Algebraic Number Theory
Example Sheet 4

Hand in the answers to questions 3, 6, 7. Deadline 2pm Thursday, Week 10.

1. Let \(a, b \) be ideals of \(\mathcal{O}_K \) with \(a \subseteq b \).
 (i) Show that \(\text{Norm}(a) \geq \text{Norm}(b) \).
 (ii) Show that \(\text{Norm}(a) = \text{Norm}(b) \) if and only if \(a = b \).

2. Let \(K \) be a number field. Show that \(\mathcal{O}_K \) is a PID if and only if it is a UFD.

3. Let \(K = \mathbb{Q}(\sqrt{-2}) \). Show that \(\mathcal{O}_K \) is a principal ideal domain. Deduce that every prime \(p \equiv 1, 3 \pmod{8} \) can be written as \(p = x^2 + 2y^2 \) with \(x, y \in \mathbb{Z} \).

4. Compute the class groups of the following quadratic fields
 \(\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{-6}), \mathbb{Q}(\sqrt{-30}) \).

5. (i) Let \(\alpha, \beta \) be non-zero elements of \(\mathcal{O}_K \). Suppose \(\langle \alpha \rangle = \langle \beta \rangle \). Show that \(\alpha = \beta \varepsilon \) for some \(\varepsilon \in \mathcal{U}(K) \).
 (ii) Let \(a, b \) be non-zero ideals with \(a + b = \langle 1 \rangle \) (we say \(a, b \) are coprime). Show that \(a, b \) are coprime in the following sense: if \(\mathfrak{p} \) is a prime ideal then \(\mathfrak{p} \) divides at most one of \(a, b \).
 (iii) Let \(a, b \) be coprime non-zero ideals. Suppose \(ab = c^n \) where \(c \) is an ideal and \(n \) is a positive integer. Show that there are ideals \(c_1, c_2 \) such that
 \[a = c_1^n, \quad b = c_2^n, \quad c = c_1c_2. \]
 (iv) Give a counterexample, with \(K = \mathbb{Q} \), to show that (iii) fails if \(a, b \) are not coprime.
 (v) Let \(x, y \in \mathbb{Z} \) and satisfy \(x^2 + 2 = y^3 \). Show that \(x, y \) are odd, and deduce that the ideals \(a = \langle x + \sqrt{-2} \rangle, b = \langle x - \sqrt{-2} \rangle \) are coprime.
 (vi) Continuing from (v), show carefully that \(x + \sqrt{-2} = (u + v\sqrt{-2})^3 \) for some \(u, v \in \mathbb{Z} \). Hence determine the solutions to \(x^2 + 2 = y^3 \) with \(x, y \in \mathbb{Z} \).

6. Let \(K = \mathbb{Q}(\sqrt{-5}) \).
 (a) Show that \(\text{Cl}(K) \cong C_2 \).
 (b) Let \(a \) be an ideal of \(\mathcal{O}_K \) and suppose \(a^3 \) is principal. Show that \(a \) is principal.
 (c) Solve \(x^2 + 5 = y^3 \) with \(x, y \in \mathbb{Z} \).

7. Let \(K = \mathbb{Q}(\sqrt{2}) \). You may suppose that \(1, \sqrt{2}, \sqrt{2^2} \) is an integral basis for \(\mathcal{O}_K \). Show that
 \[\mathcal{U}(K) = \{ \pm (\sqrt{2} - 1)^n : n \in \mathbb{Z} \} \]
 You may need to use WolframAlpha, MATLAB or a similar package to compute approximations to the embeddings of some algebraic numbers.