MA3D5 Galois Theory

Homework Assignment 2

The deadline is 2pm Thursday, week 5. Please hand in your answers to questions 2, 3 and 4 the MA3D5 Galois Theory box outside the Undergraduate Office.

1. Let \(f \in \mathbb{Q}[x] \) be a polynomial of degree \(n \). Show that the splitting field of \(f \) has degree \(\leq n! \).

2. Let \(p, q \) be distinct primes.
 (a) Show that \(\sqrt{p} \notin \mathbb{Q}(\sqrt{q}) \).
 (b) Determine with proof the degree \([\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}]\).
 (c) Determine with proof the degree \([\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{pq}) : \mathbb{Q}]\).
 (d) Let \(g(x) = x^4 - 2(p+q)x^2 + (p-q)^2 \).
 Show that \(\sqrt{p} + \sqrt{q} \) is a root of \(g \). Deduce that \(g \) is irreducible. (Hint: use the fact \(\mathbb{Q}(\sqrt{p} + \sqrt{q}) = \mathbb{Q}(\sqrt{p}, \sqrt{q}) \) which you proved in Assignment 1.)

3. Let \(f = x^3 + x + 3 \). In Assignment 1 you showed that \(f \) is irreducible, and that it has exactly one real root.
 (a) Let \(\theta \) be the real root of \(f \). Let \(\phi, \phi' \) be the two other roots. Compute
 \[
 [\mathbb{Q}(\theta) : \mathbb{Q}] \quad [\mathbb{Q}(\theta, \phi) : \mathbb{Q}] \quad [\mathbb{Q}(\theta, \phi, \phi') : \mathbb{Q}].
 \]
 (b) Without writing down the minimal polynomial for \(\theta^2 \), show that \(\mathbb{Q}(\theta^2) = \mathbb{Q}(\theta) \).
 (c) Write down the minimal polynomial for \(\theta^2 \).

4. Let \(L/K \) be a field extension with degree \([L : K] = p\) where \(p \) is a prime. Show that \(L/K \) is a simple extension.