MA3D5 Galois Theory

Homework Assignment 1

The deadline is **2pm Thursday, week 3.** Please hand in your answers to questions 5, 6 to the MA3D5 Galois Theory box outside the Undergraduate Office.

1. Show that \(f \) is irreducible over the given field \(K \):
 (a) \(f = x^5 + 4x^2 - 6 \) over \(\mathbb{Q} \).
 (b) \(f = x^5 + t^2x^2 - 3t \) over \(\mathbb{F}_5(t) \).
 (c) \(f = x^{p-1} + x^{p-2} + \cdots + 1 \) over \(\mathbb{Q} \), where \(p \) is a prime.

2. Let \(f = x^3 + x + 3 \).
 (a) Show that \(f \) is irreducible over \(\mathbb{Q} \).
 (b) Show that \(f \) has exactly one real root.

3. Let \(p \) be a prime. Show in \(\mathbb{F}_p[x, y] \) that
 \[(x + y)^p = x^p + y^p.\]

4. Let \(a = (1 + i)\mathbb{Z}[i] \). Show that \(\mathbb{Z}[i]/a \) is a field. How many elements does it have? Write down addition and multiplication tables for the elements.

5. Let \(p, q \) be distinct primes. Show that \(\mathbb{Q} (\sqrt{p} + \sqrt{q}) = \mathbb{Q} (\sqrt{p}, \sqrt{q}) \).

6. Compute and simplify the splitting fields of \(f \in K[x] \) over the given \(K \).
 (a) \(f = (x^2 + x + 1)(x^2 - 5) \), \(K = \mathbb{Q} \).
 (b) \(f = (x^2 + x - 1)(x^2 - 5) \), \(K = \mathbb{Q} \).
 (c) \(f = x^3 - 7 \), \(K = \mathbb{Q} \).
 (d) \(f = x^3 - 7 \), \(K = \mathbb{Q} (\sqrt{-3}) \).

7. (a) Let \(f \) be an irreducible quadratic polynomial over \(\mathbb{Q} \). Show that its splitting field has the form \(\mathbb{Q} (\sqrt{D}) \) where \(D \) is a squarefree integer \(\neq 0, 1 \).
 (b) Let \(f = x^3 - 3x + 1 \). Show that its splitting field over \(\mathbb{Q} \) is contained in \(\mathbb{R} \).

8. Very hard! Don’t spend too much time on this. Show that \(x^n + x + 3 \) is irreducible for all \(n \geq 2 \).

9. **Aptitude test for prospective university administrators** Reformulate the above questions and your answers in the new Warwick tone of voice.