MA3D5 Galois Theory

Homework Assignment 4

The deadline is 2pm Thursday, week 9. Please hand in your solutions to Questions 1 and 2 to the MA3D5 Galois Theory box outside the Undergraduate Office.

1. Let \(L = \mathbb{Q}(\zeta, \sqrt[3]{2}) \) where \(\zeta = \exp(2\pi i/3) \). In the lectures we showed that \(L/\mathbb{Q} \) is Galois and identified its Galois group with \(S_3 \), by noting that \(L \) is the splitting field of \(f = x^3 - 2 \), and ordering the roots of \(f \) as \(\sqrt[3]{2}, \zeta \sqrt[3]{2}, \zeta^2 \sqrt[3]{2} \).
 (a) Give the following as subgroups of \(S_3 \):
 \(\mathbb{Q}(\sqrt[3]{2})^*, \mathbb{Q}(\zeta)^* \).
 (b) Calculate the following intermediate fields
 \(\{1, (1,2,3), (1,3,2)\}^\dagger, \{1, (2,3)\}^\dagger \).
 (c) With the help of the Fundamental Theorem of Galois Theory show that there are precisely six intermediate fields \(F \) for the extension \(L/\mathbb{Q} \) (including \(L, \mathbb{Q} \)), and identify the ones for which \(F/\mathbb{Q} \) is Galois.

2. Let \(L = \mathbb{Q}(\sqrt{-1}, \sqrt[3]{2}, \sqrt[3]{3}) \).
 (a) Show that \([L: \mathbb{Q}] = 8 \). (Hint: you may use the fact that \([\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}] = 4 \) for distinct primes \(p, q \).)
 (b) Show that \(L/\mathbb{Q} \) is Galois, and compute its Galois group as a subgroup of \(S_6 \), by noting that \(L \) is the splitting field of \(f = (x^2 + 1)(x^2 - 2)(x^2 - 3) \) and ordering the roots of \(f \) as \(i, -i, \sqrt[3]{2}, -\sqrt[3]{2}, \sqrt[3]{3}, -\sqrt[3]{3} \).
 (c) Give the following as subgroups of \(S_6 \):
 \(\mathbb{Q}^*, \mathbb{Q}(\sqrt{-1})^*, \mathbb{Q}(\sqrt[3]{2}, \sqrt[3]{3})^*, L^* \).
 (d) Calculate the following intermediate fields:
 \(\{1, (3,4)\}^\dagger, \{1, (1,2)(5,6)\}^\dagger, \{1, (1,2), (5,6), (1,2)(5,6)\}^\dagger \).
 (e) Explain why \(F/\mathbb{Q} \) is Galois for all intermediate fields \(F \) of \(L/\mathbb{Q} \).

3. Let \(f \) be a squarefree separable polynomial over \(K \). Let \(L = K(\alpha_1, \ldots, \alpha_n) \) be the splitting field of \(f \) where \(\alpha_1, \ldots, \alpha_n \) are the roots of \(f \). Define the discriminant of \(f \) to be
 \[D(f) = \left(\prod_{1 \leq i < j \leq n} (\alpha_i - \alpha_j) \right)^2. \]
 (i) Show that \(D(f) \in K \).
 (ii) Show that \(D(f) \) is a square in \(K \) if and only if \(\text{Aut}(L/K) \subseteq A_n \).
 Hint: Revise alternating polynomials in your Introduction to Abstract Algebra notes.