You should attempt all the questions on this sheet, but questions 1, 2, 3 will marked for credit, and must be handed in by 3pm Friday, week 9.

(1) Which of the following are lattices in \(\mathbb{Z}^2 \)? What is the index?
 (i) \(\{(x, y) \in \mathbb{Z}^2 : x + y = 1\} \).
 (ii) \(\{(x, y) \in \mathbb{Z}^2 : x + y = 0\} \).
 (iii) \(\{(x, y) \in \mathbb{Z}^2 : 2 \mid x\} \).
 (iv) \(\{(x, y) \in \mathbb{Z}^2 : x \equiv y \pmod{3}\} \).
 (v) \(\{(x, y) \in \mathbb{Z}^2 : x \equiv y \pmod{3}, x \equiv 2y \pmod{5}\} \).

(2) Which of the following are convex? Which of the following are symmetric?
 (i) \(\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 > 0\} \).
 (ii) \(\{(x, y) \in \mathbb{R}^2 : (x - 1)^2 + y^2 < 1\} \).
 (iii) \(\{(x, y, z) \in \mathbb{R}^3 : 3x^2 + 5y^2 + 7z^2 < 1\} \).

(3) Let \(p \) be an odd prime satisfying \(\left(-\frac{2}{p} \right) = 1 \). Show that there are integers \(x, y \) such that \(x^2 + 2y^2 = p \).

(4) Find an odd prime \(p \) for which \(\left(-\frac{5}{p} \right) = 1 \) but which is not of the shape \(x^2 + 5y^2 \) with \(x, y \in \mathbb{Z} \).

(5) Let \(p \equiv 1 \pmod{3} \) be prime. Show that there is some \(f \in \mathbb{Z} \) such that \(f^2 + f + 1 \equiv 0 \pmod{p} \). Show that \(p = x^2 + xy + y^2 \) for some \(x, y \in \mathbb{Z} \).