Serre’s Uniformity Conjecture

Conjecture (Serre’s Uniformity Conjecture)

Let E/\mathbb{Q} be without CM. Let $p > 37$. Then $\bar{\rho}_{E,p}$ is surjective.

Note: $\bar{\rho}$ surjective \iff image contains $\text{SL}_2(\mathbb{F}_p)$.

Theorem (Dickson)

Let H be a subgroup of $\text{GL}_2(\mathbb{F}_p)$ not containing $\text{SL}_2(\mathbb{F}_p)$. Then (up to conjugation)

(i) either $H \subseteq B_0(p) := \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}$ (Borel subgroup)

(ii) or $H \subseteq N_s^+(p) := \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} : \alpha, \beta \in \mathbb{F}_p^* \right\}$ (normalizer of split Cartan)

(iii) or $H \subseteq N_{ns}^+(p)$ (normalizer of non-split Cartan).

(iv) or the image of H in $\text{PGL}_2(\mathbb{F}_p)$ is isomorphic to A_4, S_4 or A_5 (these are called the exceptional subgroups of $\text{GL}_2(\mathbb{F}_p)$).
Vague Objective

Given
- a field K,
- a positive integer N,
- and a subgroup $H \subseteq \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$,

want to understand

\[(*) \{ \text{elliptic curves } E/K : \bar{\rho}_{E,N}(G_K) \text{ is conjugate to a subgroup of } H \} \, . \]

There is a modular curve X_H associated to H.

Provided H satisfies certain technical assumptions,
- elements of (*) give rise to (non-cuspidal) K-points on X_H.
- By understanding $X_H(K)$ we can give a complete description of the set (*).
Modular Curves corresponding to subgroups of $\text{GL}_2(\mathbb{F}_p)$

Corresponding to six groups $B_0(p), N_s^+(p), N_{ns}^+(p), A_4, S_4, A_5$ in Dickson’s classification are six modular curves $X_0(p), X_s^+(p), X_{ns}^+(p), X_{A_4}(p), X_{S_4}(p)$ and $X_{A_5}(p)$.

To prove Serre’s uniformity conjecture, enough to show that the rational points on each of these curves are either CM or cuspidal for $p > 37$.

In fact this has been accomplished for all these families except $X_{ns}^+(p)$.

Theorem (Serre)

If $p \geq 13$ then $X(\mathbb{Q}_p) = \emptyset$ for $X = X_{A_4}(p), X_{S_4}(p), X_{A_5}(p)$.

Theorem (Mazur)

If $p > 37$ then $X_0(p)(\mathbb{Q}) \subset \{\text{cusps, cm points}\}$.

Theorem (Bilu, Parent and Rebolledo)

If $p > 13$ then $X_s^+(p)(\mathbb{Q}) \subset \{\text{cusps, cm points}\}$.
To prove Serre’s uniformity conjecture, enough to show that the rational points on each of these curves are either CM or cuspidal for $p > 37$.

In fact this has been accomplished for all these families except $X_{ns}^+(p)$.

Theorem (Serre)

*If $p \geq 13$ then $X(\mathbb{Q}_p) = \emptyset$ for $X = X_{A_4}(p), X_{S_4}(p), X_{A_5}(p)$.***

Theorem (Mazur)

*If $p > 37$ then $X_0(p)(\mathbb{Q}) \subset \{ \text{cusps, cm points} \}$.***

Theorem (Bilu, Parent and Rebolledo)

*If $p > 13$ then $X_s^+(p)(\mathbb{Q}) \subset \{ \text{cusps, cm points} \}$.***

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk)

X_s^+(13)(\mathbb{Q}) and X_{ns}^+(13)(\mathbb{Q}) consist of cusps and CM points.

The question of rational points on $X_{ns}^+(p)$ is a famous open problem.
The Modular Curve $X(1)$—Recap

\[\mathbb{H} := \{ x + yi : x, y \in \mathbb{R}, y > 0 \} \quad \text{(upper half-plane)} \]
\[\mathbb{H}^* := \mathbb{H} \cup \mathbb{P}^1(\mathbb{Q}) \quad \text{(extended upper half-plane)}. \]

- Given any $\tau \in \mathbb{H}$, there is an elliptic curve E_τ/\mathbb{C} such that $E_\tau(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \mathbb{Z} \cdot \tau)$.
- Every elliptic curve over \mathbb{C} is isomorphic to E_τ for some τ.
- Moreover $E_{\tau_1} \cong E_{\tau_2}$ if and only if $\tau_1 = \gamma(\tau_2)$ for some $\gamma \in \text{SL}_2(\mathbb{Z})$.

\[\therefore \text{we have a bijection} \]
\[\text{SL}_2(\mathbb{Z}) \backslash \mathbb{H} \leftrightarrow \{ \text{isom classes of elliptic curves } E/\mathbb{C} \}, \]
\[\text{SL}_2(\mathbb{Z}) \cdot \tau \leftrightarrow [\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)] \quad ([\cdot] = \text{isom class}). \]

$\text{SL}_2(\mathbb{Z}) \backslash \mathbb{H}$ is a Riemann surface. Its points are in 1–1 correspondence with isom classes of elliptic curves over \mathbb{C}.
we have a bijection

\[
\begin{align*}
\text{SL}_2(\mathbb{Z}) \setminus \mathbb{H} & \leftrightarrow \{\text{isom classes of elliptic curves } E/\mathbb{C}\}, \\
\text{SL}_2(\mathbb{Z}) \cdot \tau & \mapsto [\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)] \quad ([\cdot] = \text{isom class}).
\end{align*}
\]

- \(\text{SL}_2(\mathbb{Z}) \setminus \mathbb{H}\) is a Riemann surface. Its points are in 1−1 correspondence with isom classes of elliptic curves over \(\mathbb{C}\).
- \(\text{SL}_2(\mathbb{Z}) \setminus \mathbb{H}\) is non-compact; its compactification is \(\text{SL}_2(\mathbb{Z}) \setminus \mathbb{H}^*\) \((\mathbb{H}^* := \mathbb{H} \cup \mathbb{P}^1(\mathbb{Q}))\).
- \(\text{SL}_2(\mathbb{Z}) \setminus \mathbb{H}^*\) is a compact Riemann surface of genus 0.
- The points of \(\mathbb{P}^1(\mathbb{Q}) \subset \mathbb{H}^*\) form one orbit under the action of \(\text{SL}_2(\mathbb{Z})\), so the compactification has only one extra point, called the ‘the \(\infty\) cusp’.
- Any compact Riemann surface can be identified as the set of complex points on an algebraic curve of the same genus.
• $\text{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^*$ is a compact Riemann surface of genus 0.

• The points of $\mathbb{P}^1(\mathbb{Q}) \subset \mathbb{H}^*$ form one orbit under the action of $\text{SL}_2(\mathbb{Z})$, so the compactification has only one extra point, called the ‘the ∞ cusp’.

• Any compact Riemann surface can be identified as the set of complex points on an algebraic curve of the same genus.

• In this we case we denote the algebraic curve by $X(1) = \mathbb{P}^1$.

$$j : \text{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^* \to X(1)(\mathbb{C}) ,$$

$$\text{SL}_2(\mathbb{Z}) \cdot \tau \mapsto j(\tau) = \frac{1}{q} + 744 + 196884q^2 + \cdots ,$$

where

$$q := \begin{cases} \exp(2\pi i \tau) & \tau \in \mathbb{H} \\ 0 & \tau \in \mathbb{P}^1(\mathbb{Q}) . \end{cases}$$
In this case we denote the algebraic curve by $X(1) = \mathbb{P}^1$.

$$j : \text{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^* \rightarrow X(1)(\mathbb{C}) ,$$

$$\text{SL}_2(\mathbb{Z}) \cdot \tau \mapsto j(\tau) = \frac{1}{q} + 744 + 196884q^2 + \cdots ,$$

where

$$q := \begin{cases} \exp(2\pi i \tau) & \tau \in \mathbb{H} \\
0 & \tau \in \mathbb{P}^1(\mathbb{Q}). \end{cases}$$

- j sends cusp $\text{SL}_2(\mathbb{Z}) \backslash \mathbb{P}^1(\mathbb{Q})$ to $\infty \in X(1)(\mathbb{C})$.
- Let $Y(1) := X(1) \backslash \infty \cong \mathbb{A}^1$.

Summary: There is a 1 − 1 correspondence between isomorphism classes of elliptic curves E/\mathbb{C} and points $j \in Y(1)(\mathbb{C})$ (the value is $j \in Y(1)(\mathbb{C})$ corresponding to E/\mathbb{C} is familiar j-invariant $j(E)$).

Now let K be any field. The correspondence between isomorphism classes of E/K and points in $Y(1)(\overline{K})$, sending E to its j-invariant E, remains valid.
Summary: There is a 1 − 1 correspondence between isomorphism classes of elliptic curves E/\mathbb{C} and points $j \in Y(1)(\mathbb{C})$ (the value is $j \in Y(1)(\mathbb{C})$ corresponding to E/\mathbb{C} is familiar j-invariant $j(E)$).

Now let K be any field. The correspondence between isomorphism classes of E/K and points in $Y(1)(\overline{K})$, sending E to its j-invariant E, remains valid.

Points $j \in Y(1)(K)$ correspond to classes of elliptic curves defined over K which are isomorphic over \overline{K}.

If E, E' are defined over K and isomorphic over \overline{K}, then they are quadratic twists, except possibly if they have j-invariants 0, 1728.

So we have the following 1 − 1 correspondence:

\[
\{\text{elliptic curves over } K \text{ with } j\text{-invariant } \neq 0, 1728\} / \sim \\
\iff j \in X(1)(K) \setminus \{0, 1728, \infty\}
\]

where \sim denotes quadratic twisting.
The modular curves $X_1(N), X_0(N)$

Fix $N \geq 1$.

- Want to understand isomorphism classes of pairs (E, P),
 - where E is an elliptic curve;
 - P is a point of order N;
 - $(E, P), (E', P')$ are **isomorphic** if there is an isomorphism $\phi : E \to E'$ with $\phi(P) = P'$.

- Given (E, P) with E/\mathbb{C},
 - $\exists \tau \in \mathbb{H}$ such that $E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \mathbb{Z} \cdot \tau)$ AND
 - this isom takes P to $1/N + (\mathbb{Z} + \mathbb{Z} \tau) \in \mathbb{C}/(\mathbb{Z} + \mathbb{Z} \tau)$;
 - We identify $[(E, P)]$ with $[(\mathbb{C}/(\mathbb{Z} + \mathbb{Z} \tau), 1/N)]$;
 - $(\mathbb{C}/(\mathbb{Z} + \mathbb{Z} \tau_1), 1/N) \cong (\mathbb{C}/(\mathbb{Z} + \mathbb{Z} \tau_2), 1/N)$ iff $\exists \gamma \in \Gamma_1(N)$ such that $\tau_1 = \gamma(\tau_2)$.

$\Gamma_1(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) : a \equiv d \equiv 1 \pmod{N}, \ c \equiv 0 \pmod{N} \right\}$.

Obtain 1 – 1 correspondence

\[
\Gamma_1(N) \backslash \mathbb{H} \leftrightarrow \{ \text{isom classes of pairs } (E/\mathbb{C}, P) \}, \\
\Gamma_1(N) \cdot \tau \leftrightarrow [(\mathbb{C}/(\mathbb{Z} + \mathbb{Z} \tau), 1/N)].
\]
Also want to understand isomorphism classes of pairs \((E, C)\) where
\begin{itemize}
 \item \(E/C\) is an elliptic curve;
 \item \(C\) is a cyclic subgroup of order \(N\);
 \item pairs \((E_1, C_1), (E_2, C_2)\) are isomorphic if there exists isomorphism
 \(\phi : E_1 \to E_2\) such that \(\phi(C_1) = C_2\).
 \item Write \([((E, C))]\) for the isomorphism class of the pair \((E, C)\).
\end{itemize}

Obtain 1–1 correspondence
\[
\Gamma_0(N) \backslash \mathbb{H} \leftrightarrow \{\text{isom classes of pairs } (E/C, C)\},
\]
\[
\Gamma_0(N) \cdot \tau \mapsto \left[((C/(\mathbb{Z} + \mathbb{Z}\tau), \langle 1/N \rangle) \right].
\]

where
\[
\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}) : c \equiv 0 \pmod{N} \right\}.
\]

Miracle: there are (open) curves \(Y_1(N), Y_0(N)\) defined over \(\mathbb{Q}\), such that
\[
Y_1(N)(\mathbb{C}) \cong \Gamma_1(N) \backslash \mathbb{H}, \quad Y_0(N)(\mathbb{C}) \cong \Gamma_0(N) \backslash \mathbb{H},
\]

The completions \(X(1), X_1(N), X_0(N)\) satisfy
\[
X_1(N)(\mathbb{C}) \cong \Gamma_1(N) \backslash \mathbb{H}^*, \quad X_0(N)(\mathbb{C}) \cong \Gamma_0(N) \backslash \mathbb{H}^*.
\]
Miracle: there are (open) curves \(Y_1(N), Y_0(N)\) defined over \(\mathbb{Q}\), such that
\[
Y_1(N)(\mathbb{C}) \cong \Gamma_1(N)\backslash \mathbb{H}, \quad Y_0(N)(\mathbb{C}) \cong \Gamma_0(N)\backslash \mathbb{H},
\]
The completions \(X(1), X_1(N), X_0(N)\) satisfy
\[
X_1(N)(\mathbb{C}) \cong \Gamma_1(N)\backslash \mathbb{H}^*, \quad X_0(N)(\mathbb{C}) \cong \Gamma_0(N)\backslash \mathbb{H}^*,
\]
We call \(X_1(N) \setminus Y_1(N), X_0(N) \setminus Y_0(N)\) the sets of \textbf{cusps} of \(X_1(N), X_0(N)\) respectively.

Facts.

- A point \(Q \in Y_1(N)(\overline{K})\) parametrises an isomorphism class of pairs \([(E, P)]\) where \(E/\overline{K}\) and \(P\) is a point of order \(N\). We write \(Q = [(E, P)] \in Y_1(N)(\overline{K})\) (i.e. identify point \(Q \in Y_1\) with pair it represents).
- This parametrisation is compatible with the action of \(G_K\). Thus \(Q^\sigma = [(E, P)]^\sigma\) where \([(E, P)]^\sigma\) is simply defined as \((E^\sigma, P^\sigma)\).
- Let \(Q = [(E, P)] \in Y_1(N)(\overline{K})\) as above. If \(E\) is defined over \(K\), and \(P\) is a \(K\)-rational point of order \(N\), then \(Q^\sigma = [(E, P)]^\sigma = [(E, P)] = Q\) for all \(\sigma \in G_K\), and thus \(Q \in Y_1(K)\).
The Modular Curve X_H

We want to generalise previous constructions to an arbitrary group $H \leq \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$.

- An isomorphism $\alpha : E[N] \rightarrow (\mathbb{Z}/N\mathbb{Z})^2$ a level N structure on E.
- A level N-structure is same as choice of basis for $E[N]$: $P = \alpha^{-1}(e_1)$, $Q = \alpha^{-1}(e_2)$ where $e_1 = (1, 0)$, $e_2 = (0, 1)$.
- We call pairs (E_1, α_1) and (E_2, α_2) H-isomorphic, and write

 $$(E_1, \alpha_1) \sim_H (E_2, \alpha_2)$$

 if there is an isom $\phi : E_1 \rightarrow E_2$ and an element $h \in H$ such that

 $$\alpha_1 = h \circ \alpha_2 \circ \phi$$

 (think of $h \in H$ as $h : (\mathbb{Z}/N\mathbb{Z})^2 \cong (\mathbb{Z}/N\mathbb{Z})^2$).

Exercise. Show that H-isomorphism is an equivalence relation. We denote the H-isomorphism class of the pair (E, α) by $[(E, \alpha)]_H$.
We want to generalise previous constructions to an arbitrary group \(H \leq \text{GL}_2(\mathbb{Z}/N\mathbb{Z}) \).

- An isomorphism \(\alpha : E[N] \to (\mathbb{Z}/N\mathbb{Z})^2 \) is a level \(N \) structure on \(E \).

- A level \(N \)-structure is same as choice of basis for \(E[N] \): \(P = \alpha^{-1}(e_1), Q = \alpha^{-1}(e_2) \) where \(e_1 = (1, 0), e_2 = (0, 1) \).

- We call pairs \((E_1, \alpha_1)\) and \((E_2, \alpha_2)\) \(H \)-isomorphic, and write

\[
(E_1, \alpha_1) \sim_H (E_2, \alpha_2)
\]

if there is an isom \(\phi : E_1 \to E_2 \) and an element \(h \in H \) such that

\[
\alpha_1 = h \circ \alpha_2 \circ \phi \quad \text{(think of } h \in H \text{ as } h : (\mathbb{Z}/N\mathbb{Z})^2 \cong (\mathbb{Z}/N\mathbb{Z})^2)\).

Exercise. Let \(H = B_1(N) \). Show that \((E_1, \alpha_1) \sim_H (E_2, \alpha_2)\) if and only if there is an isomorphism \(\phi : E_1 \to E_2 \) such that \(\phi(P_1) = P_2 \), where

\[
P_1 = \alpha_1^{-1}(1, 0), \quad P_2 = \alpha_2^{-1}(1, 0),
\]

are respectively points of order \(N \) on \(E_1, E_2 \).
We want to generalise previous constructions to an arbitrary group $H \leq \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$.

- An isomorphism $\alpha : E[\mathcal{N}] \to (\mathbb{Z}/N\mathbb{Z})^2$ a level N structure on E.

- A level N-structure is same as choice of basis for $E[\mathcal{N}]$: $P = \alpha^{-1}(e_1)$, $Q = \alpha^{-1}(e_2)$ where $e_1 = (1,0)$, $e_2 = (0,1)$.

- We call pairs (E_1, α_1) and (E_2, α_2) H-isomorphic, and write
 $$(E_1, \alpha_1) \sim_H (E_2, \alpha_2)$$
 if there is an isom $\phi : E_1 \to E_2$ and an element $h \in H$ such that
 $$\alpha_1 = h \circ \alpha_2 \circ \phi$$
 (think of $h \in H$ as $h : (\mathbb{Z}/N\mathbb{Z})^2 \cong (\mathbb{Z}/N\mathbb{Z})^2$).

Exercise. Let $H = B_0(N)$. Show that $(E_1, \alpha_1) \sim_H (E_2, \alpha_2)$ if and only if there is an isomorphism $\phi : E_1 \to E_2$ such that $\phi(\langle P_1 \rangle) = \langle P_2 \rangle$, where

$$P_1 = \alpha_1^{-1}(1,0), \quad P_2 = \alpha_2^{-1}(1,0),$$

are respectively points of order N on E_1, E_2.
The congruence subgroup associated to $H \leq \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$

Let

$$\Gamma_H := \{ A \in \text{SL}_2(\mathbb{Z}) : (A \mod N) \in \text{SL}_2(\mathbb{Z}/N\mathbb{Z}) \cap H \}.$$

Then

$$\Gamma_H \supseteq \Gamma(N) := \{ A \in \text{SL}_2(\mathbb{Z}) : A \equiv I \pmod{N} \}.$$

∴ Γ_H is a congruence subgroup of $\text{SL}_2(\mathbb{Z})$.

Exercise. Show that

$$\Gamma_{B_0(N)} = \Gamma_0(N), \quad \Gamma_{B_1(N)} = \Gamma_1(N).$$
The congruence subgroup associated to $H \leq \text{GL}_2(\mathbb{Z}/N\mathbb{Z})$

Let
$$
\Gamma_H := \{ A \in \text{SL}_2(\mathbb{Z}) : (A \mod N) \in \text{SL}_2(\mathbb{Z}/N\mathbb{Z}) \cap H \}.
$$

Given $\tau \in \mathbb{H}$ we write α_τ for the level N structure on $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$:
$$
\alpha_\tau(1/N) = (1,0), \quad \alpha_\tau(\tau/N) = (0,1).
$$

- if E/\mathbb{C}, α level N-structure on E then
 - there is $\tau \in \mathbb{H}$ such that $E = E_\tau$;
 - the isomorphism $E_\tau(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$ identifies α with α_τ;
 - can think of (E, α) as $(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau), \alpha_\tau)$.

- $[(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau_1), \alpha_{\tau_1})]_H = [(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau_2), \alpha_{\tau_2})]_H$ iff $\tau_1 = \gamma(\tau_2)$ for some $\gamma \in \Gamma_H$.

We conclude that there is a one-one correspondence
$$
\Gamma_H \backslash \mathbb{H} \leftrightarrow \{(E/\mathbb{C}, \alpha)]_H\}, \quad \Gamma_H \cdot \tau \mapsto [(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau), \alpha_\tau)]_H.
$$
The modular curve X_H

∃ algebraic curves $X_H \supset Y_H$, with X_H complete and Y_H open such that

\[Y_H(\mathbb{C}) \cong \Gamma_H \backslash \mathbb{H}, \quad X_H(\mathbb{C}) \cong \Gamma_H \backslash \mathbb{H}^*. \]

\[\text{det}(H) \leq (\mathbb{Z}/N\mathbb{Z})^* \xrightarrow{\chi_N} \text{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q}) \]

Make sense to write

\[L_H := \mathbb{Q}(\zeta_N)^{\text{det}(H)}. \]

Theorem

The modular curve X_H has a model defined over L_H.
$L_H := \mathbb{Q}(\zeta_N)^{\det(H)}.$

Theorem

The modular curve X_H has a model defined over L_H.

$\Gamma_H \subset \text{SL}_2(\mathbb{Z}) \quad \implies \quad \exists$ surjective morphism of Riemann surfaces

$$\Gamma_H \backslash \mathbb{H}^* \to \text{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^*, \quad \Gamma_H \cdot \tau \to \text{SL}_2(\mathbb{Z}) \cdot \tau.$$

This induces a non-constant morphism of curves

$$j : X_H \to X(1),$$

defined over L_H. The **cusps of** X_H is set $j^{-1}(\infty)$, and $Y_H := X_H \backslash j^{-1}(\infty)$.

On complex points it factors through the earlier j-map

$$\text{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^* \to X(1)(\mathbb{C}).$$
Assumption: Henceforth suppose \(\det(H) = (\mathbb{Z}/N\mathbb{Z})^* \). \(\therefore X_H \) is defined over \(\mathbb{Q} \) (in fact defined over \(\text{Spec}(\mathbb{Z}[1/N]) \)) and so is \(j : X_H \to X(1) \).

Let \(K \) be a perfect field, \(\text{char}(K) = 0 \), or \(\text{char}(K) \nmid N \).

- A point \(Q \in Y_H(\overline{K}) \) represents class \([(E, \alpha)]_H \) where \(E/\overline{K} \), \(\alpha \) a mod \(N \) level structure;
- we identify \(Q = [(E, \alpha)]_H \).

Lemma

Let \(Q = [(E, \alpha)]_H \in Y_H(\overline{K}) \). Let \(E'/\overline{K} \) be an elliptic curve that is isomorphic to \(E \). Then there is some isomorphism \(\alpha' : E'[N] \to (\mathbb{Z}/N\mathbb{Z})^2 \) such that \(Q = [(E', \alpha')]_H \).

i.e. I can replace \(E \) by any isomorphic \(E' \) and obtain the same point \(Q \in Y_H \) provided I suitably choose the mod \(N \) level structure on \(E' \).
Lemma

Let \(Q = [(E, \alpha)]_H \in Y_H(K) \). Let \(E'/K \) be an elliptic curve that is isomorphic to \(E \). Then there is some isomorphism \(\alpha' : E'[N] \to (\mathbb{Z}/N\mathbb{Z})^2 \) such that \(Q = [(E', \alpha')_H] \).

i.e. I can replace \(E \) by any isomorphic \(E' \) and obtain the same point \(Q \in Y_H \) provided I suitably choose the mod \(N \) level structure on \(E' \).

Proof.

Recall \([(E, \alpha)]_H = [(E', \alpha')_H] \) iff \(\exists \phi : E \to E' \) (isom) and \(h \in H \) such that \(\alpha = h \circ \alpha' \circ \phi \).

Let \(\phi : E \to E' \) be an isomorphism. Let \(\alpha' = \alpha \circ \phi^{-1} \). Observe that \(\alpha = I \circ \alpha' \circ \phi \) where \(I = \) identity of \(H \).

\[\therefore [(E, \alpha)]_H = [(E', \alpha')_H]. \]
Galois action and rationality

\[G_K \text{ acts on pairs } (E, \alpha) \quad (E, \alpha)^\sigma := (E^\sigma, \alpha \circ \sigma^{-1}). \]

Action is compatible with action of \(G_K \) on \(Y_H(\overline{K}) \):

\[Q = [(E, \alpha)]_H \implies Q^\sigma = [(E^\sigma, \alpha \circ \sigma^{-1})]_H. \]

Lemma

Let \(Q \in Y_H(\overline{K}) \). Then \(Q \in Y_H(K) \) iff \(Q = [(E, \alpha)]_H \) for some \(E/K \),
\(\alpha : E[N] \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^2 \) such that for all \(\sigma \in G_K \), there is an \(\phi_\sigma \in \text{Aut}_{\overline{K}}(E) \) and \(h_\sigma \in H \) satisfying

\[\alpha = h_\sigma \circ \alpha \circ \sigma^{-1} \circ \phi_\sigma. \quad (1) \]

Proof. \(\iff \) Condition (2) implies \((E, \alpha) \sim_H (E, \alpha \circ \sigma^{-1}) \). Thus \(Q^\sigma = Q \) for all \(\sigma \in G_K \) and so \(Q \in Y_H(K) \).
G_K acts on pairs (E, α) \quad $(E, \alpha)^\sigma := (E^\sigma, \alpha \circ \sigma^{-1})$.

Action is compatible with action of G_K on $Y_H(K)$:

$$Q = [(E, \alpha)]_H \implies Q^\sigma = [(E^\sigma, \alpha \circ \sigma^{-1})]_H.$$

Lemma

Let $Q \in Y_H(K)$. Then $Q \in Y_H(K)$ iff $Q = [(E, \alpha)]_H$ for some E/K, $\alpha : E[N] \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^2$ such that for all $\sigma \in G_K$, there is an $\phi_\sigma \in \text{Aut}_{\overline{K}}(E)$ and $h_\sigma \in H$ satisfying

$$\alpha = h_\sigma \circ \alpha \circ \sigma^{-1} \circ \phi_\sigma.$$

(2)

Proof. \implies Suppose $Q = [(E', \alpha')]_H \in Y_H(K)$.

Note $E' \cong E'^\sigma$ for all $\sigma \in G_K$. \therefore $j(E') \in K$. \therefore $E' \cong E$ where E/K.

By previous lemma $Q = [(E, \alpha)]_H$ for some α.

(2) follows $[(E, \alpha \circ \sigma^{-1})] = Q^\sigma = Q = [(E, \alpha)]$.

\square
The case $-I \notin H$

Theorem

Suppose $\det(H) = (\mathbb{Z}/N\mathbb{Z})^*$ and $-I \in H$.

(i) Every $Q \in Y_H(K)$ is supported on some E/K (i.e. $\exists E/K$ and $\alpha : E[N] \xrightarrow{\sim} (\mathbb{Z}/N\mathbb{Z})^2$ such that $Q = [(E, \alpha)]_H$.

(ii) If $Q \in Y_H(K)$ and $j(Q) \neq 0, 1728$, then $Q = [(E, \alpha)]_H$ such that E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_H(K)$ for a suitable α.

(iii) If $Q \in Y_H(K)$ and $j(Q) \neq 0, 1728$, and $Q = [(E, \alpha)]_H$ as above, then $Q = [(E', \alpha')]$ for any quadratic twist E'/K defined over K, and for suitable α'.
Theorem

Suppose \(\det(H) = (\mathbb{Z}/N\mathbb{Z})^* \) and \(-I \in H\).

(ii) If \(Q \in Y_H(K) \) and \(j(Q) \neq 0, 1728 \), then \(Q = [(E, \alpha)]_H \) such that \(E \) is defined over \(K \) and \(\overline{\rho}_{E,N}(G_K) \subset H \) (up to conjugation). Conversely, if there is \(E \) is defined over \(K \) and \(\overline{\rho}_{E,N}(G_K) \subset H \) (up to conjugation) then \([(E, \alpha)] \in Y_H(K) \) for a suitable \(\alpha \).

Some details for (ii). Note that \(j(Q) = j(E) \). As this \(\neq 0, 1728 \), the automorphism group \(\text{Aut}(E) = \{1, -1\} \). Thus \(\phi_{\sigma} = \pm 1 \) and in particular commutes with all other maps. But

\[
\alpha = h_{\sigma} \circ \alpha \circ \sigma^{-1} \circ \phi_{\sigma} \implies \alpha \circ \sigma = (\phi_{\sigma} h_{\sigma}) \circ \alpha.
\]

This can be rewritten as

\[
\overline{\rho}_{E,N}(\sigma) = \phi_{\sigma} h_{\sigma}
\]

once we have taken \(\alpha^{-1}(1, 0), \alpha^{-1}(0, 1) \) as basis for \(E[N] \). Note that \(\phi_{\sigma} h_{\sigma} = \pm h_{\sigma} \in H \). Thus \(\overline{\rho}_{E,N}(G_K) \subset H \) as required.
The case $-I \notin H$

Theorem

Suppose $\det(H) = (\mathbb{Z}/N\mathbb{Z})^*$ and $-I \notin H$.

(i) Every $Q \in Y_H(K)$ is supported on some E/K (i.e. $\exists E/K$ and $\alpha : E[N] \cong (\mathbb{Z}/N\mathbb{Z})^2$ such that $Q = [(E, \alpha)]_H$.

(ii) If $Q \in Y_H(K)$ and $j(Q) \neq 0, 1728$, then $Q = [(E, \alpha)]_H$ such that E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_H(K)$ for a suitable α.

(iii) If $Q \in Y_H(K)$ and $j(Q) \neq 0, 1728$, and $Q = [(E, \alpha)]_H$ as above, then E is unique.
Theorem

Suppose \(\det(H) = (\mathbb{Z}/N\mathbb{Z})^* \) and \(-1 \notin H\).

(ii) If \(Q \in Y_H(K) \) and \(j(Q) \neq 0, 1728 \), then \(Q = [(E, \alpha)]_H \) such that \(E \) is defined over \(K \) and \(\bar{\rho}_{E,N}(G_K) \subset H \) (up to conjugation). Conversely, if there is \(E \) is defined over \(K \) and \(\bar{\rho}_{E,N}(G_K) \subset H \) (up to conjugation) then \([(E, \alpha)] \in Y_H(K) \) for a suitable \(\alpha \).

(iii) If \(Q \in Y_H(K) \) and \(j(Q) \neq 0, 1728 \), and \(Q = [(E, \alpha)]_H \) as above, then \(E \) is unique.

Some details. As before \(\phi_\sigma \in \{\pm 1\} \) and \(\bar{\rho}_{E,N}(\sigma) = \phi_\sigma h_\sigma \).

The map \(\psi : \sigma \mapsto \phi_\sigma \) is a quadratic character.

If \(\psi \) is trivial then \(\bar{\rho}_{E,N}(G_K) \subset H \). Otherwise \(\psi \) is a quadratic character, and by Galois theory its kernel fixes a quadratic extension \(K(\sqrt{d}) \) of \(K \).

Now \(\bar{\rho}_{E_d,N} = \psi \cdot \bar{\rho}_{E,N} \), and thus \(\bar{\rho}_{E_d,N}(\sigma) = h_\sigma \in H \).

Replacing \(E \) by \(E_d \) and adjusting the level structure \(\alpha \) gives \(Q = [(E, \alpha)]_H \) with \(E \) defined over \(K \) and \(\bar{\rho}_{E,N}(G_K) \subset H \).