MA3D5 Galois Theory

Homework Assignment 3

The deadline is 2pm Thursday, week 7. Please hand in your answers to Questions 3, 4, 5, 6 to the MA3D5 Galois Theory box outside the Undergraduate Office.

1. (a) Let M/K be a field extension. Let $L = \{ \alpha \in M : \alpha \text{ is algebraic over } K \}$.
 Show that L is a field.
 (b) Let \mathbb{Q} be the set of elements in \mathbb{C} algebraic over \mathbb{Q}. Part (a) tells us that \mathbb{Q} is a field. Now let $\beta \in \mathbb{C}$ be algebraic over \mathbb{Q}. Show that $\beta \in \mathbb{Q}$.

2. Let $L = \mathbb{Q}(\sqrt{p}, \sqrt{q})$. In Example 69 in the lecture notes we computed $\text{Aut}(L/\mathbb{Q})$. Write down all its subgroups H, and compute the corresponding fixed fields L^H (Hint: see Example 72).

3. Which of the following extensions are normal? Which are separable?
 (a) $\mathbb{Q}(\sqrt{-7})/\mathbb{Q}$.
 (b) $\mathbb{Q}(\sqrt{7})/\mathbb{Q}$.
 (c) $\mathbb{Q}(\sqrt{-7})/\mathbb{Q}(\sqrt{-7})$.
 (d) $K(t^{1/3})/K$ where $K = \mathbb{F}_3(t)$.

4. Let $L = \mathbb{Q}(\sqrt{2})$. Compute $\text{Aut}(L/\mathbb{Q})$ and $L^{\text{Aut}(L/\mathbb{Q})}$.

5. If L/F and F/K are Galois, does L/K have to be a Galois extension? Prove or give a counterexample. (Big Hint: Consider L as in question 4.)

6. Let L be a subfield of \mathbb{C} that is a finite Galois extension of \mathbb{Q}.
 (a) Let $\alpha \in L$ and let $\overline{\alpha}$ be its complex conjugate. Show that $\overline{\alpha} \in L$.
 (b) Let $\sigma : L \to L$, $\sigma(\alpha) = \overline{\alpha}$.
 Show that $\sigma \in \text{Aut}(L/\mathbb{Q})$, and has order 1 or 2.
 (c) Show moreover that σ has order 2 if and only if $L \not\subset \mathbb{R}$.
 (d) Let $F = L^{\sigma}$. Show that $[L : F] = 1$ or 2 according to whether $L \subset \mathbb{R}$, $L \not\subset \mathbb{R}$.

7. Let p be an odd prime. Let $\zeta = \exp(2\pi i/p)$.
 (a) Show that the extension $\mathbb{Q}(\zeta)/\mathbb{Q}$ is Galois.
 (b) Define $\mu : (\mathbb{Z}/p\mathbb{Z})^* \to \text{Aut}(\mathbb{Q}(\zeta)/\mathbb{Q})$, $\mu(\overline{\alpha})(\zeta) = \zeta^a$.
 Show that μ is well-defined and is in fact an isomorphism.
 (c) Let σ be as in part (c) of Question 6. Show that $\mathbb{Q}(\zeta)^{\sigma} = \mathbb{Q}(\zeta + 1/\zeta)$.