - 1/2 (Ap.b; ") {p .Aq,)

= ap°.dq. + 1/2 A% 1dp.dq,-(dp.b,%) (p°.dq.)1 (58)

1 i 1 1 -

= ©.at + 1/2 det.Hiodt B ~ (59)

for the Hessian matrix:
O, - (p%y1pn © _ o o, O o

H s (P g, (P7)'by (p) 'y - (60)

This suggests choosing:

*, oo oo ° o
2. (u;7.dt)/(dt.H "dt)

- (po.dqi)/[dp.dqi-(dp.bio)(po.dqi)]' , (61)

for each individual i for whom dt.Hiodt < 0} let Ai*: = + » for all
other individuals. Then, using our quadratic approximations, AUi 2 0

whenever the stép size A satisfies 0 ¢ ) g 2Ai*, and AUi is still
increasing as a function of A whenever ) satisfies O < i < A;*. Let A*
denote the smallest of the step sizes. Xy *; and let )\* denote the
largest. Then, if A < A ., all 1nd1v1duals benefit from an increase in’
the step size for the direction dt. If » > K*, all individuals benefit
from a decrease in the step size. And if A >'2§*, at least one in-
dividual experiences a utility decrease, AUi < 0, so that the reform
At = Adt is no longer a Pareto improvement. It follows that the step
~sizes A which produce Pareto undominated Pareto reforms in the direc-
tion dt are those which satisfy l*s A $2" and A< 25*. These ine-
qualities determine a (possibly trivial} connected interval of step
sizes that is non-empty provided only that dt. H %t < 0 for at least
one individual. The interval is then trivial only if A is the same
for all individuals i.
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7. The Direction of Tax Reform

So far I have discussed what is a suitable size for a tax reform
At = X dt in a given favourable direction dt. The guadratic approxi-
mation (11), however, suggests suiﬁable directions for tax reform as
well, beyond the first order requirement that wo.dt > 0. For if:

MY wC.at + 172 At.EOAL (62)

for all small tax reforms At, as in (11}, and if the Hessian matrix Ho
happens to be negative definite, then the guadratic approximation to
‘AW reaches a global maximum for a reform At* given by:

pex = - WO, - | (63)
If the guadratic approximation were exact, the reform At* would take
the economy directly to the welfare optimum; as it is, undertaking the
reform At* is like using Newton's method for computing the maximum of
a differentiably strictly concave function. If social welfare were a
differentiably strictly concéve function W = F{t) of the tax param-
eters t, a sequence of reforms satisfying (63} at each step would
cénverge quite rapidly to the welfare optimum.

As I have previously'pointed out, however, there is no reason to
believe that H® will be negative definite. Indeed, the end of Section
3 discussed the problems that arise when dat.1%dt is not negative for
a specific direction of reform dt. If H° is not negative definite,
then At * in (63}, even if it is well defined because H° has an inverse,
"~ will not be a maximum at all of the guadratic approximation (62) to 4W.
If the direction as well as the size of the tax reform can be chosen,
some other procedure.should be followed.

As a symmetric matrix, H? has all real eigenvalﬁes, and can be
diagonalized by applying a rotation matrix T. That is, there exists a
matrix and a diagonal matrix D such that:

1 o= g | (64)

and
g = p . o (65)

The diagonal elements of D are the eigenvalues of #°. 1f H® is not

negative definite, some of these eigenvalues are non-negative.

Write d1,d2,...,dr for the diagonal elements of D. Given any

reform At, write:
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a¥: =7 at (66)

and let w': = wo.T . ) (67)

"Then (62) can be written as:

ne

oW ¥ wo.Aat + 172 At HOAt

wo.At + 1/2 A¥.D A¥

N

I o ~ O v 2 8

Write K;={k|dk # 0}. Then:

, Vv e 2 _ no2
AW = 1/2 Ly ek {dk[Atk + oWy / ;] (wk)r/dk} +

T WO AL L | (69)

] kEK 'k

If all the diagonal element; dk (k=1 to r) are negative, then H is

' negative definite and formula (63) should be applied. But if some of
the diagonalielements dk are non—negafive, then the guadratic approxi-
mation (62) or (69) has no maximum unless &g = 0 for all k and K. A
reform which increases the approximate value of AW significantly can
be found by setting:

- w, %/a, (if d,

x /9 < 0)
T oa
Atk = (o] (if dk = 0) (70)
n oo
A wk /dk (if dk > Q)

where A is a large positiﬁe number and wo is given by (67). Thén take:
At = TAY ' ' _ (71)
Notice that in each case:

wo.at = wCaat > 0 (72)

80 that the reform is in a favourable direction, as well as leading to

an increase in the guadratic approximation to AW.
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APPENDIX

To calculate ABi as in (48) it is first necessary to derive

from (42):

Meav/ami)
i ijj(BV/ij)

the following partial derivatives {evaluated at (po,mo)}a

2 o 2
BV 32y BV 8V a2y
o8; my M Empom, Mom; Gm * I oo,

Bmk ijj(BV/ij) [Ejmj(avlamj)lz

- o 0,0, _ © 4,0 ) o, ©
Yix * (B /M) (B; /M VB~ + zjmj Yik )
2 2
av v . v
M — Me— (Z.m, ——F—)
asi ) Bmiapg Bmi i3 amjapg
g Iymy{BV/omy) [Z.m, {3V/3m, )12
: : I | J
o
- 2% B o a%
Bmiapg M° 33 amjapg
| v _ 3V e s . .
. But 55; = I, B hkg(p,mk), by Roy's identity, 59.
2 2
3"V CI' v
= - f, =2V g 2V 4y san
am. 3 om_ 9 ki om,
"3°Pg K omgdm "k omy 39t
o o o, ©
= z .
x Yik kg " By Pyg
and:
3B, ‘ g, °
i o o o, o© i o o o o
3-5; Zk‘yik qu - Bi big + —M—a- Ejmj Ezk‘ij qu )"' BJ bj

So, to first order, ABi is approximately equal to:

{a.1)

(2.2)

(A.3)

{a.4)

° . .
g 1. (A.5)
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zk(asi/amk) Am, + Eg(BBi/Bpg) Apg

o]
= I vy (em—bp.q”) + 8, (aM/N°%) - 8. (ap.b, ) -

- 8y /M ) {z (IESk +I.m,

0 (o] (o] (o]
- . .Z{Ap.b.
Ly Oy. 5k )Am . m {z (8p.qy )+sJ {Ap j n}

3

o 0,0 . O O 1 o o, _ o, © 0, _
= zk[Yik —(Bi /M) I m, ij IHp .Aqk) + Bi (AM/M7) Bi (Ap-bi ) .

33
~ (8,°/8%) 5, 8, °18m -m, ° (Ap. by O _ ' (A.6)

= 5 lvyy - (8,00 (2ym Oy, 00 (6% Agy) + 8,1 (AN/M%) - (8p.BON) -
—.(Bi°/m°)zksk°[Amk-mk°(Ap.bk°)] | (A.7)

because p1.Aqk = po.Aqk to first order.
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