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Abstract

In 1975, Stein made a wide generalisation of the Ryser-Brualdi-Stein conjecture on transversals in
Latin squares, conjecturing that every equi-n-square (an n×n array filled with n symbols where each
symbol appears exactly n times) has a transversal of size n − 1. That is, it should have a collection
of n − 1 entries that share no row, column, or symbol. In 2017, Aharoni, Berger, Kotlar, and Ziv
showed that equi-n-squares always have a transversal with size at least 2n/3. In 2019, Pokrovskiy
and Sudakov disproved Stein’s conjecture by constructing equi-n-squares without a transversal of size
n − logn

42
, but asked whether Stein’s conjecture is approximately true. I.e., does an equi-n-square

always have a transversal with size (1− o(1))n?
We answer this question in the positive. More specifically, we improve both known bounds, showing

that there exist equi-n-squares with no transversal of size n − Ω(
√
n) and that every equi-n-square

contains n− n1−Ω(1) disjoint transversals of size n− n1−Ω(1).

1 Introduction

A Latin square of order n is an n×n array filled with n symbols where each symbol appears exactly once
in each row and each column. A transversal (sometimes known as a partial transversal) is a collection
of cells in the array which share no row, column, or symbol, while a full transversal in a Latin square of
order n is a transversal with n cells. The size of a transversal is its number of cells. Latin squares, and
transversals, have a long history of study dating back to Euler [5] who studied the decomposition of Latin
squares into disjoint full transversals. As was known to Euler, a Latin square may have no full transversal.
However, the prominent Ryser-Brualdi-Stein conjecture [13, 4], originating in the 1960’s, suggests that
every Latin square of order n should have a transversal with n−1 cells and, moreover, one with n cells if n
is odd. This conjecture has seen a lot of activity recently, culminating in the proof by the fourth author [8]
that, when n is sufficiently large, every Latin square of order n has a transversal with n − 1 cells. For
more on this, related results, and the history of the study of Latin squares, see the recent surveys [11, 9].

In 1975, Stein [14] made a series of bold conjectures that, broadly, suggest the Latin square conditions
conjectured to guarantee a transversal of order n − 1 may be overkill. In particular, he conjectured that
any equi-n-square has a transversal of size n − 1, where an equi-n-square is an n × n array filled with n
symbols which each appear exactly n times. Thus, a Latin square of order n is an equi-n-square where
we additionally require every symbol to appear at most once in each row or column. As some evidence
towards his conjecture, Stein [14] used the probabilistic method to show that any equi-n-square contains
a transversal of size at least (1 − e−1)n. This bound was the state of the art for some 40 years, until
Aharoni, Berger, Kotlar, and Ziv [1] used topological methods to show that any equi-n-square contains
a transversal of size at least 2n/3. Very recently, Anastos and Morris [3] showed that any equi-n-square
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contains a transversal of size at least (3/4− o(1))n. However, in 2019, Pokrovskiy and Sudakov [12] had
shown that Stein’s conjecture is, indeed, over-ambitious. That is, they constructed equi-n-squares that
have no transversal with size larger than n− 1

42 log n.
While this settles the falsity of Stein’s conjecture, the bounds n − O(log n) and (3/4 − o(1))n on

the size of the largest transversal that can be guaranteed in any equi-n-square are rather far apart. In
particular, Pokrovskiy and Sudakov [12] (see also [11, Problem 4.3]) asked whether Stein’s conjecture
holds asymptotically, i.e., does an equi-n-square always have a transversal with (1 − o(1))n cells? Our
main result is to confirm that it not only does, but that it can moreover be almost decomposed into such
transversals, with the following result.

Theorem 1.1. There exists ε > 0 such that every equi-n-square contains at least n − n1−ε disjoint
transversals with size at least n− n1−ε.

We also modify Pokrovskiy and Sudakov’s construction from [12] to show that a related but simpler
construction provides equi-n-squares that must omit far more symbols in any transversal, as follows.

Theorem 1.2. For each n ∈ N, there is an equi-n-square with no transversal of size n−
(

1
2
√
2
+ o(1)

)√
n.

As our construction is very natural, it is reasonable to suggest that the constant 1
2
√
2
in Theorem 1.2 is

unimprovable. With slightly less ambition, we suggest the following to replace Stein’s disproved conjecture.

Conjecture 1.3. ∃ C > 0 such that every equi-n-square has a transversal with size at least n− C
√
n.

As is well-known, a Latin square L of order n has a natural representation as an n-regular linear
3-partite 3-uniform (3n)-vertex hypergraph H(L), where 3 vertex classes of size n represent respectively
the rows, columns, and symbols of L and a 3-uniform edge of the row, column, and symbol is added to
H(L) for each cell in L. As L is an equi-n-square, H(L) is n-regular, and as L is a Latin square each
codegree in H(L) is at most 1 (i.e., H(L) is linear). From this perspective, the main question we have
considered asks: in an n-regular 3-partite 3-uniform (3n)-vertex hypergraph H with vertex classes A,B
and C of size n, if the codegree of x and y is at most 1 for each x ∈ A and y ∈ B, then does H have
a transversal of size (1 − o(1))n (or, indeed, an almost decomposition into such transversals)? Thus, for
Theorem 1.1, we dispense with 2/3rds of the codegree conditions for the Latin square case. Note that we
cannot dispense with all of the codegree conditions here, due to the following construction adapted from
an example of Alon and Kim [2].

Let t ∈ N, X = {x1, . . . , x2t, x
′
1, . . . , x

′
t}, Y = {y1, . . . , y2t, y′1, . . . , y′t} and Z = {z1, . . . , z2t, z′1, . . . , z′t}.

Let V (H) = X ∪ Y ∪ Z and

E(H) = {(xi, yi, z
′
j), (xi, y

′
j , zi), (x

′
j , yi, zi) : i ∈ [2t], j ∈ [t]}.

Note that any matching in H can contain at most 1 edge intersecting {xi, yi, zi} for each i ∈ [2t], and
therefore any matching in H can have at most 2t edges, and hence cover at most 6t = 2|H|/3 vertices.
Moreover, H is 2t-regular and 3-partite. As H has n := 3t vertices in each class, this does not quite
correspond to our case, but blowing up each vertex in H by 3 gives an 18t-regular 3-partite 3-graph in
which any matching must omit at least 1/9 of the vertices and in which there are 3n = 9t vertices in each
class. Then, taking 2 disjoint copies of this graph gives an 18t-regular 3-partite 3-graph with n′ = 3 · 18t
vertices in which any perfect matching must omit at least n′/9 vertices.

Later, in Section 4.2, we will deduce Theorem 1.1 from a more general result, Theorem 4.3. Similarly,
we could deduce a version of Theorem 1.1 with further weakened codegree conditions to say that (using
the notation above) codH(x, y) ≤ n1−µ, as long as ε ≪ µ. Here, the corresponding square has n copies of
each symbol, and n symbols in each row and column, but we allow up to n1−µ symbols to appear in any
one square as long as they are all different.

In Section 2, we prove Theorem 1.2. In Section 3, we sketch a simplified version of our methods for
Theorem 1.1, showing how to find a large transversal in certain equi-n-squares. In Section 4, we then
prove Theorem 1.1.
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a) b)

Figure 1: a) Our construction in the simplified case when n = 2m2 with m = 3. b) The boxes comprising
C3 in the same equi-n-square with a transversal highlighted – if a light blue square appears in C3 in a
transversal then at most 4 of the 5 colours appearing only in C3 can appear. Thus, at least one colour
from C3 ∪ C4 is omitted in any transversal.

2 Equi-n-squares with no partial transversal of size n − Ω(
√
n)

To illustrate the main ideas of our construction, we first prove Theorem 1.2 whenever n = 2m2 for some
integer m, constructing equi-n-squares with no transversal of size larger than n − 1

2
√
2

√
n as depicted in

Figure 1a). We will then show how this construction can be modified for general n without changing the
size of the largest possible transversal by much. In our construction we use a key part of the construction
by Pokrovskiy and Sudakov [12] of equi-n-squares with no transversal of size more than n− 1

42 log n, which,
roughly, is the argument depicted in Figure 1b).

Proof of Theorem 1.2 whenever n = 2m2 for some integer m. We construct an equi-n-square S
with both rows and columns indexed by elements in [n], where n = 2m2 for some m ∈ Z. We use the
notation (x, y) to denote the cell in the x-th row and y-th column. We partition S into (2m)2 boxes, each
containing m2 cells, as follows. For every i, j ∈ [2m], let

Ai,j = {(x, y) : 1 + (i− 1)m ≤ x ≤ im and 1 + (j − 1)m ≤ y ≤ jm}.

We now pair up the boxes and assign a unique colour to each pair, noting that this uses (2m)2

2 = 2m2 = n
colours, as depicted in Figure 1a). For each k ∈ [m], we pair the boxes A2k−1,2k−1 and A2k,2k and colour
every cell they contain the same colour. For each 1 ≤ i < j ≤ 2m, we pair the boxes Ai,j and Aj,i and
colour every cell they contain the same colour. Notice that as each colour appears in exactly 2m2 = n
many cells, we have constructed an equi-n-square.

Letting S be the equi-n-square we have constructed, we now show it has no transversal with more than
n−m/2 cells. Suppose, then, that T is a transversal of S. For each k ∈ [2m], let

Ck =
( ⋃

i∈[2m]

Ai,k

)⋃( ⋃
j∈[2m]

Ak,j

)
,

noting this is the disjoint union of 4m − 1 boxes. As depicted in Figure 1b), we now show the following
claim.

Claim 2.1. For every k ∈ [m], at least one colour used in C2k−1 ∪ C2k is not used in T .

Proof of Claim 2.1. Let k ∈ [m], and suppose that the colour in boxes A2k−1,2k−1 and A2k,2k is blue. If
T misses out on the colour blue, we would be done. Suppose then that T contains a blue cell in Aj,j for
j ∈ {2k − 1, 2k}. As

⋃
i∈[2m] Ai,j ⊂ Cj contains elements only in m columns of S, T has at most m cells

in
⋃

i∈[2m] Ai,j . Similarly, T has at most m cells in
⋃

i∈[2m] Aj,i ⊂ Cj . As T has a cell in Aj,j , it therefore
has at most 2m− 1 cells in Cj , and thus at most 2m− 2 cells in Cj which are not blue. However, Cj uses
2m− 1 non-blue colours, each of which do not appear in S \Cj . Thus, T misses out on at least one colour
used on Cj ⊂ C2k−1 ∪ C2k. ⊡
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To finish, observe that each colour appears on at most two of C2k−1 ∪ C2k, k ∈ [m]. This combined with

Claim 2.1 implies that T must miss out on at least m
2 colours, and therefore |T | ≤ n− m

2 = n−
√
n

2
√
2
. □

We now deal with the general n case. Above we considered boxes of equal side lengths and now we
will allow the side lengths to differ. We will choose these lengths so that they are close to each other
and that the number of cells in each box is as close to n/2 as possible, though in general slightly below
this. We use a similar construction to the special case, but each colour may need to be used in O(n1/4)
cells outside of its pair of boxes to make up n cells of that colour. These O(n · n1/4) cells will be grouped
together into O(n1/4) rows and columns, so that any transversal would contain at most O(n1/4) of them,
which will not affect significantly the argument given above for the maximum size of a transversal.

Proof of Theorem 1.2. Once again, we will index the rows and columns of the equi-n-square by elements
of [n]. We will use rectangular boxes and so now choose the side lengths, denoted a and b. For this let
m = ⌈

√
n/2⌉, r = ⌈

√
m2 − n/2⌉ and take a = m + r, b = m − r. We first note that 0 ≤ m2 − n/2 ≤

2m ≤ 4
√
n/2, and then, similarly, 0 ≤ r2 − (m2 − n/2) ≤ 2r ≤ 4

√
4
√

n/2 ≤ 8n1/4. Consequently, as

n− 2ab = 2(n/2− (m2 − r2)),
n− 16n1/4 ≤ 2ab ≤ n

Moreover, b ≥
√
n/2− r >

√
n/2− 8n1/4.

For each i ∈ [2a] and j ∈ [2b] take the box

Bi,j = {(x, y) : 1 + (i− 1)b ≤ x ≤ ib and 1 + (j − 1)a ≤ y ≤ ja}.

As before, we pair up the boxes and assign a unique colour to each pair, using that there will be 2ab ≤ n
pairs of boxes, so that each pair can have its own colour. Note that we must use n − 2ab ≤ 16n1/4

entries of each colour elsewhere in the equi-n-square. Noting also that b ≤ a, we assign the same colour to
B2k−1,2k−1 and B2k,2k for each k ∈ [b]. We assign the same colour to Bi,j and Bj,i for each 1 ≤ i < j ≤ b.
Additionally, for each b+ 1 ≤ s ≤ a and t ∈ [2b], we assign the same colour to B2s−1,t and B2s,t. Finally,
we use the leftover of the colours used as well as the other colours we have not yet used to arbitrarily
colour the cells which have not yet been coloured. This finishes the construction of our equi-n-square.

Letting S be the constructed square, we now show it has no transversal with size n−
(

1
2
√
2
+ o(1)

)√
n.

Suppose then that T is a transversal of S. Let S′ be the sub-square consisting of all the cells in the first
2ab rows and 2ab columns of S, and let T ′ = T ∩ S′. Note that |T ∩ (S \ S′)| ≤ 2(n− 2ab) ≤ 32n1/4. We
now solely focus on T ′ and use an almost identical argument to the one in the special case done before.
For each k ∈ [2b], let

Ck :=
( ⋃

i∈[2a]

Bi,k

)⋃( ⋃
j∈[2b]

Bk,j

)
.

Note that every Ck is the disjoint union of 2a+ 2b− 1 boxes. We now show the corresponding version of
Claim 2.1.

Claim 2.2. For every k ∈ [b], at least one colour used in C2k−1 ∪ C2k is not used in T ′.

Proof of Claim 2.2. Suppose that the colour in boxes B2k−1,2k−1 and B2k,2k is blue. If T ′ has no blue
cell, we would be done. Hence we assume that for some j ∈ {2k − 1, 2k}, T ′ contains a cell in Bj,j .
As
⋃

i∈[2a] Bi,j ⊂ Cj contains elements in exactly a columns of S′, T ′ has at most a cells in
⋃

i∈[2a] Bi,j .

Similarly, T ′ has at most b cells in
⋃

i∈[2b] Bj,i. As T ′ has a cell in Bj,j , it therefore has at most a+b−1 cells

in Cj , and thus at most a+ b−2 cells in Cj which are not blue. However, Cj uses (1/2)(2a−1+2b−1) =
a+ b− 1 non-blue colours, each of which does not appear in S′ \ Cj . Thus, T

′ misses out on at least one
colour used on Cj ⊂ C2k−1 ∪ C2k. ⊡

Observe that, within S′, any colour appears in at most two of the sets C2k−1∪C2k for different k ∈ [b].
This combined with Claim 2.2 implies that T ′ must miss out on at least b/2 colours. Thus,

|T | = |T ′|+ |T ∩ (S \ S′)| ≤ n− b

2
+ 32n1/4≤n−

√
n

2
√
2
+ 36n1/4 = n− (1− o(1))

√
n

2
√
2
. □
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a) b) c) d)

Figure 2: a) A subsquare S in which each column can be decomposed into 4 blocks with size 4 which have
the same colour (for ease of visualisation, cells of each colour are often drawn next to each other in natural
blocks, but this is not required in general). b) The multigraph K corresponding to S. c) A matching M
in K. d) The subsquare S′ ⊂ S corresponding to the matching M . Any set of cells which share no row
or column must then share no colour and hence be a transversal; an example is marked by crosses.

3 Proof sketch: one large transversal in certain equi-n-squares

Suppose S is an equi-n-square. When each symbol appears o(n) times in each row and column, a large
transversal is known to exist via the Rödl nibble, where this large transversal satisfies certain pseudoran-
dom conditions. Thus, it is important to consider equi-n-squares in which symbols appear many times
in the same row or the same column – to discuss our methods we will choose a special case where each
symbol is repeated many times in a small number of columns. Suppose that n = 4m with m ∈ N, and
that the cells of S can be partitioned into a set of blocks B, where each B ∈ B contains m cells which are
all in the same column and all have the same symbol (see, for example, Figure 2). Using Hall’s matching
criterion it is not hard to show that the columns of S can be perfectly matched into B with a matching
M such that each column is matched to a block in that column, and every block in this matching has a
different symbol. Let S′ be the subsquare of S formed by retaining only those cells whose block appears in
an edge of M , and note that there are m entries in each column of S′. Our aim (at the expense of finding
only an almost-perfect matching) is to find a random such matching M for which it is likely that almost
every row has around m entries in S′. Using (a defect version of) Hall’s matching criterion in this roughly
regular S′, it is not hard then to find a collection of (1− o(1))n cells in S′ which share no row or column,
whereupon the definition of S′ implies they share no symbol. Thus, we will have found a large transversal
in S (see, again, Figure 2). We will find our random matching M using a novel ‘bounded-dependence
matching algorithm’.

Before discussing this in more detail, along with how we find an appropriate random matching, let us
note that at a very high level this is inspired by work of the second author with Pokrovskiy and Sudakov
on Ringel’s conjecture [10]. That is to say, when the codegrees are small, we can find a large transversal
using semi-random methods. Where many colours appear in the same row or the same column, some
indication of which colour we might wish to use for each column could be selected deterministically using
some matching like the initial (non-random) matching M . Key (as in [10]) is to find an appropriate way to
randomise this deterministic selection so that it can be used along with the semi-random method. Indeed,
though proving Theorem 1.1 in full will involve several more complications, this sketch encompasses the
main novelty in our methods, which can then be developed into a more complex scheme using the semi-
random method, as described and done in Section 4.

Let us return to our equi-n-square S and the decomposition B of S into blocks of size m. Let J be the
set of columns and let A be the set of symbols. Let K be an auxiliary bipartite multigraph with vertex
classes J and A, where, for each B ∈ B, we add an edge labelled with B between the column and the
symbol of B. Note that K is a 4-regular bipartite multigraph. Therefore, using Hall’s matching criterion,
it can be decomposed into 4 matchings, say M1,M2,M3,M4.

We will use M1,M2,M3, and M4 to generate our random matching M , by finding random matchings
M ′

1 ⊂ M1 ∪M2 and M ′
2 ⊂ M3 ∪M4, and then selecting M ⊂ M ′

1 ∪M ′
2 randomly. For example, for M ′

1 the
initial idea is to observe that M1 ∪M2 is a union of cycles and, for each such cycle, randomly choose the
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‘odd or even’ edges of the cycle and add them to M ′
1. This creates a matching, but if the cycles are long

then there will be a lot of dependence between whether different edges appear in M ′
1, or not, preventing

us from showing that the number of entries in each row in blocks in M ′
1 is suitably concentrated. The key

idea then is to take M1 ∪M2 and delete a few edges to break the cycles into paths/cycles which are each
not too long. Doing similarly with M3 ∪M4 to generate M ′

2, we then similarly generate M from M ′
1 ∪M ′

2

(which is the disjoint union of paths/cycles rather than just cycles). By choosing the maximum length of
the paths/cycles allowed after the edge deletion carefully, we can (as described below) ensure that M is
a large (almost-perfect) matching while limiting the dependence over the appearance of different edges in
M with each other. We then track certain Lipschitz random variables and show that they are likely to be
concentrated.

More specifically, let k = n1/3 log−2 n. Let S1, . . . , Sr be a minimal set of vertex-disjoint paths/cycles
in M1 ∪ M2, each with length at most k, the union of whose vertex sets is V (M1 ∪ M2). Note that
|E(M1 ∪M2) \ E(S1 ∪ . . . ∪ Sr)| ≤ 2n/k. For each i ∈ [r], properly edge colour S1, . . . , Sr with red and
blue (noting all the cycles are even). For each i ∈ [r], choose xi uniformly and independently at random
from {0, 1}. Let M ′

1 be the union across i ∈ [r] of the red edges from E(Si) with xi = 0 and the blue edges
of E(Si) with xi = 1. Observe that M ′

1 is a matching. Similarly, use M3 and M4 to randomly generate
M ′

2. Then, similarly use M ′
1 ∪M ′

2 to generate M .
We use M to tell us from which column we will select a cell with which symbol in it (and which symbols

we will not select a cell for, but these will be a small number of symbols overall). For this, let I be the
set of n rows. Form the auxiliary bipartite graph L on vertex classes I and J , where there is an edge ij
exactly if j is matched to a symbol with an edge in M corresponding to a block containing the cell (i, j).
Observe, as M is a matching, that a matching in L corresponds to a transversal in S.

For each row i ∈ I, let m1(i) be the number of edges jc ∈ M1 which correspond to a block containing
a cell on row i. Define m2(i), m3(i), m4(i), m

′
1(i), m

′
2(i) and m(i) similarly. Note that m1(i) +m2(i) +

m3(i) +m4(i) = n and E(m′
1(i)) ≤ (m1(i) +m2(i))/2. As |E(M1 ∪M2) \ E(S1 ∪ . . . ∪ Sr)| ≤ 2n/k, we

have

E(m′
1(i)) ≥

m1(i) +m2(i)

2
− 2n

k
≥ m1(i) +m2(i)

2
− n2/3 logO(1) n.

Crucially, changing the value of any one of xi, i ∈ [r], changes the value of m′
1(i) by at most k =

n1/3 log−2 n. Thus, by an application of McDiarmid’s inequality (Lemma 4.4), we get that, with probability
1− o(n−1),

m′
1(i) =

m1(i) +m2(i)

2
±
(
n2/3 logO(1) n+O

(√
nk log n

))
=

m1(i) +m2(i)

2
± n2/3 logO(1) n.

Similarly, with probability 1 − o(n−1), m′
2(i) =

m3(i)+m4(i)
2 ± n2/3 logO(1) n. Similarly, then, with proba-

bility 1− o(n−1),

dL(i) = m(i) =
m1(i) +m2(i) +m3(i) +m4(i)

4
±n2/3 logO(1) n =

n

4
±n2/3 logO(1) n = m±n2/3 logO(1) n.

For each column j ∈ J with j in some edge in M , we have dL(j) = m = n/4, and otherwise dL(j) = 0.

Then, for each U ⊂ I, we have (m− n2/3 logO(1) n) · |U | ≤ m · |NL(U)|, so that

|NL(U)| ≥ |U |

(
1− n2/3 logO(1) n

m

)
≥ |U | − n2/3 logO(1) n.

Thus, by a defect version of Hall’s matching theorem, L contains a matching with size n− n2/3 logO(1) n,
and hence S has a transversal with n− n2/3 logO(1) n cells.

4 Almost decomposing equi-n-squares

We will use the following result of Molloy and Reed [7].

Theorem 4.1. For all k there is a constant Ck such that any k-uniform hypergraph of maximum codegree
B and maximum degree ∆ has list chromatic index at most

(
1 + Ck(B/∆)1/k(log(∆/B))4

)
∆.
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Specifically, we will use the following corollary.

Corollary 4.2. For all ε > 0 there is a µ > 0 and D0 such that the following holds for each D ≥ D0.
Suppose H is a 3-uniform hypergraph with maximum degree at most D such that, for each distinct x, y ∈
V (H), either codH(x, y) ≤ D1−ε or every edge contains either both x and y or none of them.

Then, H has chromatic index at most (1 +D−µ)D.

Proof. Let 0 < 1/D0 ≪ µ ≪ ε. Let E = {xy : codH(x, y) > D1−ε}, and note that E is a matching. For
each f ∈ E, pick xf ∈ V (f). For each f ∈ E and e ∈ E(H) with V (f) ⊂ V (e) create a new vertex, ve.
Let H′ be the hypergraph with vertex set (V (H) \ {xf : f ∈ E}) ∪ (∪f∈E ∪e∈E(H) ve) and edge set

(E(H) \ (∪f∈E ∪e∈E(H):V (e)⊂V (f) e)) ∪ (∪f∈E ∪e∈E(H):V (e)⊂V (f) ({ve} ∪ (V (e) \ {xf}))).

Observe that ∆(H′) ≤ D and codH′(x, y) ≤ D1−ε for each x, y ∈ V (H′). Then, by Theorem 4.1, we have
χ′(H′) ≤ (1 +D−µ)D. Let χ′ be a colouring of E(H′) with at most (1 +D−µ)D colours so that the edges
of each colour forms a matching. For each e ∈ E(H′)∩E(H) let χ(e) = χ′(e). For each e ∈ E(H)\E(H′),
take f ∈ E such that V (f) ⊂ V (e) and let χ(e) = χ′((V (e)\{xf})∪{ve}). Observing that χ is a colouring
of E(H) into at most (1 +D−µ)D colours in which the edges of each colour form a matching, completes
the proof.

We will use this with our bounded-dependence random matching algorithm to prove the following.

Theorem 4.3. There are some ξ, η > 0 and D0 such that the following holds for each D ≥ D0. Let H
be a 3-uniform hypergraph with maximum degree D and at least

√
D vertices. Suppose that the graph on

V (H) with edges xy present if codH(x, y) ≥ D1−η is bipartite.
Then, there is some H′ ⊂ H with e(H′) ≥ e(H)− |H| ·D1−ξ and

χ′(H′) ≤ (1 +D−ξ)D.

We will then deduce Theorem 1.1 from this. We will use McDiarmid’s inequality, in the following form
(see [6, Lemma 1.2]).

Lemma 4.4. Let n ∈ N and c1, . . . , cn ≥ 0. For each i ∈ [n], let Xi be an independent random variable
taking values in Ωi, and let X = (X1, . . . , Xn). Let f :

∏n
i=1 Ωi → R be a function such that, for each

i ∈ [n], changing X in the ith co-ordinate changes the value of f(X) by at most ci.
Then, for all t > 0,

P(|f(X)− E(f(X))| > t) ≤ 2 exp

(
− t2∑

i∈[n] c
2
i

)
.

4.1 A random subhypergraph with ‘all or small’ codegrees

To prove Theorem 4.3, we will first use our methods to prove the following lemma.

Lemma 4.5. There are some ε, µ, η > 0 and D0 such that the following holds for each D ≥ D0. Let H
be a 3-uniform hypergraph with maximum degree D and at least

√
D vertices. Suppose that the graph on

V (H) with edges xy present if codH(x, y) ≥ D1−η is bipartite.
Then, there is some D3µ ≤ t ≤ 8D3µ and a random subhypergraph H′ ⊂ H such that

A1 for each e ∈ E(H), P(e ∈ E(H′)) ≤ 1/t,

A2 ∆(H′) ≤ (1 +D−ε)D/t,

A3 for each distinct x, y ∈ V (H), either codH′(x, y) ≤ D1−ε/t or every e ∈ E(H′) satisfies {x, y} ⊂ V (e)
or {x, y} ∩ V (e) = ∅,

and, with probability at least 1−D−10, the following holds.

A4 e(H′) ≥ e(H)/t−D1−ε|H|/t.
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Proof. Let 0 < 1/D0 ≪ ε ≪ γ ≪ µ ≪ η ≪ 1 and D ≥ D0. (Probably, we can simply take η = 2µ.) Let µ
be such that k = Dµ is a power of 2, let ℓ ∈ N then be such that k = 2ℓ, and let t = k3. Let V = V (H)
and m = ⌊D/k⌋. As set-up, do the following.

B1 Remove from H any edge xyz in which {x, y} and {y, z} both have codegree at least m, and let the
result be H0.

B2 Take a maximal collection B of disjoint subsets of E(H0) with size m such that, for every B ∈ B,
there is some set UB ⊂ V with |UB | = 2 and UB ⊂ V (e) for each e ∈ B.

B3 Let Bv, v ∈ V , maximise
∑

v∈V |Bv| subject to the following conditions.

B3.1 For each v ∈ V , the sets in Bv are disjoint subsets of {e ∈ E(H0) : v ∈ V (e)} \ (∪B∈B:v∈UB
B)

with size m.

B3.2 For each distinct v, w ∈ V and B ∈ Bv, the number of edges in B containing w is at most
D2γm/k.

B3.3 For each distinct v, w ∈ V and B ∈ Bv, B
′ ∈ Bw, |B ∩B′| ≤ Dγm/k2.

Let H1 be the subhypergraph of H0 which contains exactly the edges e = uvw ∈ E(H0) for which
either there is some B ∈ B with e ∈ B and some v ∈ V and B′ ∈ Bv with e ∈ B′ or, for each v ∈ V (e),
there is some B ∈ Bv with e ∈ B. For each B ∈ B, let A0

B = B.
Let K be an auxiliary multigraph with vertex set V ∪ (∪v∈V Bv) where, for each B ∈ B, we add UB

to E(K) and, for each v ∈ V and B ∈ Bv, we add vB to E(K). Note that, by the conditions on H, we
have that K is a bipartite multigraph with maximum degree at most k, and therefore (for example, by
embedding K into a k-regular bipartite multigraph and repeatedly using Hall’s matching criterion to find
a perfect matching) χ′(K) ≤ k. Thus, we can partition K into matchings M0

1 , . . . ,M
0
k . Let s = Dγ/2.

For each 1 ≤ h ≤ ℓ in turn do the following with the matchings Mh−1
1 , . . . ,Mh−1

k/2h−1 to generate

matchings Mh
1 , . . . ,M

h
k/2h randomly:

• Let Fh ⊂ Mh−1
1 ∪ · · · ∪Mh−1

k/2h−1 be a minimal set of edges such that, for each i ∈ [k/2h], if, for the

appropriate rhi , M
h−1
2i ∪Mh−1

2i−1 − Fh (considered as a multigraph and removing any copies of edges

in Fh) has as its components the paths/cycles Sh
i,1, . . . , S

h
i,rhi

, then, each such path/cycle has length

at most s.

• For each i ∈ [k/2h], and each j ∈ [rhi ], pick xh
i,j uniformly and independently at random from {0, 1}

and let
Mh

i =
(
∪j∈[rhi ]:x

h
i,j=1E(Sh

i,j) ∩Mh−1
2i

)
∪
(
∪j∈[rhi ]:x

h
i,j=0E(Sh

i,j) ∩Mh−1
2i−1

)
.

• For each B ∈ B, let Ah
B ⊂ Ah−1

B be chosen by including each element of Ah−1
B independently at

random with probability 1/2.

Let M = M ℓ
1 and H0

1 = H0
2 = H1. For each h ∈ [ℓ], let Mh = ∪i∈[k/2h]M

h
i . For each h ∈ [ℓ], let Hh

0 be

a subhypergraph of Hh−1
2 which maximises e(Hh

0 ) subject to the following conditions.

C1 For each B ∈ B and each v ∈ V and B′ ∈ Bv, if (B ∩B′) ∩ E(Hh
0 ) ̸= ∅, then UB , vB

′ /∈ Fh and UB

and vB′ do not appear in any path/cycle in Sh
i,1, . . . , S

h
i,rhi

together, for any i ∈ [k/2h].

C2 For each distinct v, w ∈ V and B ∈ Bv, B
′ ∈ Bw, if (B ∩B′) ∩ E(Hh

0 ) ̸= ∅, then vB,wB′ /∈ Fh and
vB and wB′ do not appear in any path/cycle in Sh

i,1, . . . , S
h
i,rhi

together, for any i ∈ [k/2h].

Then, for each h ∈ [ℓ], let Hh
1 be the hypergraph with vertex set V and edges e ∈ E(Hh

0 ) for which
either there is some B ∈ B with e ∈ B and some v ∈ V and B′ ∈ Bv with e ∈ B′, where UB , vB

′ ∈ Mh

and e ∈ Ah
B , or, for each v ∈ V (e), there is some B ∈ Bv with e ∈ B and vB ∈ Mh.

Then, for each h ∈ [ℓ], let Hh
2 be a subhypergraph of Hh

1 which maximises e(Hh
2 ) subject to the

following conditions.
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D1 For each B ∈ B ∪ (∪v∈V Bv), |B ∩ E(Hh
2 )| ≤ (1 + h ·D−ε/ℓ)m/22h.

D2 For each distinct v, w ∈ V and B ∈ Bv, the number of edges in B ∩ E(Hh
2 ) containing w is at most

(1 + h/ℓ)D2γm/22hk.

D3 For each distinct v, w ∈ V and B ∈ Bv, B
′ ∈ Bw, |(B ∩B′) ∩ E(Hh

2 )| ≤ (1 + h/ℓ)Dγm/2hk2.

Finally, let H′ = Hℓ
2. We will show that H′ satisfies A1–A3, and, with probability at least 1−D−10,

A4 holds.

A1: Case 1. Let e ∈ E(H) be such that e ∈ Be for some Be ∈ B and there is some ve ∈ V and B′
e ∈ Bve

with e ∈ B′
e. For each h ∈ [ℓ], we will show that P(e ∈ E(Hh

1 )|e ∈ E(Hh
0 )) = 1/8. Suppose then that

h ∈ [ℓ] and e ∈ E(Hh
0 ). Note that, as e ∈ E(Hh

0 ), from C1 we have that UBe
and veB

′
e are not in

the same path/cycle Sh
i,j for any i ∈ [k/2h] and j ∈ [rhi ]. Furthermore, e ∈ E(Hh

1 ) only if UBe
∈ Mh,

veB
′
e ∈ Mh and e ∈ Ah

Be
, which are three independent events which each occur with probability 1/2.

Thus, P(e ∈ E(Hh
1 )|e ∈ E(Hh

0 )) = 1/8. Therefore, P(e ∈ E(H′)) ≤ P(e ∈ E(Hℓ
1)) ≤ 1/8ℓ = 1/k3 = 1/t.

Case 2. Let e ∈ E(H) be such that for each v ∈ V (e) there is some Be,v ∈ Bv with e ∈ Be,v. For each
h ∈ [ℓ], we will show that P(e ∈ E(Hh

1 )|e ∈ E(Hh
0 )) = 1/8. Suppose then that h ∈ [ℓ] and e ∈ E(Hh

0 ).
Note that, as e ∈ E(Hh

0 ), from C2 we have that no two of vBe,v are in the same path/cycle Sh
i,j for

any i ∈ [k/2h] and j ∈ [rhi ]. Furthermore, e ∈ E(Hh
1 ) only if vBe,v ∈ Mh for each v ∈ V (e), which are

three independent events which each occur with probability 1/2. Thus, P(e ∈ E(Hh
1 )|e ∈ E(Hh

0 )) = 1/8.
Therefore, P(e ∈ E(H′)) ≤ P(e ∈ E(Hℓ

1)) ≤ 1/8ℓ = 1/k3 = 1/t.

A2: Let v ∈ V . Note that if there is no edge in M that contains v then there are no edges in H′ containg
v, and thus dH′(v) = 0. As there is at most one edge in M which contains v, we can assume that there is
exactly one such edge. Suppose that this edge corresponds to UB for some B ∈ B. Then, the only edges
e ∈ E(H′) with v ∈ V (e) are those in B, and therefore, by D1,

dH′(v) ≤ |B ∩ E(Hℓ
2)| ≤ (1 +D−ε)m/22ℓ = (1 +D−ε)D/k3 = (1 +D−ε)D/t.

Suppose then that the edge in M containing v is vB for some B ∈ Bv. Then, similarly by D1, dH′(v) ≤
|B ∩ E(Hℓ

2)| ≤ (1 +D−ε)D/t. Thus, A2 holds.

A3: Let x, y ∈ V (H) be distinct. Suppose there is some B ∈ B with UB = {x, y} and UB ∈ M . Let
e ∈ E(H′) contain x. Then, M must contain an edge which contains x which is either UB′ for some B′ ∈ B
or xB′ for some B′ ∈ Bx, for which e ∈ B′. As M is a matching, the only possibility is B′ = B, and then
{x, y} ⊂ V (e). Thus, there are no edges in H′ that contain x but not y. Arguing similarly, there are also
no edges in H′ that contain y but not x. Thus, every edge in H′′ contains either both x and y or neither
of them.

Now, suppose there is no B ∈ B with UB = {x, y} and UB ∈ M . If there is some B ∈ B with
x ∈ UB and UB ∈ M , then, if z is such that UB = {x, z}, then the only possible edge in H′ containing
x and y is xyz, and thus codH′(x, y) ≤ 1. Similarly, if there is some B ∈ B with y ∈ UB and UB ∈ M ,
then codH′(x, y) ≤ 1. Therefore, if codH′(x, y) > 1, there must be some B ∈ Bx and B′ ∈ By with
xB, yB′ ∈ M , so that, from D3, codH′(x, y) ≤ |(B ∩B′)∩E(Hℓ

2)| ≤ 2Dγm/2ℓk2 = 2Dγ−µD/t ≤ D1−ε/t,
where we have used that ε ≪ γ ≪ µ. This completes the proof of A3.

A4: It is left then only to prove that A4 holds with probability at least 1−D−10. We start by showing
the following claim.

Claim 4.6. For each h ∈ [ℓ] and each distinct v, w ∈ V and B ∈ Bv, B
′ ∈ Bw, with probability at least

1−D−20,
|(B ∩B′) ∩ E(Hh

1 )| ≤ (1 + h/ℓ)Dγm/2hk2. (1)

Proof of Claim 4.6. Let h ∈ [ℓ]. Let v, w ∈ V be distinct and let B ∈ Bv and B′ ∈ Bw. Now, by the
choice of Hh−1

2 (in particular B3.3 or D3), we always have that

|(B ∩B′) ∩ E(Hh
0 )| ≤ |(B ∩B′) ∩ E(Hh−1

2 )| ≤ (1 + (h− 1)/2ℓ)Dγm/2h−1k2. (2)
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Let Zv,w be the set of z such that vwz ∈ (B ∩ B′) ∩ E(Hh
0 ). For each z ∈ Zv,w, let Bz ∈ Bz be such

that vwz ∈ Bz, noting that, therefore, zBz ∈ Mh−1. For each z ∈ Zv,w, note that, if vwz ∈ E(Hh
1 ),

then we must have that the indicator variable for the cycles/paths containing zBz must be equal to 1 or
0 depending on which matching zBz is in in Mh−1 = Mh−1

1 ∪ . . . ∪Mh−1
k/2h−1 . Therefore, using (2),

E|(B ∩B′) ∩ E(Hh
1 )| ≤ (1 + (h− 1)/2ℓ)Dγm/2hk2.

For each i ∈ [k/2h] and j ∈ [rhi ], let c
h
i,j be the number of edges in Sh

i,j which are zBz for some z ∈ Zv,w,

and note that changing the variable xh
i,j changes |(B ∩ B′) ∩ E(Hh

1 )| by at most chi,j , and that chi,j ≤ s.
Thus, ∑

i∈[k/2h]

∑
j∈[rhi ]

(chi,j)
2 ≤ s ·

∑
i∈[k/2h]

∑
j∈[rhi ]

chi,j ≤ s|Zv,w|
(2)

≤ 2sDγm/2h−1k2.

Therefore, by Lemma 4.4, (1) does not hold with probability at most

2 exp

(
−
( 1ℓD

γm/2hk2)2

2sDγm/2h−1k2

)
= 2 exp

(
−Dγm/2hk2

4sℓ2

)
≤ 2 exp

(
− D1+γ

4sℓ2k4

)
≤ D−20,

as required. ⊡

Now we show a similar claim to Claim 4.6 for codegrees.

Claim 4.7. For each h ∈ [ℓ] and each distinct v, w ∈ V and B ∈ Bv, with probability at least 1−D−20,
the number of edges in B ∩ E(Hh

1 ) containing w is at most (1 + h/ℓ)D2γm/22hk.

Proof of Claim 4.7. Let h ∈ [ℓ]. Let v, w ∈ V be distinct and let B ∈ Bv. Now, by the choice of Hh−1
2 (in

particular B3.2 or D2), we always have that the number of edges in B ∩ E(Hh
0 ) containing w is at most

(1 + (h− 1)/ℓ)D2γm/22(h−1)k.
Let Zv,w be the set of z ∈ V \ {v, w} such that vwz ∈ B ∩E(Hh

0 ) and there is some Bz ∈ B such that
vwz ∈ Bz and z ∈ UBz

. Note that, as vwz ∈ B, then, by B3.1, UBz
= {z, w}. Let Z ′

v,w be the set of

z ∈ V \ {v, w} such that vwz ∈ B ∩E(Hh
0 ) and there is some Bz ∈ Bz with vwz ∈ Bz and some Bw

z ∈ Bw

with vwz ∈ Bw
z . Note that |Zv,w|+ |Z ′

v,w| ≤ (1 + (h− 1)/ℓ)D2γm/22(h−1)k.

Now, for each z ∈ Zv,w, we have UBz
∈ Mh−1 and UBz

/∈ Fh by the choice of Hh
0 (from C1).

Note that if vwz ∈ E(Hh
1 ) then we have vwz ∈ Ah

Bz
and the indicator variable xh

i,j for the path/cycle

containing UBz
must be equal to 0 or 1 depending on which matching UBz

is in in the partition Mh−1 =
Mh−1

1 ∪ . . . ∪Mh−1
k/2h−1 . Thus, vwz ∈ E(Hh

1 ) with probability 1/4.

Furthermore, for each z ∈ Z ′
v,w, from C2 we have zBz, wB

w
z ∈ Mh−1 \ Fh, and that zBz and wBw

z

do not appear in the same path/cycle in Sh
i,j , i ∈ [k/2h] and j ∈ [rhi ]. Note that if vwz ∈ E(Hh

1 ) then the

indicator variables xh
i,j for the path/cycles containing zBz and wBw

z must be equal to 0 or 1 depending

on which matching zBz and wBw
z is in respectively in the partition Mh−1 = Mh−1

1 ∪ . . .∪Mh−1
k/2h−1 . Thus,

vwz ∈ E(Hh
1 ) with probability 1/4.

Therefore, altogether, we have

E|{e ∈ B ∩ E(Hh
1 ) : w ∈ V (e)}| = 1

4
(|Zv,w|+ |Z ′

v,w|) ≤ (1 + (h− 1)/2ℓ)D2γm/22hk.

Now, for each i ∈ [k/2h] and j ∈ [rhi ], let chi,j be the number of z ∈ Zv,w with UBz in the path/cycle

Sh
i,j or z ∈ Z ′

v,w with zBz or wBw
z in the path/cycle Sh

i,j . Then, changing the variable xh
i,j changes

|{e ∈ B ∩E(Hh
1 ) : w ∈ V (e)}| by at most chi,j . Note that we have chi,j ≤ s · 2Dγm/2h−1k2 by the choice of

Hh−1
2 (in particular B3.3 or D3). Thus,∑

i∈[k/2h]

∑
j∈[rhi ]

(chi,j)
2 ≤ (s · 2Dγm/2h−1k2) ·

∑
i∈[k/2h]

∑
j∈[rhi ]

chi,j

≤ (s · 2Dγm/2h−1k2) · (|Zv,w|+ 2|Z ′
v,w|)

≤ (s · 2Dγm/2h−1k2) · 4D2γm/22(h−1)k = 8sD3γm2/23(h−1)k3.
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Furthermore, for each z ∈ Zv,w, changing whether or not vwz ∈ Ah
Bz

changes |{e ∈ B∩E(Hh
1 ) : w ∈ V (e)}|

by at most 1, and |Zv,w| +
∑

i∈[k/2h]

∑
j∈[rhi ]

(chi,j)
2 ≤ 16sD3γm2/23(h−1)k3. Thus, by Lemma 4.4, the

number of edges in B ∩ E(Hh
1 ) containing w is more than (1 + h/ℓ)D2γm/22hk with probability at most

2 exp

(
−

( 1ℓD
2γm/22hk)2

16sD3γm2/23(h−1)k3

)
= 2 exp

(
− Dγk

128sℓ22h

)
≤ 2 exp

(
−Dγ/2

128ℓ2

)
≤ D−20,

where we have used that s = Dγ/2 and 2h ≤ 2ℓ = k. ⊡

Now we show a similar claim to Claim 4.7 for degrees.

Claim 4.8. For each B ∈ B ∪ (∪v∈V Bv), with probability at least 1−D−20,

|B ∩ E(Hh
1 )| ≤ (1 +D−εh/ℓ)m/22h.

Proof of Claim 4.8. Case 1. Let B ∈ B. Now, by the choice of Hh−1
2 (in particular B3.1 or D1),

we always have that |B ∩ E(Hh
0 )|) ≤ (1 + D−ε(h − 1)/ℓ)m/22(h−1). Let ZB be the set of z such that

{z} ∪ UB ∈ B ∩ E(Hh
0 ), so that |ZB | ≤ (1 +D−ε(h − 1)/ℓ)m/22(h−1). For each z ∈ ZB , let Bz ∈ Bz be

such that {z} ∪ UB ∈ Bz, noting that, therefore, zBz ∈ Mh−1 \ Fh. Note that if {z} ∪ UB ∈ B ∩ E(Hh
1 ),

then we must have that the indicator variable for the cycle/path containing zBz must be equal to 1 or
0 depending on which matching zBz is in in the partition Mh−1 = Mh−1

1 ∪ . . . ∪Mh−1
k/2h−1 , and we must

have {z} ∪ UB ∈ Ah
B . Therefore,

E|B ∩ E(Hh
1 )| =

1

4
|ZB | ≤ (1 +D−ε(h− 1)/2ℓ)m/22h.

Now, changing whether or not a single edge is in Ah
B or not affects |B ∩ E(Hh

1 )| by at most 1, and
at most |ZB | ≤ 2m/22(h−1) = 8m/22h of these events can affect |B ∩ E(Hh

1 )|. For each i ∈ [k/2h] and
j ∈ [rhi ], let chi,j be the number of z ∈ ZB with zBz in the path/cycle Sh

i,j . Then, changing the variable

xh
i,j changes |B ∩ E(Hh

1 )| by at most chi,j ≤ s, while
∑

i∈[k/2h]

∑
j∈[rhi ]

chi,j ≤ |ZB |. Thus∑
i∈[k/2h]

∑
j∈[rhi ]

(chi,j)
2 ≤ s ·

∑
i∈[k/2h]

∑
j∈[rhi ]

chi,j ≤ s · |ZB | ≤ s · 2m/22(h−1) = 8sm/22h.

Thus, by Lemma 4.4, |B ∩ E(Hh−1
1 )| > (1 +D−εh/ℓ)m/22h with probability at most

2 exp

(
−

( 1ℓD
−εm/22h)2

8sm/22h + 8m/22h

)
≤ 2 exp

(
−
( 1ℓD

−εm/22h)2

16sm/22h

)
= 2 exp

(
− D−2εm

22h · ℓ2 · 16s

)
≤ 2 exp

(
− D1−2ε

16k3ℓ2s

)
≤ D−20,

as required.

Case 2. Let then B ∈ Bv with v ∈ V . Now, by the choice of Hh−1
2 (in particular B3.1 or D1), we

always have that |B ∩E(Hh
0 )| ≤ (1 +D−ε(h− 1)/ℓ)m/22(h−1). Let EB = (B ∩E(Hh

0 )) ∩ (∪B′∈BB
′), and

let E′
B = (B ∩ E(Hh

0 )) \ EB . Note that |EB | + |E′
B | ≤ (1 +D−ε(h − 1)/ℓ)m/22(h−1). For each e ∈ EB ,

let Be ∈ B be such that e ∈ Be, and note that UBe
∈ Mh−1. For each e ∈ E′

B , let we, ze be such that
e = vweze, and let Bw

e ∈ Bwe
and Bz

e ∈ Bze satisfy e ∈ Bw
e and e ∈ Bz

e , and note that weB
w
e and zeB

z
e

are in Mh−1 but in different cycles/paths Sh
i,j across i ∈ [k/2h] and j ∈ [rhi ].

For each e ∈ EB , note that if e ∈ B ∩ E(Hh
1 ) then we must have that the indicator variable for the

cycle/path containing Be must be equal to 1 or 0 depending on which matching UBe
is in in the partition

Mh−1 = Mh−1
1 ∪ . . . ∪Mh−1

k/2h−1 and that e ∈ Ah
Be

, which happens with probability 1/4. For each e ∈ E′
B

note that if e ∈ B ∩E(Hh
1 ) then we must have that the indicator variables for the cycles/paths containing
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weBwe and zeBze must be 0 or 1 depending on which matching weBwe and zeBze are in in the partition
Mh−1 = Mh−1

1 ∪ . . . ∪Mh−1
k/2h−1 , which again happens with probability 1/4. Therefore,

E|B ∩ E(Hh
1 )| =

1

4
(|EB |+ |E′

B |) ≤ (1 +D−ε(h− 1)/2ℓ)m/22h.

Now, changing whether or not a single edge e is in Ah
Be

or not affects |B ∩E(Hh
1 )| by at most 1 and at

most |EB | ≤ 2m/22(h−1) such events affect |B ∩ E(Hh
1 )|. For each i ∈ [k/2h] and j ∈ [rhi ], let c

h
i,j be the

number of e ∈ EB with UBe in the path/cycle Sh
i,j or e ∈ E′

B with weBwe or zeBze in the path/cycle Sh
i,j .

Now, for each wB′ ∈ E(Sh
i,j) with w ∈ V \ {v} and B′ ∈ Bw, there are, by D2, at most 2D2γm/22(h−1)k

edges e ∈ B∩E(Hh
0 ) with we = w and Bwe = B′. Furthermore, for each distinct e, e′ ∈ EB∩E(S) we have

Be ̸= Be′ as e = {v} ∪ UBe
and e′ = {v} ∪ UBe′ . Therefore, as e(Sh

i,j) ≤ s, we have chi,j ≤ 8sD2γm/22hk.

Changing the variable xh
i,j changes |B ∩ E(Hh

1 )| by at most chi,j , while∑
i∈[k/2h]

∑
j∈[rhi ]

(chi,j)
2 ≤ (8sD2γm/22hk) ·

∑
i∈[k/2h]

∑
j∈[rhi ]

chi,j ≤ (8sD2γm/22hk) · (|EB |+ 2|EB′ |)

≤ (8sD2γm/22hk) · 4m/22(h−1) = 27sD2γm2/24hk,

so |EB |+
∑

i∈[k/2h]

∑
j∈[rhi ]

(chi,j)
2 ≤ 2m/22(h−1)+27sD2γm2/24hk ≤ 28sD2γm2/24hk. Thus, by Lemma 4.4,

|B ∩ E(Hh
1 )| < (1 +D−εh/2ℓ)m/22h with probability at most

2 exp

(
−

( 1ℓD
−εm/22h)2

28sD2γm2/24hk

)
= 2 exp

(
−D−2ε−2γk

28sℓ2

)
≤ D−20,

where we have used that k = Dµ and ε ≪ γ ≪ µ. ⊡

Putting Claims 4.6 to 4.8 together allows us to show that there is likely to be only an edge loss from
Hh

1 to Hh
2 , as follows.

Claim 4.9. For each h ∈ [ℓ], with probability at least 1−D−11,

e(Hh
2 ) ≥ e(Hh

1 )− |V |. (3)

Proof of Claim 4.9. Let h ∈ [ℓ]. Let Xh be the set of vertices v ∈ V for which at least one of the following
does not hold.

• There is some B ∈ Bv ∪ {B′ ∈ B : v ∈ UB′} such that |B ∩ E(Hh
2 )| ≤ (1 + h ·D−ε/ℓ)m/22h.

• There is some w ∈ V \ {v} and B ∈ Bv, such that the number of edges in B ∩ E(Hh
2 ) containing w

is at most (1 + h/ℓ)D2γm/22hk.

• There is some w ∈ V \ {v}, B ∈ Bv, and B′ ∈ Bw with |(B ∩B′) ∩ E(Hh
2 )| ≤ (1 + h/ℓ)Dγm/2hk2.

Note that, as ∆(H) ≤ D, using Claims 4.6 to 4.8, we have that, for each v ∈ V , P(v ∈ Xh) ≤ 3D2·D−20.
Let Eh be the set of edges of H containing some vertex in Xh, so that E|Eh| ≤ |V | ·D · 3D2 ·D−20. Then,
by Markov’s inequality, we have |Eh| ≥ |V | with probability at most D−11. Finally, note that if Hh

1 −Eh

replaces Hh
2 then D1–D3 are satisfied. Thus, by the maximality of Hh

2 , e(Hh
2 ) ≥ e(Hh

1 ) − |Eh|, and
therefore (3) holds with probability at least 1−D−11. ⊡

We now show that there will always be only a small edge loss from Hh−1
2 to Hh

0 .

Claim 4.10. For each h ∈ [ℓ],

e(Hh
0 ) ≥ e(Hh−1

2 )− |V |D1−γ/3/23h

12



Proof of Claim 4.10. Let h ∈ [ℓ]. Note that by the minimality in the choice of Fh we have

|Fh| ≤ 2|V |
s

· k

2h
.

Furthermore, for each B ∈ B with UB ∈ Fh, |B ∩ E(Hh−1
2 )| ≤ 2m/22(h−1) by the choice of Hh−1

2

(in particular B2 or D1). Similarly, for each v ∈ V and B ∈ Bv with vB ∈ Fh, we have that |B ∩
E(Hh−1

2 )| ≤ 2m/22(h−1) by the choice of Hh−1
2 . Therefore, the number of edges e ∈ E(Hh−1

2 ) for which
either e ∈ ∪B∈B:UB∈FhB or e ∈ B for some v ∈ V , B ∈ Bv and vB ∈ Fh is at most

|Fh| · 2m/22(h−1) ≤ 2|V |
s

· k

2h
· 8m
22h

≤ 16|V |D
s23h

. (4)

Let i ∈ [k/2h] and j ∈ [rhi ]. For each B ∈ B, v ∈ V and B′ ∈ Bv with UB , vB
′ ∈ Sh

i,j , we have B∩B′ = ∅
if v ∈ UB and otherwise the only possible edge in B ∩B′ is {v} ∪ UB , so in either case |B ∩B′| ≤ 1. For
each distinct v, w ∈ V and B ∈ Bv, B

′ ∈ Bw, we have |(B∩B′)∩E(Hh−1
2 )| ≤ 2Dγm/2h−1k2 by the choice

of Hh−1
2 (in particular B3.3 or D3).
Therefore, using the maximality of H0

h, we have

e(Hh−1
2 )− e(Hh

0 ) ≤
16|V |D
s23h

+
∑

i∈[k/2h]

∑
j∈[rhi ]

e(Sh
i,j)

2 · 2Dγm

2h−1k2
≤ 16|V |D

s23h
+

∑
i∈[k/2h]

∑
j∈[rhi ]

s ·
2e(Sh

i,j) · 2D1+γ

2hk3

≤ 16|V |D
s23h

+
∑

i∈[k/2h]

8s · |V | ·D1+γ

2hk3
=

16|V |D
s23h

+
8s · |V | ·D1+γ

22h · k2

=
|V |D
23h

·
(
16

s
+

8sDγ2h

k2

)
≤ |V |D

23h
·
(
16

s
+

8sDγ

k

)
≤ D−γ/3 · |V |D

23h
,

as required, where we have used that k = Dµ, s = Dγ/2, and γ ≪ µ. ⊡

Now we show that it is likely that the edge loss from Hh
0 to Hh

1 is only at most slightly larger than the
expected factor of 7/8.

Claim 4.11. For each h ∈ [ℓ], with probability at least 1−D−11,

e(Hh
1 ) ≥

1

8
e(Hh

0 )−D1−2ε|V |/23h. (5)

Proof of Claim 4.11. Let E be the set of edges e ∈ E(Hh
0 ) for which e ∈ ∪B∈BB, and let E′ = E(Hh

0 )\E.
For each e ∈ E, let Be ∈ B, ze ∈ V \ UBe

and B′
e ∈ Bze be such that e ∈ Be ∩ B′

e. Note that e ∈ E(Hh
1 )

exactly if UB , zeB
′ ∈ Mh and e ∈ Ah

Be
, which, by the choice of Hh

0 , happens with probability 1/8. For
each e ∈ E′, label vertices ve, we, ze and take Bv

e ∈ Bve , B
w
e ∈ Bwe and Bz

e ∈ Bze such that e = {ve, we, ze}
and e ∈ Bv

e ∩Bw
e ∩Bz

e . Note that e ∈ E(Hh
1 ) exactly if veB

v
e , weB

w
e , zeB

z
e ∈ Mh, which, by the choice of

Hh
0 , happens with probability 1/8. Therefore, E(e(Hh

1 )) ≥ 1
8e(H

h
0 ).

Now, changing whether or not a single edge is in Ah
B or not affects e(Hh

1 ) by at most 1, and the number
of these variables is (using the choice of Hh

0 , and in particular B3.1 or D1) at most

e(Hh
0 ) ≤ |V | · (k/2h−1) · 2m/22(h−1) = 16|V |D/23h.

For each i ∈ [k/2h] and j ∈ [rhi ], changing the variable xh
i,j changes e(Hh

1 ) by (again using the choice of

Hh
0 , and in particular B3.1 or D1) at most chi,j := e(Sh

i,j) · 2m/22(h−1). Note that

∑
i∈[k/2h]

∑
j∈[rhi ]

(chi,j)
2 ≤

∑
i∈[k/2h]

∑
j∈[rhi ]

e(Sh
i,j) · s

(
2m

22(h−1)

)2

≤ k

2h
· 2|V | · s

(
2m

22(h−1)

)2

=
27D2s|V |

25hk
,

so that

e(Hh
0 ) +

∑
i∈[k/2h]

∑
j∈[rhi ]

(chi,j)
2 ≤ 16|V |D

23h
+

27D2s|V |
25hk

≤ 28D2s|V |
25hk

.
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Thus, by Lemma 4.4, (5) does not hold with probability at most

2 exp

(
− (D1−2ε|V |/23h)2

28D2s|V |/25hk

)
= 2 exp

(
−D−4εk|V |

282hs

)
≤ 2 exp

(
−D−4ε−γ/2|V |

28

)
≤ D−11,

where we have used that |V | ≥ D1/2. ⊡

Claims 4.9–4.11 allows us to bound the likely edge loss from H1 to H′. Indeed, using Claims 4.9–4.11,
we have, with probability at least 1 − 3ℓD−11 ≥ 1 − D−10, that, for each h ∈ [ℓ], e(Hh

0 ) ≥ e(Hh−1
2 ) −

D1−γ/3 · |V |/23h, e(Hh
1 ) ≥ 1

8e(H
h
0 )−D1−2ε|V |/23h and e(Hh

2 ) ≥ e(Hh
1 )− |V |. When this holds, we have,

for each h ∈ [ℓ], that

e(Hh
2 ) ≥

1

8
e(Hh−1

2 )− 3D1−2ε|V |/23h,

and therefore, it is easy to show by induction that, for each h ∈ [ℓ], e(Hh
2 ) ≥ 2−3h · e(Hh−1

0 ) − h ·
3D1−2ε|V |/23h. Thus, we have

e(H′) = e(Hℓ
2) ≥ 2−3ℓ · e(H0

2)− ℓ · 3D1−2ε|V |/23ℓ ≥ 1

t
e(H0

2)−
1

2t
D1−ε|V |.

To complete the proof of A4, it is sufficient then to show that e(H1) = e(H0
2) ≥ e(H)−D1−ε|V |/2.

For this, first note that, from B1, for each v ∈ V , there are at most D/m ≤ 2Dµ vertices x ∈ V with
codH(v, x) ≥ m, and, thus, e(H) − e(H0) ≤ |V | · (2Dµ)2. Take an arbitrary B satisfying B2. For each
v ∈ V , let

kv = ⌊|{e ∈ E(H0) \ ∪B∈B:v∈UB
B : v ∈ V (e)}|/m⌋

and, if kv ≥ k ·D−γ/4, then uniformly at random take a collection Bv of kv disjoint subsets of size m in
{e ∈ E(H0) \ ∪B∈B:v∈UB

B : v ∈ V (e)}, and, otherwise, take Bv = ∅.
Now, letting Z ⊆ E(H0) to be the set of edges e ∈ E(H0) for which either there is some B ∈ B with

e ∈ B and some v ∈ V and B′ ∈ Bv with e ∈ B′ or, for each v ∈ V (e), there is some B ∈ Bv with e ∈ B,
we have

|E(H0) \ Z| ≤ m · (k ·D−γ/4 + 1) · |V | ≤ D1−ε|V |/12.

Furthermore, for each distinct v, w ∈ V with kv ≥ k · D−γ/4, as there are at most m edges in E(H0) \
∪B∈B:v∈UB

B containing both v and w by the maximality of B, the probability that there is some B ∈ Bv

for which there are at least 2m/kv ≤ D2γm/k edges in B containing w is, using an appropriate Chernoff
bound for hypergeometric random variables, at most k ·D−10. Similarly, for each distinct v, w ∈ V with
kv, kw ≥ k ·D−γ/4, the probability that there is some B ∈ Bv and B′ ∈ Bw for which |B∩B′| ≤ 2m/kvkw ≤
Dγn/k2 is at most k2 ·D−10.

Therefore, with positive probability, if we delete, for each v ∈ V , each B ∈ Bv for which B3.2 or B3.3
does not hold, then this deletes certainly at most D1−ε|V |/12 edges. Thus, by the maximality of the Bv,
v ∈ V , we have that Z contains all but at most D1−ε|V |/6 edges of e(H0). Note that, by the definition of
H1, we therefore have that H1 contains all but at most D1−ε|V |/2 of the edges of e(H0). Thus, we have
that e(H1) ≥ e(H)− (2Dµ)2|V | −D1−ε|V |/2 ≥ e(H)−D1−ε|V |, as required. □

4.2 Proof of Theorem 4.3

We now use Lemma 4.5 and Corollary 4.2 to prove Theorem 4.3.

Proof of Theorem 4.3. Let ε, µ, η > 0 and D0 have the property from Lemma 4.5, as shown to exist by
that lemma, let ξ ≪ ε, 1/k, and, moreover, assume that 1/D0 ≪ ε, 1/k. We will show that Theorem 4.3
holds for ξ, η and D0. Let then D ≥ D0 and let H be a 3-uniform hypergraph with maximum degree D
and at least

√
D vertices for which the graph on V (H) with edges xy present if codH(x, y) ≥ D1−η is

bipartite.
Using the property from Lemma 4.5, there is some D3µ ≤ t ≤ 8D3µ for which, setting r = t2, we can

find independent random subhypergraphs H′
1, . . . ,H′

r of H such that, for each i ∈ [r],

• for each e ∈ E(H), P(e ∈ E(H′
i)) ≤ 1/t,
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• ∆(H′
i) ≤ (1 +D−ε)D/t,

• for each distinct x, y ∈ V (H′
i), either codH′

i
(x, y) ≤ D1−ε/t or every e ∈ E(H′) satisfies {x, y} ⊂ V (e)

or {x, y} ∩ V (e) = ∅, and,

• with probability at least 1−D−10, e(H′
i) ≥ e(H)/t−D1−ε|H|/t.

By a simple application of a Chernoff bound, we have, for each e ∈ E(H), that

P
(
|{i ∈ [r] : e ∈ E(H′

i)}| > (1 +D−ε)
r

t

)
< D−10.

Therefore, by an application of Markov’s lemma, with probability 1 − D−5, for all but at most |H|
edges e ∈ E(H) we have |{i ∈ [r] : e ∈ E(H′

i)}| ≤ (1 + D−ε) rt . Let H1 be the subhypergraph of
H of these edges. With positive probability then, we can assume that e(H1) ≥ e(H) − |H|, and that
e(H′

i) ≥ e(H)/t−D1−ε|H|/t for each i ∈ [r].
Let m = (1 + D−ε)r/t. For each e ∈ E(H1), independently at random pick ie ∈ {0} ∪ {i ∈ [r] : e ∈

E(H′
i)} so that P(ie = i) = 1/m for each i ∈ [r] for which e ∈ E(H′

i). For each i ∈ [r], let H′′
i be the

subhypergraph of H′
i of edges e ∈ E(H′

i) with ie = i. Using a Chernoff bound and the local lemma, we
can assume that, for each i ∈ [r], the following hold

• ∆(H′′
i ) ≤ (1 +D−ε/2)D/tm,

• for each distinct x, y ∈ V (H′′
i ), either codH′′

i
(x, y) ≤ D1−ε/2/tm or every e ∈ E(H′′

i ) satisfies
{x, y} ⊂ V (e) or {x, y} ∩ V (e) = ∅, and,

• e(H′′
i ) ≥ e(H)/tm− 2D1−ε|H|/tm.

Now, as ξ, 1/D0 ≪ ε, 1/k, by Corollary 4.2, χ(H′′
i ) ≤ (1 +D−ξ)D/tm for each i ∈ [r]. Let H′ = ∪i∈[r]H′′

i ,
so that

χ(H′) ≤ r · (1 +D−ξ)D/tm ≤ (1 +D−ξ)D,

and

e(H′) ≥ r ·e(H)/tm−r ·2D1−ε|H|/tm = (1+D−ε)−1 ·e(H)− (1+D−ε)−1 ·2D1−ε|H| ≥ e(H)−|H| ·D1−ξ,

and hence H′ satisfies our requirements.

4.3 Proof of Theorem 1.1

We now deduce Theorem 1.1 from Theorem 4.3.

Proof of Theorem 1.1. Let ξ, η > 0 and D0 be such that the property in Theorem 4.3 holds for each
D ≥ D0 with ξ and η, and let 0 < ε ≤ ξ/3. Assume moreover that ε > 0 is small enough that n−n1−ε ≤ 1
for each n < D0. We will show that Theorem 1.1 holds for ε. Let S then be an equi-n-square. Note that
if n < D0, then all that is required is for S to contain 1 transversal with at least 1 cell, which trivially
holds. Assume then that n ≥ D0. By making ε even smaller if necessary, we may also assume nξ/3 > 2.

Say the set of rows of S is I, the set of columns is J and the set of symbols is A. Form a 3-uniform
hypergraph H on I ∪ J ∪ A by adding, for each i ∈ I and j ∈ J , an edge ijc where c ∈ A is the symbol
in the square of S indexed by (i, j). If H contains at least n − n1−ε disjoint matchings with at least
n − n1−ε edges, then it can be easily seen that S has at least n − n1−ε disjoint transversals with size at
least n− n1−ε. Suppose then that H does not contain at least n− n1−ε disjoint matchings with at least
n− n1−ε edges.

Note that if i ∈ I and j ∈ J then codH(i, j) = 1. Therefore, the graph on V (H) with edges xy
present if codH(x, y) ≥ n1−η is bipartite. Thus, by Theorem 4.3, there is some subhypergraph H′ ⊂ H
with χ′(H) ≤ (1 + n−ξ)n and e(H′) ≥ e(H)− n2−ξ. However, we then have

e(H′) ≤ (n− n1−ε)n+ (χ′(H′)− n+ n1−ε)(n− n1−ε)

≤ (n− n1−ε)n+ (n1−ξ + n1−ε)(n− n1−ε) ≤ n2 + n2−ξ − n2−2ε,

so that e(H) ≤ e(H′) + n2−ξ ≤ n2 + 2n2−ξ − n2−2ε < n2, as ε ≤ ξ/3 and we assumed nξ/3 > 2, a
contradiction as e(H) = n2. Thus, S has at least n−n1−ε disjoint transversals with size at least n−n1−ε,
as required.
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