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Abstract

In 1975, Erdős and Sauer asked to estimate, for any constant r, the maximum number of edges an n-vertex graph
can have without containing an r-regular subgraph. In a recent breakthrough, Janzer and Sudakov proved that any
n-vertex graph with no r-regular subgraph has at most Crn log logn edges, matching an earlier lower bound by
Pyber, Rödl and Szemerédi and thereby resolving the Erdős–Sauer problem up to a constant depending on r. We
prove that every n-vertex graph without an r-regular subgraph has at most Cr2n log log n edges. This bound is
tight up to the value of C for n ≥ n0(r) and hence resolves the Erdős–Sauer problem up to an absolute constant.

Moreover, we obtain similarly tight results for the whole range of possible values of r (i.e., not just when
r is a constant), apart from a small error term at a transition point near r ≈ logn, where, perhaps surpris-
ingly, the answer changes. More specifically, we show that every n-vertex graph with average degree at least
min(Cr log(n/r), Cr2 log logn) contains an r-regular subgraph. The bound Cr log(n/r) is tight for r ≥ logn, while
the bound Cr2 log log n is tight for r < (logn)1−Ω(1). These results resolve a problem of Rödl and Wysocka from
1997 for almost all values of r.

To find regular subgraphs efficiently, we replace and improve substantial parts of the Janzer–Sudakov framework
for the Erdős–Sauer problem. Our strategies involve the algebraic techniques of Alon, Friedland and Kalai, the
recent breakthroughs on the sunflower conjecture, techniques to find almost-regular subgraphs developed from
Pyber’s work, and, crucially, a novel random process that efficiently finds a very nearly regular subgraph in any
almost-regular graph. A key step in our proof uses this novel random process to show that every K-almost-regular
graph with average degree d contains an r-regular subgraph for some r = ΩK(d), which is of independent interest.

1 Introduction

Finding regular subgraphs with given degree is a fundamental problem in Graph Theory. Many important theorems in
Graph Theory assume that the graph is regular, or are much easier to prove in that case. Hence, developing tools for
finding regular subgraphs is of great importance, and such tools can be applied in many different areas of Combinatorics
(see, e.g., [19] for some of these applications).

In 1975, Erdős and Sauer [13] asked what is the maximum possible average degree that an n-vertex graph can have
without containing an r-regular subgraph. This question received a lot of interest in the case where r is a constant,
and was reiterated in many places such as Bollobás’s book on Extremal Graph Theory [6] and the book of Bondy and
Murty [8], while it was also one of Erdős’s favourite open problems [16].

In the early 80s, a very influential algebraic technique for finding regular subgraphs with given degree was developed
by Alon, Friedland and Kalai [1, 2]. Informally speaking, they proved that a graph which is very close to being regular
(in the sense that its average degree is very close to its maximum degree) contains a regular subgraph of large degree
(see Theorem 1.11 and Corollary 1.12 below for the formal statements). This result, together with new ideas, was used
by Pyber [25] in 1985 to obtain the first strong bounds for the minimum average degree condition which implies the
existence of an r-regular graph.
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Theorem 1.1 (Pyber [25]). For any positive integers r and n, every n-vertex graph with average degree greater than
32r2 log n contains an r-regular subgraph.

When r is constant Theorem 1.1 is tight up to the factor of log n, but as r increases the bound is increasingly far
from optimal (as discussed later). Chvátal had conjectured that some average degree condition depending only on r

should be sufficient to imply the existence of an r-regular graph (see [8]), but interestingly this turns out to be false.
Indeed, in 1995, Pyber, Rödl and Szemerédi [26] constructed examples demonstrating that an n-vertex graph can have
Ω(n log log n) edges, yet no r-regular subgraph, as follows.

Theorem 1.2 (Pyber–Rödl–Szemerédi [26]). There is some absolute constant c > 0 such that, for each n, there is an
n-vertex graph with average degree at least c log log n which does not contain an r-regular subgraph for any r ≥ 3.

In light of Theorem 1.1, in 1997, Rödl and Wysocka [28] posed the problem of estimating the smallest d = d(r, n) such
that every n-vertex graph with average degree at least d contains an r-regular subgraph. They proved, for every γ ≥ 0,
that every n-vertex graph with average degree at least γn contains an r-regular subgraph for some r ≥ Cγ3n, where
C is some absolute constant. This directly improved a previous result of Pyber, Rödl and Szemerédi [26], and also
improves upon Pyber’s bound in Theorem 1.1 when the host graph is fairly dense (more precisely, when its average
degree is greater than roughly n4/5).

Despite continued related work, such as that of Bollobás, Kim and Verstraëte [7] on the threshold for a random
graph to contain an r-regular subgraph, and many papers on finding regular subgraphs in hypergraphs (see, e.g.,
[12, 18, 20, 22, 23, 24]), the bounds Or(log n) and Ω(log log n) for the Erdős–Sauer problem have not been improved
until very recently, when Janzer and Sudakov [19] proved that the answer is Or(log log n), as follows.

Theorem 1.3 (Janzer–Sudakov [19]). For every positive integer r there exists some Cr such that any n-vertex graph
with average degree at least Cr log log n contains an r-regular subgraph.

In this paper we resolve the problem of Rödl and Wysocka for almost all values of r and n, and in particular, settle the
Erdős–Sauer problem up to an absolute constant factor. Perhaps surprisingly, the answer changes drastically around
r ≈ log n. We prove two upper bounds, the first of which is tight when r is small, and the second of which is tight
when r is large.

Theorem 1.4. There exists some C such that for all positive integers if r, n ≥ 3, every n-vertex graph with average
degree at least Cr2 log log n contains an r-regular subgraph.

Theorem 1.5. There exists some C such that for all positive integers r, n with r ≤ n/2, every n-vertex graph with
average degree at least Cr log(n/r) contains an r-regular subgraph.

We prove matching lower bounds for both results, showing that Theorem 1.4 is tight for r < (log n)1−Ω(1), whereas
Theorem 1.5 is tight for r ≥ log n. In particular, to resolve the Erdős–Sauer problem up to an absolute constant, our
Theorem 1.4 improves the value of Cr ≈ r16 used in the proof of Theorem 1.3.

Proposition 1.6. There is some c > 0 such that for all positive integers r and n with 3 ≤ r ≤ 1
2 log n, there exists an

n-vertex graph with average degree at least cr2 log( logn
r ) which does not contain an r-regular subgraph. In particular,

Theorem 1.4 is tight up to the value of C provided that n is sufficiently large compared to r.

Proposition 1.7. There is some c > 0 such that for all positive integers r, n ≥ 2 with 1
2 log n ≤ r ≤ n/100, there

exists an n-vertex graph with average degree at least cr log(n/r) which does not have an r-regular subgraph.

We prove Propositions 1.6 and 1.7 using careful modifications of the construction of Pyber, Rödl and Szemerédi [26].
We note that a similar, but slightly less general result to Proposition 1.7 was obtained by Bucić, Kwan, Pokrovskiy,
Sudakov, Tran, and Wagner [9].

Recall that d(r, n) is defined as the smallest d such that every n-vertex graph with average degree at least d contains an
r-regular subgraph. Combining Theorems 1.4 and 1.5 and Propositions 1.6 and 1.7, we obtain the following interesting
‘phase transition’ phenomenon:

• for r < (log n)1−Ω(1), we have d(r, n) = Θ(r2 log log n), whereas

• for r ≥ log n, we have d(r, n) = Θ(r log(n/r)).
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1.1 Almost-regular graphs

In the process of proving Theorems 1.4 and 1.5, we will consider various notions of ‘near-regularity’. Proving results
about nearly-regular subgraphs is interesting in its own right, and has already attracted a lot of interest. The notion
that was the most extensively studied is ‘almost-regularity’.

Definition 1.8. A graph is called K-almost-regular if the ratio between the maximum degree and the minimum degree
is at most K.

An important reason why this notion is useful is the celebrated ‘regularisation lemma’ of Erdős and Simonovits [15]
from 1970. This result states that any n-vertex graph with at least n1+α edges contains a K-almost-regular subgraph
with m vertices and at least 2

5m
1+α edges for some K = K(α) and m = ω(1). This result has since become one of

the most widely used tools in Turán-type problems, as it allows one to reduce such problems to the easier case where
the host graph is almost-regular. This demonstrates the value of results that find ‘dense’ regular or nearly-regular
subgraphs in general graphs, which are the subject of this paper.

Another useful result, which will be the starting point in our proof of Theorem 1.5, allows one to find an almost-regular
subgraph in an arbitrary graph at the cost of a log n factor loss in the degree. The following result was proved in [3]
and in [9], using a variant of Pyber’s proof [25] of Theorem 1.1.

Lemma 1.9 (Alon et al. [3] and Bucić et al. [9]). Every n-vertex graph with average degree d contains a 4-almost-regular
subgraph with average degree at least d

100 logn .

We will in fact need a slightly stronger variant of Lemma 1.9, which we prove using a very similar approach (see
Section 4).

Proposition 1.10. Every n-vertex graph with average degree d contains a 4-almost-regular subgraph with average
degree at least d

100 log(32n/d) .

A very important result of Alon, Friedland and Kalai (as mentioned earlier) allows one to find regular subgraphs in
graphs that are already very close to being regular.

Theorem 1.11 (Alon–Friedland–Kalai [2]). If q is a prime power, q ≥ r, and q ≡ r (mod 2), then every graph with
maximum degree ∆ ≥ 2q − 2 and average degree d > 2q−2

2q−1 · (∆ + 1) contains an r-regular subgraph.

Often this result is used via the following corollary1.

Corollary 1.12 (Alon–Friedland–Kalai). Let λ ≥ 1. Then every graph with average degree d and maximum degree at
most d+ λ contains an r-regular subgraph for some r ≥ d

10λ .

We prove that almost-regular graphs contain regular subgraphs with essentially the same degree, which is a significant
strengthening of Corollary 1.12 as the condition on the maximum degree is much less restrictive.

Theorem 1.13. For each λ ≥ 1, there exists some c = c(λ) > 0 such that every graph with average degree d and
maximum degree at most λd contains an r-regular subgraph for all r ≤ cd.

This also strengthens a result of Janzer, Sudakov and Tomon [20], which states that every n-vertex λ-almost-regular
graph with average degree d contains an r-regular subgraph for all r ≤ c(λ)d/ log n.

Observe that Theorem 1.13, combined with Proposition 1.10, implies Theorem 1.5 (see Section 4 for a formal proof).
Theorem 1.13 will also play a key role in our proof of Theorem 1.4.

Furthermore, we can use Theorem 1.13 to obtain a strengthening of the celebrated Erdős–Simonovits regularization
lemma mentioned above. Before we state our result, we recall a slight variant of the Erdős–Simonovits regularization
lemma that is more convenient in applications. This variant is due to Conlon, Janzer and Lee (for an earlier variant,
see Jiang and Seiver [21]).

1To see how Corollary 1.12 follows from Theorem 1.11, note that one may choose q to be a power of 2 such that d
10λ

≤ q < d
5λ

and
apply Theorem 1.11 with r = q.
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Lemma 1.14 (Conlon–Janzer–Lee [11]). Let ε, c be positive reals, where ε < 1. Let n be a positive integer that is
sufficiently large as a function of ε and c. Let G be a graph on n vertices with e(G) ≥ cn1+ε. Then G contains a

K-almost-regular subgraph G′ on q ≥ n
ε−ε2

4+4ε vertices such that e(G′) ≥ 2c
5 q

1+ε and K = 20 · 2
1
ε2

+1.

Using Theorem 1.13, we can replace the K-almost-regular subgraph G′ by a fully regular subgraph which has essentially
the same properties, and the average degree drops by at most a constant factor that depends on ε.

Theorem 1.15. For any positive real ε < 1, there exists some β > 0 such that the following holds. Let c > 0 and let n
be a positive integer that is sufficiently large as a function of ε and c. Let G be a graph on n vertices with e(G) ≥ cn1+ε.
Then G contains a regular subgraph H on m ≥ nβ vertices such that e(H) ≥ βcm1+ε.

Note that while Theorem 1.13 does not directly control the number of vertices in the regular subgraph, the lower bound
m = nΩε(1) on the number of vertices in H follows from the lower bound for the degrees of H. We expect Theorem 1.15
to become a significant tool in Turán-type problems.

1.2 Preliminaries and notation

Concentration. We will often use the following basic version of Chernoff’s inequality for binomial random variables
(see, e.g., [4]).

Lemma 1.16 (Chernoff’s bound). Let n be an integer and 0 ≤ δ, p ≤ 1. If X ∼ Bin(n, p), then, setting µ = E[X] = np,

we have

P(X > (1 + δ)µ) ≤ e−δ2µ/2, and P(X < (1− δ)µ) ≤ e−δ2µ/3.

Notation. We use standard graph theoretic notation throughout the paper. In particular, for a graph or hypergraph G,
we denote by d(G) its average degree, and by δ(G) and ∆(G) its minimum degree and maximum degree, respectively.
We write |G| and e(G) for the number of vertices and edges in the graph G, respectively. All graphs are assumed to
have a non-empty vertex set. Logarithms are to base 2. For the sake of a cleaner presentation, we sometimes omit
floor and ceiling signs when they are not crucial.

Organization of the paper. In Section 2, we prove Theorem 1.13. In Section 3, we prove Theorem 1.4. Proposi-
tion 1.10 and Theorem 1.5 are proved in Section 4. The proofs of Propositions 1.6 and 1.7 are given in Section 5. In
Section 6, we give some concluding remarks and mention some open problems.

2 Regular subgraphs in almost-regular graphs

In this section we prove Theorem 1.13. Our main novel contribution is the following ‘near-regularisation’ result.

Theorem 2.1. There is an absolute constant c > 0 such that the following holds for all λ ≥ 1 and d > 0. Let G be a
graph in which d ≤ dG(v) ≤ λd for each v ∈ V (G). Then, for some d′ ≥ cd/λ3, G contains a subgraph H with average
degree d′ and maximum degree at most d′ + 108 such that |H| ≥ c|G|/λ10.

Theorem 2.1 states that in an almost-regular graph we can find a subgraph with average degree only a constant factor
smaller than the average degree of the original graph that is extremely close to being regular. We can then apply the
algebraic regularization technique of Alon, Friedland and Kalai (Corollary 1.12) to find a fully-regular subgraph. We
note that while we do not need this for the proof of Theorem 1.13, the nearly-regular subgraph given by Theorem 2.1
has a large vertex set, which may be useful for other applications.

The proof of Theorem 2.1 builds on the ideas recently introduced by the current authors, in [10]. The key idea is to
take an almost-regular graph and show that a small random deletion of vertices and edges (with probability differing
based on whether the vertices involved are low- or high-degree vertices) is likely to produce a subgraph which is slightly
closer to regular and yet has a very similar average degree, before using this iteratively. This will allow us to obtain
the desired nearly-regular subgraph in G by finding a sequence G =: G0 ⊃ G1 ⊃ G2 ⊃ . . . of subgraphs such that each

4



Gi+1 is a ‘bit more regular’ than Gi but has similar average degree. We terminate the process once Gi is sufficiently
regular and let H be this final subgraph. In [10], we controlled the minimum degree and the maximum degree of each
Gi, and using those methods one can show (via the Lovász local lemma) that with positive probability we end up with
a graph Gi in which the minimum degree and the maximum degree differ by at most O(log d). This, however, would
not be sufficient to prove Theorem 1.13, so here we take a slightly different approach. One important observation is
that in order to apply the algebraic regularization technique of Alon, Friedland and Kalai, one does not need to control
the minimum degree; controlling the average degree and the maximum degree is sufficient. This can be achieved by
repeating the following process. In each step, we first apply the small random regularization step from [10]. When
the average degree and the maximum degree are already very close (closer than log d, say), this leaves some outlier
‘high-degree’ vertices, but not too many – we can therefore delete some edges incident to these vertices to ‘push down’
their degrees to the interval we want.

The exact implementation of our small regularization step (i.e. how we obtain Gi+1 from Gi) is given by the following
lemma. After stating the lemma we will motivate the use of the ‘correction’ functions f and f ′′ and comment further
on the narrowing interval in which the (corrected) degrees lie.

Lemma 2.2. Let ε ≤ 1/100 such that εd ≥ 106 and ∆ ≥ (1 + 10ε)d. Let f : V (G) → Z≥0 be a function. Assume that
G is a graph such that d ≤ dG(v) + f(v) ≤ ∆ for every v ∈ V (G). Then there exist some subgraph G′′ ⊂ G and some
function f ′′ : V (G′′) → Z≥0 such that

• |G′′| ≥ (1− 4ε)|G|,

•
∑

v∈V (G′′) f
′′(v) ≤

∑
v∈V (G) f(v) + |G| exp(−εd/1000) and

• (1− 5
4ε)d ≤ dG′′(v) + f ′′(v) ≤ (1− 7

4ε)∆ for every v ∈ V (G′′).

Compare the intervals in which dG(v)+f(v) and dG′′(v)+f ′′(v) are bounded for each vertex v: as (1− 7
4ε)/(1−

5
4ε) ≤

(1 − ε/2), the ratio between the upper and lower bounds is decreasing. We think of the non-negative function f as a
small ‘correction’ term such that all ‘corrected degrees’ dG(v) + f(v) are between d and ∆. Note that if

∑
v∈V (G) f(v)

is small, then the average degree of such a graph G cannot be much smaller than d, while the maximum degree of G is
at most ∆. The lemma states that, at the cost of increasing f(v) very slightly, we can find a subgraph for which this
lower bound d and upper bound ∆ are closer to each other. This corresponds to a subgraph in which the average degree
and the maximum degree are closer than they were in the original graph. Crucially, unlike the corresponding result in
[10], this lemma can be iterated until the average degree and the maximum degree differ by an absolute constant.

Proof of Lemma 2.2. Let γ be such that ∆ = (1 + γ)d, and note that γ ≥ 10ε. Let

UL = {v ∈ V (G) : dG(v) + f(v) ≤ (1 + γ/2)d} and UH = {v ∈ V (G) : dG(v) + f(v) > (1 + γ/2)d}.

Let G′ be the random subgraph of G obtained by

(i) deleting edges within UH independently at random with probability 2ε− ε2,

(ii) deleting edges from UL to UH independently at random with probability ε, and

(iii) deleting vertices in UL independently at random with probability ε.

Furthermore, if some v ∈ UL belongs to V (G′), let f ′(v) be a random variable distributed as Bin(f(v), 1− ε), and for
v ∈ UH , let f ′(v) be a random variable distributed as Bin(f(v), (1− ε)2).

Now note that if v ∈ UL and uv ∈ E(G), then, conditional on v ∈ V (G′), the probability that uv ∈ E(G′) is precisely
1− ε. Indeed, if u ∈ UL, then (conditional on v ∈ V (G′)) uv ∈ E(G′) holds if and only if u did not get deleted by (iii),
which has probability 1− ε, and if u ∈ UH , then (conditional on v ∈ V (G′)) uv ∈ E(G′) holds if and only if the edge
uv did not get deleted by (ii), which has probability 1− ε.

Hence, if v ∈ UL, then, conditional on v ∈ V (G′), we have

dG′(v) + f ′(v) ∼ Bin(dG(v) + f(v), 1− ε), (1)
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while if v ∈ UH , then, for each u ∈ NG(v), whether or not u is in UL, the probability uv ∈ E(G′) is (1− ε)2, and thus

dG′(v) + f ′(v) ∼ Bin(dG(v) + f(v), (1− ε)2). (2)

For each v ∈ V (G′), let g(v) be the smallest non-negative integer such that dG′(v) + f ′(v) + g(v) ≥ (1− 5
4ε)d. We now

show that with positive probability we have

(a) |G′| ≥ (1− 4ε)|G|,

(b) the number of vertices v ∈ V (G′) with dG′(v) > (1− 7
4ε)∆ is at most 4|G| exp(−ε∆/500), and

(c) ∑
v∈V (G′)

g(v) ≤ 4|G| exp(−εd/100). (3)

To see why (a) holds, note that the expected number of vertices deleted by (iii) is at most ε|G|, so, by Markov’s
inequality, with probability at least 3/4, we have |G′| ≥ (1− 4ε)|G|.

For (b), note that if v ∈ UL (and v ∈ V (G′)), then

dG′(v) + f ′(v) ≤ dG(v) + f(v) ≤ (1 + γ/2)d < (1− 7

4
ε)(1 + γ)d = (1− 7

4
ε)∆.

Moreover, if v ∈ UH , then by (2)

P
(
dG′(v) >

(
1− 7

4
ε
)
∆

)
≤ P

(
dG′(v) + f ′(v) >

(
1− 7

4
ε
)
∆

)
≤ P

(
Bin(∆, (1− ε)2) >

(
1− 7

4
ε
)
∆

)
= P

(
Bin(∆, 2ε− ε2) <

7

4
ε∆

)
≤ P

(
Bin

(
∆,

15

8
ε
)
<

7

4
ε∆

)
≤ e−(1/15)2 15

8 ε∆/3 ≤ exp(−ε∆/500),

where the penultimate inequality follows from the Chernoff bound (Lemma 1.16 applied with δ = 1/15), using that
7
4ε∆ = (1− 1

15 ) · E[Bin(∆, 15
8 ε)]. Hence, by Markov’s inequality, with probability at least 3/4, the number of vertices

v ∈ V (G′) with dG′(v) > (1− 7
4ε)∆ is at most 4|G| exp(−ε∆/500).

For (c), note that, if v ∈ UL, then, by (1), for any positive integer t,

P
(
dG′(v) + f ′(v) ≤

⌈(
1− 5

4
ε
)
d
⌉
− t

∣∣∣ v ∈ V (G′)

)
≤ P

(
Bin(d, 1− ε) ≤

⌈(
1− 5

4
ε
)
d
⌉
− t

)
= P

(
Bin(d, ε) ≥

⌊5
4
εd
⌋
+ t

)
≤ P

(
Bin(d+

5

6
ε−1t, ε) >

6

5
εd+ t

)
≤ exp (−(t+ εd)/60) ,

where the last inequality follows from the Chernoff bound applied with δ = 1/5.
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A similar calculation, using (2), shows that, for each v ∈ UH and any positive integer t, we have

P
(
dG′(v) + f ′(v) ≤

⌈(
1− 5

4
ε
)
d
⌉
− t

)
≤ P

(
Bin
((

1 +
1

2
γ
)
d, (1− ε)2

)
≤
⌈(

1− 5

4
ε
)
d
⌉
− t

)
≤ P

(
Bin
(
(1 + 5ε)d, (1− ε)2

)
≤
⌈(

1− 5

4
ε
)
d
⌉
− t

)
≤ P

(
Bin
(
(1 + 5ε)d, 2ε− ε2

)
≥ 6εd+ t

)
≤ P (Bin(2d, 2ε) ≥ 6εd+ t)

≤ exp (−(t+ εd)/60) .

Hence, for each v ∈ V (G) and positive integer t, the probability that g(v) ≥ t (conditional on v ∈ V (G′)) is at most
exp(−(t+ εd)/60). It follows that, for each v ∈ V (G),

E[g(v) | v ∈ V (G′)] =

∞∑
t=1

P(g(v) ≥ t | v ∈ V (G′)) ≤
∞∑
t=1

exp(−(t+εd)/60) =
e−1/60

1− e−1/60
exp(−εd/60) ≤ exp(−εd/100),

and therefore E[
∑

v∈V (G′) g(v)] ≤ |G| exp(−εd/100). Hence, with probability at least 3/4, we have
∑

v∈V (G′) g(v) ≤
4|G| exp(−εd/100).

Thus, with positive probability, we have that (a)–(c) hold. We will show that, if we assume these three properties hold,
then there exist suitable G′′ and f ′′. Let us first define G′′. The vertex set of G′′ will be the same as that of G′. We
obtain G′′ by deleting a minimal collection of edges from G′ such that dG′′(v) ≤ (1− 7

4ε)∆ holds for each v ∈ V (G′′).
By property (b) and since dG′(v) ≤ ∆ for all v ∈ V (G′), we need to delete at most 4|G| exp(−ε∆/500) · 2ε∆ edges in
total. Letting h(v) = dG′(v)− dG′′(v) be the number of deleted edges at vertex v, we have∑

v∈V (G′′)

h(v) ≤ 8|G| exp(−ε∆/500) · 2ε∆. (4)

Moreover, dG′′(v) + f ′(v) + g(v) + h(v) = dG′(v) + f ′(v) + g(v) ≥ (1 − 5
4ε)d for all v ∈ V (G′′), by the definition of g

and h. So, since also dG′′(v) ≤ (1 − 7
4ε)∆ for all v ∈ V (G′′), there exists some non-negative integer valued function

f ′′(v) ≤ f ′(v) + g(v) + h(v) such that (1− 5
4ε)d ≤ dG′′(v) + f ′′(v) ≤ (1− 7

4ε)∆ for each v ∈ V (G′′). Then, by (3) and
(4), we have ∑

v∈V (G′′)

f ′′(v) ≤
∑

v∈V (G′′)

f ′(v) +
∑

v∈V (G′′)

g(v) +
∑

v∈V (G′′)

h(v)

≤
∑

v∈V (G)

f(v) + 4|G| exp(−εd/100) + 8|G| exp(−ε∆/500) · 2ε∆

≤
∑

v∈V (G)

f(v) + |G| exp(−εd/1000),

where the last inequality follows from εd ≥ 106 and ∆ ≥ d.

The following lemma is proven by repeated applications of Lemma 2.2.

Lemma 2.3. There is an absolute constant c > 0 such that the following holds for each λ ≥ 1 and d > 0. Let G be a
graph with d ≤ dG(v) ≤ λd for all v ∈ V (G). Then there exist some subgraph H ⊂ G, some function g : V (H) → Z≥0

and some d′ ≥ cd/λ3 such that

• |H| ≥ c|G|/λ10,

•
∑

v∈V (H) g(v) ≤ |H| and

• d′ ≤ dH(v) + g(v) ≤ d′ + 107 for every v ∈ V (H).

Proof. We will show that c = 10−8 satisfies the statement in the lemma. Let G be a graph with d ≤ dG(v) ≤ λd for
all v ∈ V (G). If d < 108λ3, then the statement is trivial as we can let d′ = 1, let H be a maximal matching in G and
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let g be the constant 0 function on V (H). The only non-trivial property to check is that |H| ≥ c|G|/λ10, which follows
from |G|d/2 ≤ |G|δ(G)/2 ≤ e(G) ≤ |H|∆(G) ≤ |H|λd. Hence, we may assume that d ≥ 108λ3.

We define di, ∆i and εi recursively as follows. Let d0 = d and ∆0 = λd. Having defined di and ∆i, we terminate
the process if ∆i ≤ di + 107. Otherwise, if ∆i > di + 107, we choose εi to be maximal subject to εi ≤ 1/100 and
∆i ≥ (1+ 10εi)di. Then we let di+1 = (1− 5

4εi)di and ∆i+1 = (1− 7
4εi)∆i. Let k be the minimal non-negative integer

i such that ∆i ≤ di +107, and let k = ∞ if no such i exists. We now prove three claims about the properties of di, ∆i

and εi.

Claim 1. For all 0 ≤ j ≤ k, we have dj ≥ d/λ3.

Proof of Claim 1. Note that we have

1 ≤ ∆j

dj
=

∆0

d0

j−1∏
i=0

1− 7
4εi

1− 5
4εi

≤ ∆0

d0

j−1∏
i=0

(1− εi/2) = λ

j−1∏
i=0

(1− εi/2),

so
∏j−1

i=0 (1− εi/2) ≥ 1/λ. Since εi ≤ 1/100 for each i, we have 1− 5εi/4 ≥ (1− εi/2)
3, and hence,

dj = d0

j−1∏
i=0

(1− 5εi/4) ≥ d0

j−1∏
i=0

(1− εi/2)
3 ≥ d0/λ

3 = d/λ3,

as desired. ⊡

Claim 2. For all 0 ≤ j ≤ k − 1, we have εjdj ≥ 106.

Proof of Claim 2. By the definition of εj , we have either εj = 1/100 or ∆j = (1+ 10εj)dj . In the former case, we have
εjdj = dj/100 ≥ 106, where we have used Claim 1 and the assumption that d ≥ 108λ3. In the latter case, observe that
∆j > dj + 107 by the definition of k, and therefore 10εjdj > 107, so εjdj > 106. ⊡

Claim 3. For all 0 ≤ j ≤ k − 2, we have εj+1dj+1 ≤ 99
100εjdj .

Proof of Claim 3. If εj = 1/100, then εj+1dj+1 = εj+1(1− 1
80 )dj ≤ εj(1− 1

80 )dj <
99
100εjdj , as desired. Else, εi < 1/100

and ∆j = (1+10εj)dj . Now ∆j+1

dj+1
=

1− 7
4 εj

1− 5
4 εj

∆j

dj
≤ (1−εj/2)

∆j

dj
= (1−εj/2)(1+10εj) < (1+ 99

10εj). Hence, εj+1 ≤ 99
100εj

and the claim follows since dj+1 ≤ dj . ⊡

Note that Claim 2 and Claim 3 together imply that k is finite. We now apply Lemma 2.2 iteratively, for the following
claim.

Claim 4. For all 0 ≤ j ≤ k, there exist a subgraph Gj ⊂ G and a function fj : V (Gj) → Z≥0 such that dj ≤
dGj

(v) + fj(v) ≤ ∆j for every v ∈ V (Gj), |Gj | ≥ |G|
∏j−1

i=0 (1 − 4εi), f0 = 0 everywhere and, for all 1 ≤ j ≤ k,∑
v∈V (Gj)

fj(v) ≤ |Gj | exp(−εj−1dj−1/2000).

Proof of Claim 4. We prove the claim by induction on j. For j = 0, we can take G0 = G and let f0 be the
constant zero function. Now given suitable Gj and fj for some j ≤ k − 1, we apply Lemma 2.2 with ε = εj , d = dj ,
∆ = ∆j , f = fj and G = Gj . The conditions εj ≤ 1/100 and ∆j ≥ (1 + 10εj)dj are satisfied by the definition of εj ,
whereas the condition εjdj ≥ 106 is satisfied by Claim 2. Now let Gj+1 = G′′ and fj+1 = f ′′ for the graph G′′ and
function f ′′ provided by Lemma 2.2. Using the properties of Gj+1 and fj+1 from Lemma 2.2, the induction hypothesis,
|Gj+1| ≥ (1− 4εj)|Gj | ≥ |Gj |/2, Claim 2 and Claim 3, we have∑

v∈V (Gj+1)

fj+1(v) ≤ |Gj | exp(−εj−1dj−1/2000) + |Gj | exp(−εjdj/1000) ≤ |Gj+1| exp(−εjdj/2000),

where we define the term |Gj | exp(−εj−1dj−1/2000) to be zero if j = 0. Hence, these choices satisfy the conditions in
the claim. ⊡

Now let H = Gk, g = fk and d′ = dk. By Claim 1, we have d′ ≥ d/λ3 ≥ cd/λ3. By the definition of k, we have
∆k ≤ dk+107. As observed in the proof of Claim 1, we have

∏k−1
i=0 (1−εi/2) ≥ 1/λ, so |H| = |Gk| ≥ |G|

∏k−1
i=0 (1−4εi) ≥

|G|/λ10 ≥ c|G|/λ10. Finally,
∑

v∈V (H) g(v) =
∑

v∈V (Gk)
fk(v) ≤ |H|, using Claim 4 and Claim 2.
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Lemma 2.3 readily implies Theorem 2.1.

Proof of Theorem 2.1. Using Lemma 2.3, let c0 ≤ 1 be a constant which satisfies the property in that lemma when
replacing c. We will show that c = c0/2 satisfies the properties of the theorem. This is trivial if d ≤ c−1λ3, since then
we can take d′ = 1 and let H be a maximal matching in G. Assume therefore that d > c−1λ3. By Lemma 2.3, there
exists a subgraph H ⊂ G, some function g : V (H) → Z≥0 and some d̃ ≥ c0d/λ

3 such that d̃ ≤ dH(v) + g(v) ≤ d̃+ 107

for every v ∈ V (H), |H| ≥ c0|G|/λ10 and
∑

v∈V (H) g(v) ≤ |H|. It follows that H has average degree at least d̃ − 1

and maximum degree at most d̃+ 107. Since d̃− 1 ≥ c0d/λ
3 − 1 = 2cd/λ3 − 1 ≥ cd/λ3, this subgraph H satisfies the

conditions of the theorem.

Finally, here, we show how to deduce Theorem 1.13 from Theorem 2.1 and Corollary 1.12.

Proof of Theorem 1.13. Using Theorem 2.1, let c0 be a constant which satisfies the property in that theorem when
replacing c. We will show that c = c(λ) = 10−10c0/(4λ)

3 satisfies the conditions of the theorem. Let G be a graph
with average degree d and maximum degree at most λd. By standard results, G has a bipartite subgraph G′ with
average degree at least d/2, which, in turn, has a subgraph G′′ with minimum degree at least d/4. Since G′′ still has
maximum degree at most λd, we can apply Theorem 2.1 for G′′ with d/4 in place of d and 4λ in place of λ to find a
subgraph H and some d′ ≥ c0(d/4)/(4λ)

3 such that H has average degree d′ and maximum degree at most d′ + 108.
By Corollary 1.12, H contains an s-regular subgraph H ′ for some s ≥ d′

10·108 ≥ cd. Since H ′ is an s-regular bipartite
graph (as it is a subgraph of G′), repeated applications of Hall’s theorem yield an r-regular subgraph of H ′ for all
1 ≤ r ≤ s. This finishes the proof of Theorem 1.13.

3 Proof of Theorem 1.4

In this section we prove Theorem 1.4. Similarly to the strategy in Janzer and Sudakov’s resolution of the Erdős-Sauer
problem [19], to find an r-regular subgraph we will first reduce to two cases by finding a subgraph in which either 1) no
vertices have very high degree or 2) most of the edges contain an endvertex with high degree.

In case 1, we can use the methods developed in [19] to find a sufficiently dense almost-regular subgraph. Then,
crucially, using Theorem 1.13 that we proved in the previous section, we will be able to find an r-regular subgraph
with no further loss. This is brought together to tackle case 1 as Lemma 3.3.

In case 2, more precisely, we find a bipartite subgraph G′ with parts A and B such that every v ∈ B has degree
precisely r in G′, and the degrees of vertices in A are at most d1+

1
2r and on average at least d, for some d which is

quite a bit larger than r. We will then show that such a graph contains an r-regular subgraph (see Lemma 3.4 below).
A similar result was proved in [19], however with an extra assumption on the codegrees of G′. This assumption (which
cannot be easily removed from the proof in [19]) results in a huge loss for the bounds if r is not a constant, so we
develop a new approach, using a similar strategy to that used to find regular subgraphs in hypergraphs by Janzer,
Sudakov and Tomon [20, Section 5], and earlier by Kim [22].

We now turn to the details. For dealing with case 1, we will need the following definition and lemma from [19].

Definition 3.1. A bipartite graph G with vertex classes A and B is (L, s)-almost-biregular if the following holds. For
every v ∈ B, dG(v) = s and, writing d = e(G)/|A|, we have d ≥ s (or, equivalently, |A| ≤ |B|) and dG(u) ≤ Ld for
every u ∈ A.

Lemma 3.2 (Janzer–Sudakov [19, Lemma 3.5]). Let G be an (L, s)-almost-biregular graph for some L ≥ s ≥ 2. Then
G has a 64-almost-regular subgraph with average degree at least s

16 logL .

Using our Theorem 1.13, we can immediately improve Lemma 3.2 to give a regular subgraph, as follows.

Lemma 3.3. There is an absolute constant c > 0 such that the following holds. Let G be an (L, s)-almost-biregular
graph for some L ≥ s ≥ 2. Then G has an r-regular subgraph for every r ≤ cs/ logL.

9



For case 2, where we work in a subgraph where most of the edges have an endvertex of high degree, our key lemma
will be as follows.

Lemma 3.4. The following holds for all sufficiently large positive integers r. Let G be a bipartite graph on at most n
vertices with parts A and B such that dG(v) = r for every v ∈ B, dG(u) ≤ ∆ and e(G) = d|A|, where d ≥ r3r(log n)2

and ∆ ≤ d1+
1
2r . Then G contains an r-regular subgraph.

It will be crucial to turn this lemma into an essentially equivalent statement on regular subgraphs in multi-hypergraphs.
Here, d(G) and ∆(G) are, respectively, over v ∈ V (G), the average and maximum number of edges in G containing v.

Lemma 3.5. The following holds for all sufficiently large positive integers r. Let G be an r-uniform multi-hypergraph
on N vertices such that ∆(G) ≤ d(G)1+ 1

2r and d(G) ≥ r3r(logN)2. Then G contains an r-regular sub(multi)hypergraph.

Let us first see why Lemma 3.5 implies Lemma 3.4. Given a graph G satisfying the conditions of Lemma 3.4, let G be
the r-uniform multi-hypergraph on vertex set A whose hyperedges are NG(v) for all v ∈ B. Note that G has at most
n vertices, it has average degree r · e(G)/|A| = r|B|/|A| = e(G)/|A| = d and maximum degree at most ∆. Hence, by
Lemma 3.5, G contains an r-regular sub(multi)hypergraph H. The vertices of H, together with the vertices v ∈ B for
which NG(v) is an edge in H, induce an r-regular subgraph in G.

Hence, it will suffice to prove Lemma 3.5. In the proof of this lemma, we will use the recent breakthrough on the
celebrated Sunflower conjecture [14]. Given a positive integer r, a collection of r sets is an r-sunflower if there exists a
(possibly empty) set X (called the core) such that the intersection of any two distinct elements in the collection is X.
It was proved by Alweiss, Lovett, Wu, and Zhang [5] that every t-uniform family of size at least (log t)t · (r log log t)O(t)

contains an r-sunflower, which was subsequently improved by Frankston, Kahn, Narayanan, and Park [17] and Rao [27].
We use the following version, proved by Rao [27].

Lemma 3.6. There is a constant α such that any family with more than (αr log(tr))t sets of size t contains an
r-sunflower.

The r-regular subhypergraph in Lemma 3.5 will come from an r-sunflower in a collection of large matchings in G. To
bound the number of matchings from below, we will use the following simple lemma.

Lemma 3.7. Let G be an r-uniform multi-hypergraph on N vertices with ∆(G) ≤ µd(G). Let t ≤ N
2r2µ +1 be a positive

integer. Then G contains at least ( e(G)2t )t matchings of size t.

Proof. We generate a matching of size t with the following greedy procedure. Let G1 = G. In step i (1 ≤ i ≤ t), if
Gi is already defined and Gi is nonempty, select an arbitrary hyperedge ei of Gi, and let Gi+1 be the hypergraph we
get after removing ei and all hyperedges intersecting ei from Gi. Clearly, {e1, . . . , ei} is a matching. Note that every
hyperedge of G intersects at most r∆(G) hyperedges, so

e(Gi) ≥ e(G)− (i− 1)r∆(G) ≥ e(G)− (t− 1)r∆(G) ≥ e(G)− N

2r2µ
r∆(G) ≥ e(G)− N

2r2µ
rµd(G) = e(G)/2.

Hence, at step i, there are at least 1
2e(G) choices for the hyperedge ei, so in total there are at least ( 12e(G))

t sequences
e1, . . . , et such that {e1, . . . , et} is a matching. But, then, there are at least 1

t! (
1
2e(G))

t ≥ ( e(G)2t )t matchings of size t in
G, as each matching corresponds to t! such sequences.

Proof of Lemma 3.5. Let µ = d(G) 1
2r and let t =

⌈
N

2r2µ

⌉
. By Lemma 3.7, G contains at least M = ( e(G)2t )t matchings

of size t. Each such matching covers exactly tr vertices, so by the pigeonhole principle there exists a set U ⊂ V (G)
of size tr such that at least M/

(
N
tr

)
matchings of size t span U . Using

(
a
b

)
≤ (ea/b)b, t ≥ N

2r2µ , µ = d(G) 1
2r and

d(G) ≥ r3r(logN)2, we have

M
/(N

tr

)
≥ M

(
tr

eN

)tr

=

(
e(G)
2t

(
tr

eN

)r)t

≥
(
r2µe(G)

N

(
1

2erµ

)r)t

=

(
rµd(G)

(
1

2erµ

)r)t

=

(
rd(G)1+ 1

2r

(
1

2erd(G) 1
2r

)r)t

≥
(
d(G)1/2

(2er)r

)t

> (2αr logN)t ≥ (αr log(tr))t,
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where α is a constant with the property in Lemma 3.6. Let F be the family of sets whose ground set consists of all
the edges of G in U (note that multi-edges give rise to multiple elements in the ground set) and whose sets are the
matchings spanning U . By the above equality, we have |F| > (αr log(tr))t, so Lemma 3.6 guarantees that F contains an
r-sunflower S. This is a collection of r matchings spanning U , such that every edge either belongs to all the matchings
or only to one of them. Remove the edges contained in the core of S, and let the resulting set be S′. Then the edges
in S′ form an r-regular sub(multi)hypergraph of G, finishing the proof.

We are now ready to prove Theorem 1.4.

Proof of Theorem 1.4. We may assume that r is sufficiently large (e.g. because the case where r is small follows
from Theorem 1.3). Suppose then that C is a sufficiently large absolute constant, that n ≥ 3, and that G is an n-vertex
graph with average degree at least Cr2 log log n. Note that G has a bipartite subgraph G′ with average degree at least
C
2 r

2 log log n and G′ has a subgraph G′′ with minimum degree at least C
4 r

2 log logn. Let A and B be the parts of G′′

such that |A| ≤ |B|. Let H be a spanning subgraph of G′′ such that dH(v) = C
4 r

2 log log n for every v ∈ B.

Let t0 = 100r log logn and let ℓ be the smallest non-negative integer such that t0(1 + 1
3r )

ℓ ≥ log n. Note that
(1 + 1

3r )
6r log logn ≥ exp(log log n) ≥ logn

t0
, so ℓ ≤ 6r log log n. For each 1 ≤ i ≤ ℓ, let ti = t0(1 +

1
3r )

i. By definition,
tℓ ≥ log n.

Let A0 = {u ∈ A : dH(u) ≤ 2t0} and for each 1 ≤ i ≤ ℓ, let Ai = {u ∈ A : 2ti−1 < dH(u) ≤ 2ti}. Clearly, these sets
partition A. Hence, for every v ∈ B, either v has at least dH(v)/2 = C

8 r
2 log log n neighbours (in the graph H) in A0,

or ℓ > 0 and there is some 1 ≤ i ≤ ℓ such that v has at least dH(v)/(2ℓ) ≥ C
48r ≥ r neighbours in Ai (where the last

inequality holds as C is sufficiently large).

Therefore, at least one of the following two cases must occur.

Case 1. There are at least |B|/2 vertices v ∈ B which have at least C
8 r

2 log log n neighbours in A0.

Case 2. There exist some 1 ≤ i ≤ ℓ and at least |B|/(2ℓ) vertices v ∈ B which have at least r neighbours in Ai.

In Case 1, let B′ ⊂ B be a set of size at least |B|/2 such that every v ∈ B′ has at least C
8 r

2 log log n neighbours in
A0. For technical reasons, let us take a random subset A′

0 ⊂ A0 of size |A0|/3. With positive probability, there is a
set B′′ ⊂ B′ of at least 2|B′|/3 vertices which all have at least C

100r
2 log log n neighbours in A′

0. Let H ′ be a spanning
subgraph of H[A′

0 ∪ B′′] obtained by keeping precisely C
100r

2 log log n edges from each vertex in B′′. Now note that
|A′

0| = |A0|/3 ≤ |A|/3 ≤ |B|/3 ≤ 2|B′|/3 ≤ |B′′|. Moreover, dH′(u) ≤ dH(u) ≤ 2t0 for every u ∈ A′
0. This implies

that H ′ is (L, s)-almost biregular for L = 2t0 = 2100r log logn and s = C
100r

2 log log n. Note that L ≥ s. Hence, by
Lemma 3.3, H ′ has an r-regular subgraph since C is sufficiently large.

In Case 2, let us choose some 1 ≤ i ≤ ℓ and a set B′ ⊂ B of size at least |B|/(2ℓ) such that, for every v ∈ B′, v has
at least r neighbours in Ai. Let H ′ be a subgraph of H[Ai ∪ B′] obtained by keeping precisely r edges incident to
each v ∈ B′. We will apply Lemma 3.4 to this graph. Note that ℓ ≥ 1 implies that r ≤ log n. Let ∆ = 2ti and let
δ = ∆1/(1+ 1

2r ). Clearly δ ≥ ∆1/2 ≥ 2t0/2 = 250r log logn > r3r(log n)2, where the last inequality follows from r ≤ log n.
Note that for any u ∈ Ai, we have dH′(u) ≤ dH(u) ≤ 2ti = ∆. Using that |B| · C

4 r
2 log log n = e(H) ≥ |Ai| · 2ti−1 and

that ℓ ≤ 6r log log n, we get

e(H ′) = |B′|r ≥ |B|r/(2ℓ) = e(H)
C
2 ℓr log log n

≥ e(H)

3Cr2(log log n)2
≥ |Ai|2ti−1

3Cr2(log log n)2
.

Note that

δ = ∆1/(1+ 1
2r ) = 2ti/(1+

1
2r ) = 2ti−1(1+

1
3r )/(1+

1
2r ) ≤ 2ti−1−

ti−1
10r ≤ 2ti−1

3Cr2(log log n)2
,

where the last inequality holds since ti−1

10r ≥ t0
10r = 10 log log n, r ≤ log n and r is sufficiently large. Hence, e(H ′) ≥ δ|Ai|.

Thus, we can apply Lemma 3.4 to the graph H ′ (with d = e(H ′)/|Ai| ≥ δ) and get an r-regular subgraph.
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4 Proof of Theorem 1.5

In this section we first prove Proposition 1.10 using a method of Pyber [25] developed similarly as was done in [3, 9]
for the slightly weaker Lemma 1.9. We then deduce Theorem 1.5 from it, using our result on regular subgraphs in
almost-regular graphs (Theorem 1.13). As is well-known, and as we have used in the deduction of Theorem 1.13, every
graph with average degree d has a bipartite subgraph with minimum degree at least d/4. Hence, Proposition 1.10
follows from the following result.

Lemma 4.1. Let G be a bipartite graph on at most n vertices with minimum degree at least d ≥ 1. Then G has a
4-almost-regular subgraph with average degree at least d

25 log(8n/d) .

Proof. Let A and B be the parts of an arbitrary bipartition of G. Without loss of generality, assume that |A| ≥ |B|.
Let A1 ⊂ A be a minimal non-empty subset with |NG(A1)| ≤ |A1|. This is well-defined since |NG(A)| ≤ |B| ≤ |A|. Let
B1 = NG(A1). By the minimality of A1 and as d ≥ 1, we have |B1| = |A1|. Again by the minimality of A1, for each
non-empty S ⊊ A1, we have |NG(S)| > |S|, so by Hall’s theorem, there is a perfect matching M1 between A1 and B1

in G. Let G0 = G and G1 = G[A1, B1]−M1.

We now iteratively find sequences of vertex sets A1 ⊃ A2 ⊃ . . . ⊃ Ad and B1 ⊃ B2 ⊃ . . . ⊃ Bd along with disjoint
matchings M1,M2, . . . ,Md such that, for each i ∈ [d], |Ai| = |Bi|, Mi is a perfect matching in the graph G[Ai, Bi], and,
setting Gi = G[Ai, Bi]−M1 − . . .−Mi, dGi

(u) ≥ d− i for each u ∈ Ai. Suppose then that 1 ≤ i < d is an integer and
we have found Ai ⊂ A and Bi ⊂ B with |Ai| = |Bi| and a bipartite graph Gi between them such that dGi(u) ≥ d− i

for each u ∈ Ai. We define Ai+1, Bi+1 and Gi+1 as follows. Let Ai+1 ⊂ Ai be a minimal non-empty subset so that
|NGi

(Ai+1)| ≤ |Ai+1|. This is well-defined since |NGi
(Ai)| ≤ |Bi| = |Ai|. Let Bi+1 = NGi

(Ai+1). By the minimality of
Ai+1 and using that dGi

(u) ≥ d− i > 0 for every u ∈ Ai, we have |Bi+1| = |Ai+1|. Again by the minimality of Ai+1,
for each non-empty S ⊊ Ai, we have |NGi(S)| > |S|, so by Hall’s theorem, there is a perfect matching Mi+1 between
Ai+1 and Bi+1 in Gi. Let Gi+1 = Gi[Ai+1, Bi+1]−Mi+1. Note that, as Bi+1 = NGi(Ai+1), each u ∈ Ai+1 has degree
at least d− i− 1 in Gi+1, so that we can continue the iteration until i = d.

Let t = ⌊d/2⌋. Then each u ∈ At has degree at least d− t ≥ d/2 in Gt, and hence in particular |Bt| ≥ d/2. Therefore,
|At| ≥ d/2. Let k = ⌊log(2n/d)⌋+1 = ⌊log(8n/d)⌋− 1 and let s = ⌊t/ log(8n/d)⌋. Note that (k+1)s ≤ t, so 1+ ks ≤ t

(else, if s = 0, the statement of our lemma is trivial). Since |A1| ≤ n, |A1+ks| ≥ |At| ≥ d/2 and 2k ≥ 2n/d, there exists
some j ≥ 1 with |Aj+s| ≥ |Aj |/2. Let H be the graph whose vertex set is Aj ∪Bj and whose edge set is the union of
the matchings Mj ,Mj+1, . . . ,Mj+s. Each of these matchings has size at least |Aj+s| ≥ |Aj |/2, so e(H) ≥ (s+1)|Aj |/2.
Thus, H has average degree at least (s + 1)/2. Then H contains a non-empty subgraph H ′ with minimum degree at
least (s+ 1)/4. On the other hand, clearly H has maximum degree at most s+ 1 and therefore so does H ′. It follows
that H ′ is 4-almost-regular with minimum degree at least (s+ 1)/4 ≥ t

4 log(8n/d) ≥
d

25 log(8n/d) .

Proof of Theorem 1.5. By Theorem 1.13, there exists some C0 ≥ 1 such that every 4-almost-regular graph with
average degree at least C0r contains an r-regular subgraph. Let G be an n-vertex graph with average degree d ≥
100C0r log(n/r). By Proposition 1.10, G has a 4-almost-regular subgraph H with average degree at least d

100 log(32n/d) .
Note that

d

100 log(32n/d)
≥ 100C0r log(n/r)

100 log(32n/d)
≥ 100C0r log(n/r)

100 log(n/r)
= C0r,

where the second inequality used that d ≥ 32r. Hence, H contains an r-regular subgraph by the choice of C0.

5 Graphs without dense regular subgraphs

In this section we prove our lower bounds, namely Propositions 1.6 and 1.7.

For Proposition 1.6, it suffices to prove the following result.

Proposition 5.1. There exists some c > 0 such that the following holds. For any positive integers r and n with
c−1 ≤ r ≤ c log n, there exists a bipartite graph with at least n but at most 2n vertices and with average degree at least
1

400r
2 log( logn

r ), which does not contain an r-regular subgraph.
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To see that Proposition 5.1 indeed implies Proposition 1.6, note that for r < c−1 Proposition 1.6 follows from Theo-
rem 1.2, whereas for c log n < r ≤ 1

2 log n, we can apply Proposition 5.1 with r = ⌊c log n⌋ and use that an r-regular
bipartite graph has an s-regular subgraph for every s ≤ r (and in each case, we select an n-vertex induced subgraph
uniformly at random).

Proof of Proposition 5.1. Let c be a sufficiently small positive constant. Let imin = 1
20r log r + r and let imax =

1
20r log log n − r. Let A be a set of size n and for each imin ≤ i ≤ imax, let Bi be a set of size n/22

20i/r

such that all
these sets are pairwise disjoint. Consider a random bipartite graph G with parts A and

⋃imax
i=imin

Bi, where each vertex
in A is joined to precisely ⌊r/8⌋ random vertices of Bi, for each imin ≤ i ≤ imax.

Note that for each imin ≤ i ≤ imax − 1, we have

|Bi|/|Bi+1| = 22
20(i+1)/r

/22
20i/r

= 22
20(i+1)/r−220i/r = 22

20i/r(220/r−1) ≥ 22
20i/r· 10r ≥ 22

log r· 10r = 210. (5)

In particular, |Bi+1| ≤ |Bi|/2, so
∑imax

i=imin
|Bi| ≤ n. Hence, G has at most 2n vertices. The number of edges in G is

precisely n · (imax − imin +1) · ⌊r/8⌋ ≥ 1
200nr

2(log log n− log r− 100) = 1
200nr

2(log( logn
r )− 100). Since r ≤ c log n and c

is sufficiently small, we have 100 ≤ 1
2 · log( logn

r ), therefore e(G) ≥ 1
400nr

2 log( logn
r ). It follows that the average degree

of G is at least 1
400r

2 log( logn
r ).

It remains to prove that with positive probability G does not contain an r-regular subgraph. This will follow shortly
from the following claim.

Claim. Let m be a positive integer no greater than 2n. Let j be the largest integer in the interval [imin, imax] such that
|Bj | ≥ m (if no such j exists, then let j = imin). Then the probability that there exists a set S ⊂ A ∪

⋃j−1
i=imin

Bi of
size at most m such that G[S] contains at least mr/8 edges is at most 2−m.

Proof of Claim. If j = imin, then there is nothing to prove, so let us assume that j ≥ imin + 1. We will use the union
bound. The number of ways to choose S is at most

∑m
ℓ=1

(
2n
ℓ

)
≤
∑m

ℓ=1

(
4n
ℓ

)
≤ m

(
4n
m

)
≤ m(4en/m)m ≤ (8en/m)m. The

number of ways to choose which ⌈mr/8⌉ edges should be present in G is at most
(

m2

⌈mr/8⌉
)
≤ (em2/⌈mr/8⌉)⌈mr/8⌉ ≤

(8em/r)⌈mr/8⌉. Moreover, the probability that these ⌈mr/8⌉ edges are present in G is at most (⌊r/8⌋/|Bj−1|)⌈mr/8⌉ ≤
(r/|Bj−1|)⌈mr/8⌉. Indeed, the individual probability that such an edge is present is at most ⌊r/8⌋/|Bj−1|, and condi-
tional on some edges being present, this probability can only decrease. Hence, the probability that there exists a set
S ⊂ A ∪

⋃j−1
i=imin

Bi of size at most m such that G[S] contains at least mr/8 edges is at most

(8en/m)m · (8em/r)⌈mr/8⌉ · (r/|Bj−1|)⌈mr/8⌉ = (8en/m)m · (8em/|Bj−1|)⌈mr/8⌉ ≤ (8en/|Bj |)m · (8e|Bj |/|Bj−1|)⌈mr/8⌉

≤ (8en/|Bj |)m · (8e|Bj |/|Bj−1|)mr/8 =

(
8en

|Bj |
·
(
8e|Bj |
|Bj−1|

)r/8
)m

.

By (5), we have |Bj |/|Bj−1| ≤ 2−220(j−1)/r· 10r , so

n

|Bj |
·
(

|Bj |
|Bj−1|

)r/8

≤ 22
20j/r

· 2−220(j−1)/r· 54 ≤ 22
20j/r

· 2−220j/r· 65 = 2−
1
5 ·2

20j/r

≤ 2−
1
5 ·2

log r+20

≤ 2−10r.

It follows that 8en
|Bj | · (

8e|Bj |
|Bj−1| )

r/8 ≤ 1/2, which completes the proof of the claim. ⊡

We will now show that if for all 1 ≤ m ≤ 2n and every set S ⊂ A ∪
⋃j−1

i=imin
Bi of size at most m, G[S] has fewer

than mr/8 edges (with j depending on m as in the claim), then G does not contain an r-regular subgraph. (This is
sufficient to complete the proof of the proposition, using the claim and the union bound.)

Indeed, for the sake of contradiction, assume that G contains an r-regular subgraph H. Let m = |H|. Note that
e(H) = mr/2. Let j be defined as in the claim, and let S = V (H) ∩ (A ∪

⋃j−1
i=imin

Bi). By the assumption on G, H[S]

has fewer than mr/8 edges. Furthermore, by the construction of G, each vertex in A sends at most r/8 edges to Bj and
to Bmin(j+1,imax). Hence, the number of edges in H incident to

⋃min(j+1,imax)
i=imin

Bi is less than mr/8+2 ·m ·r/8 = 3mr/8.
This leads to a contradiction if j ≥ imax−1. Otherwise, it follows that H has at least e(H)/4 edges incident to

⋃imax
i=j+2 Bi.

On the other hand, by the definition of j, we have |Bj+1| < m and hence, using (5), |
⋃imax

i=j+2 Bi| ≤ 2|Bj+2| ≤ m/10.
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Therefore, as H is r-regular, the number of edges in H incident to
⋃imax

i=j+2 Bi is at most m
10 · r < e(H)/4. This is a

contradiction, and completes the proof.

Most cases of Proposition 1.7 follow from the following result.

Proposition 5.2. There is some c > 0 such that for all positive integers r, n ≥ 2 with 20 log n ≤ r ≤ n/100, there
exists an n-vertex graph with average degree at least cr log(n/r) which does not have an r-regular subgraph.

Proof. Let ℓ = 1
2 log(n/r), and let A, B1, B2, . . . , Bℓ be disjoint sets with |A| = n/2 and |Bi| = 2ir for all i ∈ [ℓ].

We will define a random bipartite graph G with parts A and
⋃ℓ

i=1 Bi which with positive probability will satisfy the
following properties simultaneously: (i) G has at least 1

800nr log(n/r) edges and (ii) G has no r-regular subgraph. Since
|
⋃ℓ

i=1 Bi| ≤ 2ℓ+1r ≤ 2(n/r)1/2r ≤ n/2, the graph G has at most n vertices, so (after adding isolated vertices to G if
necessary) we obtain a suitable n-vertex graph.

For each i ∈ [ℓ], let each edge between A and Bi be present independently at random with probability pi = 1
100·2i .

Now, note that

E[e(G)] =

ℓ∑
i=1

∑
u∈A

∑
v∈Bi

pi =

ℓ∑
i=1

∑
u∈A

r/100 =
1

200
ℓnr =

1

400
nr log(n/r)

and

Var(e(G)) =

ℓ∑
i=1

∑
u∈A

∑
v∈Bi

pi(1− pi) ≤
ℓ∑

i=1

∑
u∈A

∑
v∈Bi

pi = E[e(G)],

so, by Chebysev’s inequality, P
(
e(G) < 1

800nr log(n/r)
)
= o(1).

It remains to prove that G does not contain an r-regular subgraph with probability 1− o(1). This will be shown using
the following claim.

Claim. Let m be a positive integer. Let j be the largest integer in [ℓ] such that |Bj | ≤ m/4, and if no such integer
exists, then let j = 0. Then the probability that there exist A′ ⊂ A and B′ ⊂

⋃ℓ
i=j+1 Bi such that |A′| ≤ m, |B′| ≤ m

and eG(A
′, B′) > mr/2 is at most n−m.

Proof of Claim. The statement is trivial for j = ℓ, so let us assume that j < ℓ. Fix some A′ ⊂ A and B′ ⊂
⋃ℓ

i=j+1 Bi

such that |A′| ≤ m, |B′| ≤ m. Note that if v ∈ B′, then v ∈ Bi for some i ≥ j + 1, so pi ≤ 1
100·2j+1 . By the definition

of j, we have 2j+1r = |Bj+1| > m/4, so pi ≤ 4r
100m ≤ r

4m . Thus, applying a Chernoff bound (Lemma 1.16),

P(eG(A′, B′) > mr/2) ≤ P(Bin(m2, r/4m) > mr/2) ≤ exp(−mr/8).

The number of choices for the pair (A′, B′) is at most (
∑m

i=1

(
n
i

)
)2 ≤ n2m, so by the union bound the probability

that there exist A′ ⊂ A and B′ ⊂
⋃ℓ

i=j+1 Bi such that |A′| ≤ m, |B′| ≤ m and eG(A
′, B′) > mr/2 is at most

n2m exp(−mr/8) ≤ n−m, where for the last inequality we used that r ≥ 20 log n. This completes the proof of the
claim. ⊡

We will now show that if for all positive integers m there exist no A′ ⊂ A and B′ ⊂
⋃ℓ

i=j+1 Bi such that |A′| ≤ m,
|B′| ≤ m and eG(A

′, B′) > mr/2 (with j depending on m as in the claim), then G does not contain an r-regular
subgraph. (This is sufficient to complete the proof of the proposition, using the claim and the union bound.)

Indeed, for the sake of contradiction, assume that G does contain an r-regular subgraph H. Let A′ = V (H) ∩ A, let
m = |A′| and let B′ = V (H) ∩

⋃ℓ
i=j+1 Bi. Note that, by the regularity of H, we have |B′| ≤ |V (H) ∩

⋃ℓ
i=1 Bi| =

|V (H) ∩ A| = m. Moreover, since H is r-regular and (by the definition of j) |
⋃j

i=1 Bi| < m/2, we have eH(A′, B′) >

e(H)− m
2 r = mr/2, which contradicts the assumption about G.

To obtain the remaining cases of Proposition 1.7 which do not follow from Proposition 5.2 (i.e. where 1
2 log n ≤ r <

20 log n), we can apply Proposition 1.6 to obtain an n-vertex graph G0 with average degree Ω(log2 n) and no s-regular
subgraph for s = 1

2 log n. Let G be a bipartite subgraph of G0 containing at least half of the edges of G0. Then G is a
suitable construction since any r-regular subgraph of G would have an s-regular subgraph for s = 1

2 log n.
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6 Concluding remarks

Recall that d(r, n) is defined to be the smallest d such that every n-vertex graph with average degree at least d contains
an r-regular subgraph. In this paper we proved that{

d(r, n) = Θ(r log(n/r)), for 1
2 log n ≤ r ≤ n/2

Ω(r2 log( logn
r )) ≤ d(r, n) ≤ O(r2 log log n), for 3 ≤ r < 1

2 log n

}

It is natural to make the following conjecture.

Conjecture 6.1. There exists some C such that if r ≤ 1
2 log n, then every n-vertex graph with average degree at least

Cr2 log( logn
r ) contains an r-regular subgraph.

The difficulty in proving Conjecture 6.1 using the proof method of Theorem 1.4 is that when r ≈ log n, then one can
construct graphs in which typical edges have an endvertex of large enough degree so that we cannot apply the strategy
of case 1, but where this degree is not large enough to apply the strategy of case 2 (see Section 3). More precisely, if
our host graph has average degree r2 log( logn

r ), then in the proof of Theorem 1.4 we cannot choose t0 to be larger than
r log( logn

r ). However, this means that in order to be able to deal with case 2, we would need to strengthen Lemma 3.4
so that the required lower bound on d is only about 2t0 ≈ ( logn

r )r, which is significantly smaller than r3r(log n)2 when
r is close to log n. A natural approach to achieve this would be strengthening Lemma 3.7 by allowing t to be larger,
but there are examples of almost-regular r-uniform hypergraphs with no matchings covering significantly more than
1/r proportion of the vertices, showing that t cannot be taken to be larger in that lemma.

Regularising hypergraphs. Some of our techniques can also be used to (nearly-)regularise hypergraphs. In particu-
lar, an analogue of Theorem 2.1 can be proved for linear hypergraphs by modifying the proof of Lemma 2.2 as follows.
We split the vertex set of our k-uniform linear hypergraph G into the set UL of ‘low-degree’ vertices and the set UH

of ‘high-degree’ vertices as before, and we let G′ be the subhypergraph obtained from G by applying the following
random edge and vertex deletions for some appropriate small ε > 0.

(a) Each e ∈ E(G) is deleted independently with probability 1− (1− ε)se , where se = |e ∩ UH |.

(b) Each v ∈ UL is deleted independently with probability ε.

Note that in the graph (k = 2) case we recover the random deletions applied in the proof of Lemma 2.2. Now, let
e ∈ E(G). Observe that e is deleted by (a) with probability 1 − (1 − ε)se , and it is deleted by (b) with probability
1 − (1 − ε)k−se (since each of the k − se vertices in e ∩ UL survives with probability 1 − ε). Hence, the probability
that e ∈ E(G′) is precisely (1 − ε)k. However, for any u ∈ UL, if we condition on the event that u ∈ V (G′), then
each hyperedge containing u survives with a greater probability, (1− ε)k−1. Furthermore, if our hypergraph is linear,
then, for each u ∈ V (G), conditional on u ∈ V (G′), the events that e ∈ E(G′) are independent over all e ∈ E(G)

containing u. Hence, the degrees of low-degree vertices will drop slower than the degrees of high-degree vertices, and
we can expect the hypergraph to become more regular.

Unfortunately, there is no known analogue of Corollary 1.12 for hypergraphs. Thus, we are unable to extend Theo-
rem 1.13 to this setting, and instead make the following conjecture.

Conjecture 6.2. For each positive integer k ≥ 2 and λ ≥ 1, there exists some c = c(k, λ) > 0 such that every k-
uniform linear hypergraph with average degree d and maximum degree at most λd contains an r-regular subhypergraph
for some r ≥ cd.
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