
Quadratic Chabauty and L-functions

Samuel Le Fourn (joint work with Samir Siksek)
ENS de Lyon

May 24, 2018

1



Plan of the talk

Motivation: rational points on modular curves
Finding rational points on curves
Images of Galois representations associated to elliptic curves
Chabauty method in the context of modular curves

The new input of “quadratic Chabauty”
What is the “quadratic Chabauty” method ?
Applying the method to families of modular curves

Nonvanishing of derivatives of modular L-functions
Notations for modular L-functions
Weighted sums: exact expression and asymptotic values
Improving the estimates to get a computable range
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Hypotheses and notations

I A curve C is a smooth, projective, geometrically integral algebraic
curve over Q, of genus g and Jacobian J .

I For O ∈ C(Q) fixed, ι : C → J is the Albanese morphism sending O
to 0.

I We assume g ≥ 2 so that C(Q) is finite by Faltings theorem.
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Determining rational points on curves

Problem
Faltings theorem and does not say how to figure out C(Q) explicitly.

Chabauty’s idea
Consider, for a prime p, the following commutative diagram

C(Q) J(Q)

C(Qp) J(Qp)

ι

ι

In the p-adic variety J(Qp),

C(Q) ⊂ C(Qp) ∩ J(Q).

If codim J(Q) ≥ 1, this should enable to prove finiteness !
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Chabauty theorem...

By p-adic Lie group theory, there is a logarithm

log : J(Qp)→ T0JQp
∼= Qgp

with image isomorphic to Zgp. Then,

log J(Q) ⊂ log J(Q) ⊂ Zp log J(Q),

in particular it is included in a hyperplane of T0JQp
if

r = rankJ(Q) < g.

Proposition (Chabauty)
For any nonempty open subset U ⊂ C(Qp), VectQp

log(ι(U)) = T0JQp
.

Theorem (Chabauty)
If r < g (Chabauty condition), then C(Q) is finite.
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...made more effective by Coleman...

Recall the canonical identifications and pairing

(T0JQp
)∗ ∼= H0(JQp

,Ω1) ∼= H0(CQp
,Ω1), 〈·, ·〉 : T0JQp

×(T0JQp
)∗.→ Qp

Definition (p-adic integration)
There is an analytic integration pairing

J(Qp)×H0(CQp ,Ω
1) −→ Qp

(D,ω) 7−→
∫
D
ω := 〈logD,ω〉 .

If C has a good reduction CFp at p and z is a well-chosen parameter at
O, for ω = (

∑
n≥0 anz

n)dz and any P reducing to O modulo p,

∫ P

O

ω :=

∫
ι(P )

ω =
+∞∑
n=0

an
n+ 1

z(P )n+1.

Theorem (Coleman)
Under the Chabauty condition r < g, if p > 2g,

# C(Q) ≤ # CFp
(Fp) + (2g − 2).
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And its practical execution

As long as the subset of C(Q) one has found does not satisfy Coleman
bound, one cannot say we have determined all C(Q).

The Mordell-Weil sieve
Assume for simplicity J(Q) = ZD1 ⊕ · · · ⊕ZDr. For every good prime p,
the commutative diagram

C(Q) J(Q)

C(Fp) J(Fp)

ι

ι

gives, through Wp = ι(C(Fp)), congruence conditions on the coordinates
(n1, · · · , nr) of elements of ι(C(Q)) modulo Np the exponent of J(Fp).

Hope for success of Mordell-Weil sieve + Chabauty
Find a finite set of primes S such that C(Q)→

∏
p∈S C(Fp) is injective

(by Chabauty) and the only coordinates (n1, · · · , nr) satisfying
congruences conditions modulo all Np come from points of C(Q) already
known.
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Galois representations associated to an elliptic curve
For an elliptic curve E over Q and a prime number p, the action of
Gal(Q/Q) on the p-torsion E[p] defines a Galois representation

ρE,p : Gal(Q/Q)→ GL2(Z/pZ).

Main motivation: Serre’s uniformity conjecture
Is there a constant C > 0 such that for every prime p > C and every E
over Q without CM, ρE,p is surjective ?

Splitting of the proof
Three types of maximal proper subgroups of GL2(Z/pZ) to consider
(each associated to some finite structure stabilised by Gal(Q/Q)):

I Borel (cyclic subgroup of order p).
I Normaliser of split Cartan (pair of distinct cyclic subgroups of order
p).

I Normaliser of nonsplit Cartan (semi-linear action with respect to a
Fp2-linear structure on E[p]).
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The viewpoint of modular curves

Modular curves (vague definition)
Modular curves are curves who (except their cusps) parametrise
isomorphism classes of elliptic curves E together with a finite structure
on E.

Notations
Three families of modular curves: X0(p) for Borel, X+

sp(p) (resp.
X+

nsp(p)) for normaliser of split (resp. nonsplit Cartan).
Replacing X by J above will denote their respective jacobians.

Consequence of the algebraic interpretation of modular curves
If Im ρE,p is in the Borel case, E defines a noncuspidal rational point on
X0(p), and similary for the other cases.

Restatement of Serre’s uniformity conjecture
For any prime p > C, the modular curves X0(p), X+

sp(p) and X+
nsp(p)

have no noncuspidal non-CM rational points.
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Chabauty method in the context of modular curves

Fundamental remark
Chabauty’s theorem (and Coleman’s method) still hold under the weaker
hypothesis

rankA(Q) < dimA

for some quotient abelian variety A of J , in particular if A(Q) is finite
(i.e. A is a rank zero quotient).

Consequence
It is “enough” to find rank zero quotients of J0(p), J+

sp(p) and J+
nsp(p) to

apply theoretically the method.

Mazur’s method (roughly)
If J0(p) has a rank zero quotient, if Im ρE,p ⊂ Borel, the associated
point of X0(p) never reduces to a cusp hence j(E) ∈ Z. The same thing
holds for J+

sp(p) and J+
nsp(p).
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Current knowledge on the three families of modular curves
The ∼ sign always denotes an isogeny defined over Q.

For any odd prime
p,

J+
sp(p) ∼ J0(p)⊕ J0(p2)+,new, J+

nsp(p) ∼ J0(p2)+,new (Chen)

so only J0(p) and J0(p2)+,new are to be considered.

Current state of affairs
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What is the “quadratic Chabauty” method ?

Reinterpretation of Chabauty

Take VpJ = TpJ ⊗Zp Qp and GT the Galois group of the maximal
extension of Q unramified outside p. We have the commutative diagram

C(Q) J(Q)⊗Z Qp H1
f (GT , VpJ)

C(Qp) J(Qp)⊗Z Qp H1
f (GQp

, VpJ) H0(CQp
,Ω1)∗

ι κ

locp

ι

∫

κp ∼

where the isomorphism is given by p-adic Hodge theory,
∫

comes from
the p-adic integration pairing and κ, κp are Kummer maps.

Kim’s idea
Replace VpJ by a unipotent p-adic Lie group U � VpJ over Qp,

12
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Principle of Chabauty-Kim method

Idea
Find U an unipotent algebraic group over Qp such that

I We have the commutative diagram

C(Q) Sel(U) (⊂ H1
f (GT , U))

C(Qp) H1
f (GQp

, U)

κU

locp

κU,p

where κU and κU,p are Kummer maps, Sel(U) and H1
f (GQp

, U)
have variety structures and locp is algebraic.

I The map κU,p has locally Zariski-dense image everywhere.
I The map locp is not dominant.

Then, C(Q) ↪→ κ−1U,p(Im locp) which proves it is finite !
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Quadratic Chabauty: the main theorem

C(Q) Sel(U)

C(Qp) H1
f (GQp , U)

κU

locp

κU,p

Definition (Néron-Severi group)
Let NS(J) := Pic J/Pic0 J be the Néron-Severi group of J . It is a finite
type Z-module, of rank denoted by ρ = ρ(J).

Theorem(Balakrishnan, Dogra)
One can find a group U satisfying the first two conditions, and

dim Sel(U) ≤ r = rank J(Q), dimH1
f (GQp , U) ≥ g + ρ− 1.

Therefore, under the quadratic Chabauty condition

r < g + ρ− 1,

one has proved the finiteness of C(Q) !

14
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Applications of the method

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk)
The set of rational points of X+

nsp(13) (for which r = g = ρ = 3) is made
up with CM points and #X+

nsp(13)(Q) = 7.

Tools to make effective quadratic Chabauty

I Equation(s) for the curve.
I Iterated p-adic integrals for 1-forms on the curve to give explicit

equations for the rational points.
I Mordell-Weil sieve to exclude all other possibilities.
I Special working case : r = g, ρ > 1.
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Applying the method to families of modular curves

Reasonable working scopes
I Figure out when quadratic Chabauty condition is satisfied.
I (future) Obtain an argument working in families such as Mazur’s

method.

WIP (Dogra, Vonk)
The quadratic Chabauty method also applies for C if

rankA(Q) < dimA+ ρ(A)− 1

for A a quotient abelian variety of J , in particular if rankA(Q) = dimA
and ρ(A) > 1.
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What is special about modular curves

Theory of Eichler-Shimura

I If f =
∑+∞
n=1 anq

n is a newform of S2(Γ0(N)) , Kf := Q({an}) is a
totally real number field and there is a quotient Af of J0(N)new of
dimension [Kf : Q] with End(Af )⊗Q = Kf .

I We have the decomposition
J0(N)+,new ∼

⊕
f

Af

where f runs through representatives of the orbits of newforms of
S2(Γ0(N))+ by the action of Gal(Q/Q).

Fundamental remark for modular curves
As NS(Af )⊗Q ∼= Kf here (Pyle), for J0(N)+, it is enough to find
either:
(a) One newform f such that rankAf (Q) = dimAf ≥ 2.
(b) Two newforms f such that rankAf (Q) = dimAf .
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Our goal: where L-functions appear

Objective
For N = p or p2 large enough, prove option (a) or (b).

The rank part of BSD conjecture
For any abelian variety A over Q, rankA(Q) = ords=1 L(A, s).

Definition
For any modular form f in S2(Γ0(N)), the L-function of f is defined for
Re(s) > 2 by

L(f, s) =

+∞∑
n=1

an(f)

ns
.

It extends holomorphically to C and L(f, 1) = 0 if f ∈ S2(Γ0(N))+. If f
is a newform,

L(Af , s) =
∏
g∼f

L(g, s)

where g goes through the [Kf : Q] newforms Gal(Q/Q)-conjugate to f .
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What to prove analytically

L(Af , s) =
∏
g∼f

L(g, s)

Theorem (Kolyvagin-Logachev)
For f a newform in S2(Γ0(N)), if ords=1 L(f, s) = k ∈ {0, 1} then Af
satisfies the rank part of BSD conjecture, i.e.

rankAf (Q) = k · dimAf .

Restated objective
For any N = p or p2 large enough, prove:
There are at least two newforms f ∈ S2(Γ0(N))+ such that L′(f, 1) 6= 0.
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Nonvanishing of derivatives of modular L-functions

Restated objective
For any N = p or p2 large enough, prove:
There are at least two newforms f ∈ S2(Γ0(N))+ such that L′(f, 1) 6= 0.

Lemma
For any f ∈ S2(Γ0(N))+,

L′(f, 1) = 2

+∞∑
n=1

an(f)

n
E1

(
2πn√
N

)

where E1(y) =
∫ +∞
y

e−t/tdt is the exponential integral function.

Main idea for computations
To prove that there is one f such that L′(f, 1) 6= 0, it is enough to prove
that a weighted sum of the L′(f, 1) is nonzero !
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Notations for the weighted sums

Notations

I For any linear forms A,B on S2(Γ0(N)),

〈A,B〉N =
∑
f

A(f)B(f)

‖f‖2

where f runs through a Petersson-orthogonal basis of S2(Γ0(N))
with superscripts +,−,new added for the corresponding subspaces
of S2(Γ0(N)).

I We define am : f 7→ am(f), L : f → L(f, 1), L′ : f 7→ L′(f, 1) and
will focus on 〈am, L′〉+,new

N .

Lemma
For any m prime to p,

〈am, L′〉+,newp2 = 〈am, L′〉+p2 −
1

p− 1

(
〈am, L′〉+p +

ln(p)

2
〈am, L〉−p

)
so it is enough to compute only 〈am, L′〉+N and 〈am, L〉−p .
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Our main tool: Petersson trace formula

Proposition (Restricted Petersson trace formula)
For any integers m,n,N ≥ 1 :

〈am, an〉+N
2π
√
mn

= δmn − 2π

∑
N |c

S(m,n; c)

c
J1

(
4π
√
mn

c

)
− 2π

 ∑
(d,N)=1

S(m,nN−1; d)

d
√
N

J1

(
4π
√
mn

d
√
N

)
where

J1 is the Bessel function of first order and first type and

S(m,n; c) =
∑

k∈(Z/cZ)∗
e2iπ(mk+nk

−1)/c

is the Kloosterman sum.
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Expression of our weighted averages
Using the previous formulas,

〈am, L′〉+N
4π

= E1

(
2πm√
N

)
− 2π

√
m

∑
N |c

S(c)

c
+

∑
(d,p)=1

T (d)

d
√
N

 ,

where

S(c) =
+∞∑
n=1

S(m,n; c)√
n

J1

(
4π
√
mn

c

)
E1

(
2πn√
N

)
and

T (d) =
+∞∑
n=1

S(m,nN−1; d)√
n

J1

(
4π
√
mn

d
√
N

)
E1

(
2πn√
N

)
,

and a similar formula holds for 〈am, L〉−N .

Remark
For m�

√
N , the main term is E1(2πm/

√
N) ∼ ln(N)/2 hence

〈am, L′〉+N ∼ 2π ln(N).
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First estimates: Weil bounds

First, one has |J1(x)| ≤ |x|/2, and

E1(x) = | ln(x)| − γ +O(x) (x ≤ 1), E1(x) = O(e−x/x).

Proposition (Weil bounds)
For any m,n, c ≥ 1,

|S(m,n; c)| ≤ (gcd(m,n, c))1/2τ(c)
√
c

where τ is the divisor-counting function.

Consequence
For m�

√
N ,

〈am, L′〉+N
4π

=
ln(N)

2
− ln(m)− (γ + ln(2π)) +O

(m
N

)
+O

(
m√
N

)
,

the (effective) error terms coming respectively from the S(c) and T (d).
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How to exploit the estimates

〈am, L′〉+N
4π

=
ln(N)

2
− ln(m)− (γ + ln(2π)) +O

(m
N

)
+O

(
m√
N

)
,

Lemma
For N = p, it is enough to prove that 〈a1, L′〉+p 6= 0 and
〈a2, L′〉+p /〈a1, L′〉+p /∈ Z, and similarly for N = p2.

Proof.
When 〈a1, L′〉+p 6= 0, the only situation when option (a) is not satisfied is
when only one newform f in the basis satisfies L′(f, 1) 6= 0, and then

〈a2, L′〉+p
〈a1, L′〉+p

=
a2(f)L′(f, 1)

‖f‖ 2

‖f‖2

L′(f, 1)
= a2(f).

Now, if a2(f) /∈ Z, Kf 6= Q so f has nontrivial conjugates g such that
L′(g, 1) 6= 0 as well, contradiction.
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〈a1, L′〉+p

=
a2(f)L′(f, 1)

‖f‖ 2

‖f‖2

L′(f, 1)
= a2(f).

Now, if a2(f) /∈ Z, Kf 6= Q so f has nontrivial conjugates g such that
L′(g, 1) 6= 0 as well, contradiction.
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The first range

〈am, L′〉+N
4π

=
ln(N)

2
− ln(m)− (γ + ln(2π)) +O

(m
N

)
+O

(
m√
N

)
,

Proposition
After improving the bounds specifically for m = 1 and m = 2, one finds

〈a1, L′〉+p > 0 for p ≥ 1213 〈a1, L′〉+,new
p2 > 0 for p ≥ 47

〈a2, L′〉+p > 0 for p ≥ 5437 〈a2, L′〉+,new
p2 > 0 for p ≥ 97

〈a2,L′〉+p
〈a1,L′〉+p

∈]0, 1[ for p ≥ 45341
〈a2,L′〉+,new

p2

〈a1,L′〉+,new
p2

∈]0, 1[ for p ≥ 269.

Remarks to improve this result

I Those bounds are still too large to be complemented by computer.
I The term O(m/

√
N) coming from the T (d) needs to be improved.

I The Kloosterman sums oscillate a lot.
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Pólya-Vinogradov-like inequality for Kloosterman sums

Proposition
For every d > 1, every k invertible modulo d and every m,K,K ′ ∈ N,∣∣∣∣∣∣

K′∑
n=K

S(m,nk; d)

∣∣∣∣∣∣ ≤ 4d

π2
(log(d) + 1.5).

As J1(x) ≈ x/2 for x small, for d > 1,

|T (d)| / 2π
√
m

d
√
p

+∞∑
n=1

S(1, nN−1; d)E1

(
2πn√
N

)
/

8

π

√
m√
N

(log(d) + 1.5)E1

(
2π√
N

)
by Abel transform, to be compared to the bound τ(d)/

√
d coming from

the Weil bounds.
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The final result

After optimising on the choice of Weil vs. Polya-Vinogradov, we get:

Theorem (LF, Siksek)

I We have

〈a2,L′〉+p
〈a1,L′〉+p

∈]0, 1[ for p ≥ 8663
〈a2,L′〉+,new

p2

〈a1,L′〉+,new
p2

∈]0, 1[ for p ≥ 167,

I After ad hoc computations for the remaining cases, quadratic
Chabauty condition for a quotient is satisfied for any X0(p)+ or
X+

nsp(p) of genus at least two.

Perspectives

I Infinite families of jacobians satisfying quadratic Chabauty.
I Devise a “quadratic Mazur’s method”.
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