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Abstract

We show that the edges of any d-regular graph can be almost decomposed into paths of length roughly
d, giving an approximate solution to a problem of Kotzig from 1957. Along the way, we show that almost
all of the vertices of a d-regular graph can be partitioned into n/(d + 1) paths, asymptotically confirming a
conjecture of Magnant and Martin from 2009.

1 Introduction

A typical decomposition problem asks if the edges of some graph can be partitioned into copies of another graph.
The origins of this area can be traced back to Euler who asked the following question in 1782: for which n does
the balanced complete 4-partite graph Kn,n,n,n decompose into copies of the complete graph on 4 vertices (i.e.
copies of K4)? Euler’s problem is customarily phrased using the language of Latin squares and transversals, but
the two formulations are equivalent. In 1847, Kirkman studied decompositions of a complete graph into triangles
(copies of K3). Such decompositions are also referred to as Steiner triple systems. In 1882, Walecki studied
decompositions of complete graphs into Hamilton paths and cycles. All of this work, and other early approaches
to graph decomposition problems, used exclusively algebraic or constructive techniques. In contrast, there have
been many applications of the probabilistic method [2] to graph decomposition problems in the last few decades,
and several major problems have recently been resolved. Highlights include, but are certainly not limited to,
Keevash’s resolution [25] of the Existence Conjecture for designs, which is a far reaching generalisation of the
work of Kirkman (see also [20]), and the proof for large n of Ringel’s conjecture [31, 25] which states that K2n+1

decomposes into copies of any n-edge tree. We refer the reader to [10, 21] for two recent surveys of the area.

The common denominator in these recent advances is that they concern decompositions of highly dense structures,
such as complete graphs. There is also a large body of conjectures on the decomposition of sparse graphs, where
there has been much less progress as existing proof techniques like those involving Szemerédi’s regularity lemma
only apply to dense graphs. Perhaps the most famous conjecture about decomposing sparse graphs is the linear
arboricity conjecture of Akiyama, Exoo, and Harary [1] from 1980, which says that every graph with maximum
degree ∆ can be decomposed into ⌈(∆ + 1)/2⌉ path forests. The best general bound on this is by Lang and
Postle [28] who proved that such a graph always has a decomposition into ∆/2 + 3

√
∆ log4 ∆ path forests. For

decompositions into paths rather than path forests, there is a conjecture of Gallai which predicts that every
connected n-vertex graph can be decomposed into at most (n + 1)/2 paths (see [29]). The best general result
for this is that every such graph can be decomposed into at most 2n/3 paths, proved in [14, 33]. What if we
require all the paths to be of the same length d? Here some extra conditions are required on the host graph G,
since at the very least we need d to divide e(G). Botler, Mota, Oshiro, and Wakabayashi [7] showed that such a
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Pd-decomposition exists if, furthermore, the graph is f(d)-edge-connected, for some function f , a result motivated
by a now-solved conjecture of Barát and Thomassen (see [4]). A natural way to ensure d divides e(G) when d is
odd is to require G to be d-regular. In 1957, Kotzig [27] proved that a 3-regular graph has a P3-decomposition
if and only if G has a perfect matching, and raised the following general question for larger d.

Problem 1.1. When d is odd, which d-regular graphs can be decomposed into paths of length d?

In 1990, Bondy [5] proposed a further extension of this problem without the regularity assumption. There are
very few general results known about these problems. Some progress has been made on a related problem of
Favaron, Genest, and Koudier [16], who conjectured that a d-regular graph G (for odd d) decomposes into copies
of Pd if G contains a perfect matching. See [9, 8, 6] for some partial progress on this conjecture concerning the
cases when d is small, or when the host graph G is assumed to have high girth.

As obtaining a precise decomposition appears to be so difficult, it is of independent interest to show that the
existing conjectures hold true approximately, in part as it may eventually be used as a stepping stone towards
a full resolution. For example, even the approximate version of the Existence Conjecture for designs was a
longstanding open problem of Erdős and Hanani [15] before it was resolved through the influential work of Rödl
[32]. This approximate solution plays a key component in the work of Keevash [25] resolving the full conjecture.

In this paper, we address a relaxed version of Kotzig’s problem by showing that almost all of the edges of a
d-regular graph can be decomposed into paths of length roughly d.

Theorem 1.2. For every ε > 0, there exists d0 ∈ N such that the following holds for all d ≥ d0. If G is a
d-regular n-vertex graph, then all but at most εnd edges of G can be decomposed into paths of length ⌈(1 − ε)d⌉.

Constructing large edge-disjoint path forests plays a large part in our methods. However, note that Theorem 1.2
cannot be strengthened to require that the paths in the decomposition can be arranged into ⌈(d + 1)/2⌉ path
forests (as in the linear arboricity conjecture), as seen by considering the vertex-disjoint union of d-regular graphs
of order 3d/2. Our methods, though, can be used to make progress on a problem related to the linear arboricity
conjecture, as follows. Note that, when d is odd, if the linear arboricity conjecture is true for d-regular graphs
then one of the path forests in such a decomposition would have at most nd

2 /d+1
2 = n− n

d+1 edges, and therefore
(adding isolated vertices if necessary) form a spanning path forest with at most n

d+1 paths. Though naturally
much weaker than the linear arboricity conjecture, showing even the existence of such a path forest in a d-regular
graph appears very difficult. This (for odd or even d) is the topic of the following conjecture by Magnant and
Martin [30] from 2009 (which, as per [18], also has an interesting connection to tour length problems).

Conjecture 1.3. The vertices of every d-regular n-vertex graph can be partitioned into ⌊n/(d + 1)⌋ paths.

The disjoint union of complete graphs on d + 1 vertices shows that this conjecture would be optimal. It was
confirmed for all d ≤ 5 by Magnant and Martin [30], and for d = 6 by Feige and Fuchs [17]. It has also recently
been confirmed in the dense case (d = Ω(n)) by Gruslys and Letzter [22], but in general even the weaker conjecture
by Feige and Fuchs [17] that every d-regular n-vertex graph can be partitioned into O(n/(d + 1)) paths remains
wide open. We prove the following approximate version of Conjecture 1.3.

Theorem 1.4. For every ε > 0, there exists d0 ∈ N such that the following holds for all d ≥ d0. Let G be a
d-regular n-vertex graph. Then, all but at most εn of the vertices of G can be partitioned into at most n/(d + 1)
paths.

If we consider decomposing approximately the edges of a d-regular graph G into copies of Pℓ starting with small
ℓ, then the extremal examples for why we cannot increase ℓ beyond d all contain small dense subgraphs (e.g. the
cliques in the disjoint union of copies of Kd+1), which we refer to as ‘dense spots’. In d-regular graphs without
these dense spots it would be relatively easy (using techniques developed for the linear arboricity conjecture) to
decompose almost all of the edges of G into paths with length ⌈(1 − ε)d⌉ by using the local lemma to partition
V (G) into sets between which we can find many edge-disjoint matchings which combine to form many paths,
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and then iteratively connect some of these paths together using a set of reserved vertices to get longer and longer
paths (as we do later in parts of our proof). The main idea in our proof is to set aside the dense spots in a
d-regular graph and then show that if the preceding approach goes wrong then we will be able to connect paths
which we cannot lengthen into dense spots, so that we can then decompose approximately the dense spots along
with their attached paths into paths with length ⌈(1 − ε)d⌉. To do so, we will need the set of reserved vertices
to ‘sample’ each dense spot appropriately in a precise manner, and how we manage this is the key technical
novelty in our methods. However, there are many further challenges in developing these initial ideas into a proof
of Theorem 1.2, and even approximately decomposing the dense spots with connected paths requires new ideas.
Thus, in the next section, after outlining our notation, we give a detailed sketch of our methods. Following this,
we outline the rest of the paper. After our proofs, we make some concluding remarks in Section 6, including on
generalisations of path decomposition conjectures to other trees.

2 Preliminaries

Following an overview of our notation in Section 2.1, in Section 2.2 we give a sketch of the proof before outlining
the rest of the paper. For ease of notation, we will assume throughout that d is even, for example constructing
paths forests Pi, i ∈ [d/2]. The case where d is odd follows almost identically as the proofs apply to (d−1)-regular
graphs without any significant alteration.

2.1 Notation

For a graph G, let V (G) and E(G) denote the vertex set and edge set of G, respectively, and let |G| = |V (G)|.
For a vertex v ∈ V (G), let NG(v) denote the neighbourhood of v in G and, for a subset U ⊂ V (G), let
NG(v, U) = NG(v) ∩ U . We let dG(v) = |NG(v)| denote the degree of v and write dG(v, U) = |NG(v, U)| for the
degree of v into a subset U ⊂ V (G). As we do elsewhere, we omit G from the subscript whenever there is no risk
of confusion. The minimum and maximum degree of G is denoted by δ(G) and ∆(G) respectively. For a subset
U ⊆ V (G), let G[U ] denote the graph induced by U and, given a subset U ′ ⊂ V (G) \ U , let G[U,U ′] denote the
bipartite graph with bipartition U ∪ U ′ and edges of the form uu′ ∈ E(G) with u ∈ U and u′ ∈ U ′. Given a
subset U ⊂ V (G), we let G− U be the graph G[V (G) \ U ], which is G with the vertices in U removed, and use
similar natural and common other notation. When F is a collection of graphs, V (F) and E(F) will be the set of
vertices and edges used in some graph in F respectively.

For each positive integer n, we let [n] = {1, . . . , n}. Given real numbers a, b, c, we write a = b ± c to denote
that b − c ≤ a ≤ b + c. We say a graph G is (1 ± γ)d-regular if dG(v) = (1 ± γ)d for each v ∈ V (G). We use
standard notation for “hierarchies” of constants, writing x ≪ y to mean that there is a non-decreasing function
f : (0, 1] → (0, 1] such that all the relevant subsequent statements hold for x ≤ f(y). Hierarchies with multiple
constants are defined similarly, with the functions chosen from right to left, for example, for x ≪ y ≪ z. We
omit rounding signs where they are not crucial.

In this paper, we will often add paths to connect paths in a path forest. Given two path forests P and Q we use
P +Q to denote the graph with vertex set V (P)∪V (Q) and edge set E(P)∪E(Q). Furthermore, we exclusively
use this when the resulting graph is also a path forest, and each path in Q has at least one endpoint among the
endpoints of P.

2.2 Proof sketch

Let G be an n-vertex d-regular graph and let 1/d ≪ ε and ℓ ≤ (1 − ε)d. Suppose we wish to find edge-disjoint
paths of length ℓ in G covering all but at most εnd edges (noting that if we can do this with ℓ = (1 − ε)d
then we will have proved Theorem 1.2). The following natural strategy, developed in part for attacking the
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linear arboricity conjecture (see, for example, Section 1.1 in [19] which builds on [3, 26]), can accomplish this if
ℓ ≤ d1/5−o(1). Take a random partition of V (G) into roughly equal sets A1 ∪ . . . ∪ Aℓ+1. Using the local lemma
(see Section 2.4.2), show that, with positive probability, each bipartite subgraph G[Ai, Aj ] with i ̸= j is almost
(d/(ℓ + 1))-regular. Taking such a partition, then, decompose each G[Ai, Aj ] into k0 matchings Mij,k, k ∈ [k0],
where k0 is only slightly more than d/(ℓ+1) (using, say, Vizing’s theorem). Decompose the complete graph Kℓ+1

into paths with length ℓ (it is well-known that this is possible whenever ℓ + 1 is even), and then, for each path
and each k, take the corresponding matchings Mij,k for the edges ij of the path, and combine them to find many
paths of length ℓ in G (along with some shorter paths where the matchings do not align exactly). Carried out
carefully, this approach will give paths of length ℓ covering all but at most εnd edges, as long as ℓ ≤ d1/5−o(1)

so that not too many edges are lost from the potentially misaligned matchings. The constant 1/5 here is the
natural barrier for our implementation of this method later, but more generally such an approach encounters a
strong natural barrier for ℓ ≈ d1/2 (see [28]).

Of course, we wish to have an approach that works for ℓ up to (1− ε)d. A tempting route forward is to first take
aside a small ‘sample’ set X of ≈ pn vertices (likely chosen via the local lemma), with p ≪ ε, where G −X is
close to regular, and then decompose almost all of G−X into paths with length d1/5−o(1). Then, we could use
vertices from X to iteratively join these paths into longer paths. The above partitioning and matching argument
naturally produces edge-disjoint path forests P1, . . . ,Pd/2 covering most of the edges of G−X using paths with

length d1/5−o(1). Given any set of (1 + ε)n/d paths in one of these path forests, if we take one endpoint from
each path to form the set Y , then, as the neighbours of the vertices in Y must overlap, we could hope that some
of the overlap will be sampled into X so that we can join up two of the paths using a single vertex in X, and,
perhaps, even to do this iteratively until the path forest contains at most (1 + ε)n/d paths.

By making sure that the initial path forests do not together use any vertex as an endpoint too much, and that
no path forest counts too many neighbours of a vertex among its endpoints, and by further dividing X into
several subsets to exhaust in turn while connecting paths, this can be made to work (see Sections 3.1 and 3.2),
and, furthermore, even, used to prove Theorem 1.4 (see Section 3.3). However, this approach will approximately
decompose the n-vertex d-regular graph G into paths with average length (1− ε)d (see Lemma 2.3), rather than
paths of length (1 − ε)d, so really is only the starting point for our proof of Theorem 1.2.

To go further, we consider what might stop us from joining up more paths in our path forests via X. After
all, if we could continue to connect paths together until our paths forests mostly had paths with length at least
Kd, for some 1/K ≪ ε, then each such path can be further decomposed into paths with length (1 − ε)d and at
most d − 1 other edges, where these other edges will then in total be a small portion of the edges of the graph
G so that we will not need to decompose them. The disjoint union of copies of Kd+1 demonstrates that hoping
to always get paths of this length, Kd, is fanciful. However, the presence of small dense subgraphs (which we
shall call ‘dense spots’) turns out to be the only thing that can stop this from working. Indeed, suppose we had
r := n/Kd vertex-disjoint paths P1, . . . , Pr in G−X, and could not find a short path (say of length at most k,
with 1/d ≪ 1/k ≪ 1/K) in G between two endpoints of different paths, so that the short path has all its interior
vertices in X. Then, if, for each i ∈ [r], Yi was the set of vertices in X which can be reached by a path in G of
length at most k/2 from an endpoint of Pi while using otherwise only vertices from X, then the sets Yi, i ∈ [r],
must all be disjoint. Then, one of these sets Yi will be small (with ≤ Kd vertices), which will imply that G[Yi]
must contain some dense subgraph. It is reasonable (if challenging), then, to hope that, starting with some initial
paths forests, we could join the endpoints of these paths together via short connecting paths using new vertices
in X until most of the paths are either a) long (with length ≥ Kd) or b) connected into a ‘dense spot’ in G[X].

In the case b), we cannot hope to decompose these paths along with the dense spot in G[X] they are connected
to, for, as |X| ≈ pn and X will be chosen randomly, such a dense spot (say a sample of a copy of Kd+1) may
only have around pd vertices, and thus only have paths of length up to pd. Therefore, we will have to argue that
we can take the sample X accurately enough that any dense spot in G[X] must lie within some dense spot in G,
so that we can mostly decompose the original dense spot along with any paths we have attached to it into paths
with length (1 − ε)d. Reordering, slightly, then, we will do the following (see Figure 1):

i) Take a maximal collection F = {G1, . . . , Gt} of dense spots in G and a small ‘sample set’ X.

4



V (G)

G1

G2

G3

Gt

...

Aj

Ai

Mij,k

A′
i and A′

j

X

V (Kℓ+1)

P :
i

j

j′

i′

Figure 1: As shown on the left, having found a maximal collection of vertex-disjoint dense spots G1, . . . , Gt in a
graph G, we take a ‘sample set’ X which will intersect with each of these dense spots. Partitioning V (G) \ (X ∪
V (G1) ∪ . . . ∪ V (Gt)) into sets A1 ∪ . . . ∪ Aℓ+1, we then cover most of the edges between each Ai and Aj with
matchings Mij,k, for k ∈ [d′] with d′ ≈ d/s. For a path P with length ℓ in Kℓ+1 (as on the right, with endvertices
i′, j′ ∈ V (Kℓ+1) and each k we put together the matchings Mij,k for each ij ∈ E(P ) to get a path forest of few
paths, most of which end in Ai′ and Aj′ . We then connect up as many as possible of these endvertices with short
paths using internal vertices in X (shown in red) and connect more of them into the dense spots with short paths
using vertices in X (shown in orange).

ii) Mostly decompose G− V (F) −X into d/2 path forests consisting of medium-length paths.

iii) Iteratively join paths within each path forest together using short paths with internal vertices in X.

iv) Having exhausted the possible connections, we argue that, except for some small number of paths, most of
the paths must be connectable into a dense spot in G[X] and therefore, somehow, connectable into one of
the dense spots Gi, i ∈ [t].

v) Mostly decompose the long paths into paths of length ℓ = (1 − ε)d and, similarly, mostly decompose the
dense spots along with the paths connected into them.

By this scheme, we will find the required decomposition of all but at most εnd edges of G into paths of length
ℓ = (1 − ε)d, but in setting aside the collection F we have introduced a further issue. While we can choose X so
that G−X is nearly regular, we now have the problem that the graph G− V (F)−X may not be nearly regular
(which we require for partitioning into vertex sets and finding many edge-disjoint matchings between them).
Critically, here, we will use two results shown by very recent techniques of Chakraborti, Janzer, Methuku, and
Montgomery [12, 13] to efficiently find nearly-regular subgraphs. Moreover, we will develop these results non-
trivially, using them to show that we can mostly decompose G− V (F) −X into a small number of edge-disjoint
nearly-regular subgraphs (see Section 3.4). We also apply one of the results of [12, 13] while decomposing the
dense spots along with the attached paths.

This completes an overall sketch of our methods for Theorem 1.2. In Section 2.3, we will show that Theorem 1.2
follows from three key lemmas, Lemmas 2.3, 2.4, and 2.5, which roughly correspond to steps ii), iv) and v) above,
respectively. The proofs of each of these three key lemmas will need more new ideas than could be included in
the sketch above, and they are discussed in more detail later where appropriate. In Section 2.4, we cover some
tools we will need, including some comments on our use of the local lemma in Section 2.4.2. In Section 3, we
give the decomposition into path forests we will use for G − V (F) −X, thus proving Lemma 2.3. In Section 4,
we will show the existence of a good ‘sample set’ X and show how to connect some paths to small dense spots
within G[X] and hence to some dense spot in F , thus proving Lemma 2.4. In Section 5, we will decompose the
dense spots along with some attached paths, proving Lemma 2.5 and hence completing the proof of Theorem 1.2.
Finally, in Section 6, we will make some concluding remarks.
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2.3 Proof of Theorem 1.2 subject to three key lemmas

We now introduce two key definitions to formalise some of the notions in Section 2.2. The first we will use to
quantify what we want from our ‘dense spots’.

Definition 2.1. A graph G is (η, d,K)-dense if 0 < |V (G)| ≤ Kd and δ(G) ≥ (1 − η)d.

Our second definition records properties of path forests, where we require each forest to not contain too many
paths and that the endpoints of the paths are relatively well spread out around a graph.

Definition 2.2. Say a collection of path forests P1, . . . ,Pℓ is (m,∆0,∆1)-bounded if each Pi, i ∈ [ℓ], has at
most m paths, each vertex appears as the endvertex of at most ∆0 paths in total in all of the path forests, and,
for each i ∈ [ℓ], each vertex has at most ∆1 neighbours among the endvertices of Pi.

We can now give our lemma which we will use to find a good collection of path forests for step ii) in Section 2.2.
The lemma applies more generally than to a d-regular graph as we apply it to a regular graph with a maximal
set of dense spots (and a ‘sample set’) removed.

Lemma 2.3. Let 1/d ≪ γ ≪ ε ≤ 1. Let G be an n-vertex graph with maximum degree at most d in which all but
at most γn vertices have degree at least (1−γ)d. Then, G contains a ((1+ε)n/d, d1/4, d1/4)-bounded edge-disjoint
collection of d/2 path forests which cover all but at most εnd of the edges of G.

Note that (as seen by the disjoint union of (d + 1)-vertex cliques), the bound (1 + ε)n/d in Lemma 2.3 is close
to optimal. Given d/2 edge-disjoint path forests which each contain (1 + ε)n/d ≤ 2n/d paths in an n-vertex
d-regular graph, note that there are in total at most 2n endvertices, so that on average each vertex appears
in total as the endvertex of at most 2 paths. Thus, the corresponding upper bound of d1/4 in Lemma 2.3 is
relatively unambitious; while it could be pushed much further with our methods this will be sufficient for our
purpose. Similarly, for just one of these path forests, on average a vertex can expect to have at most 2 neighbours
among the endpoints of the at most (1 + ε)n/d ≤ 2n/d paths. Again, the corresponding upper bound of d1/4 in
Lemma 2.3 is chosen loosely, only so that it is comfortably enough for our later proofs.

Next, we give the lemma that represents the heart of our proof. It shows the existence of our ‘sample set’ X such
that, given a collection of path forests as produced by Lemma 2.3, we can join paths together using vertices from
X and find further paths to get a collection of path forests in which the paths are connected into the dense spots
(in a well spread manner similar to the conditions in Definition 2.2) or can be collectively mostly decomposed
into paths with length (1 − ε)d.

Lemma 2.4. Let 1/d ≪ p, η ≪ 1/K ≪ ε. Let G be a d-regular n-vertex graph. Let F = {G1, . . . , Gt} be a
maximal family of vertex-disjoint (η, d,K)-dense subgraphs. Then, there is a set X ⊂ V (G) with

A1 |X| ≤ 2pn and, for each v ∈ V (G), dG(v,X) = (1 ± η)pd, and

A2 for each j ∈ [t], |X ∩ V (Gj)| ≤ 2p|V (Gj)| and, for each v ∈ V (Gj), dG(v,X ∩ V (Gi)) = (1 ± 3η)2pd,

such that the following holds.

For any (2n/d, d1/4, d1/4)-bounded edge-disjoint collection of path forests P1,P2, . . . ,Pd/2 in G − V (F) −X we
can find in G − (V (F) \ X) an edge-disjoint collection of path forests P ′

1,P ′
2, . . . ,P ′

d/2, such that the following
hold.

A3 For each i ∈ [d/2], every path in P ′
i has both of its endvertices in X ∩ V (F).

A4 Each vertex in G is in total an endvertex of at most
√
d paths in P ′

i, i ∈ [d/2].

A5 For each j ∈ [t] and i ∈ [d/2] at most
√
d of the paths in P ′

i end in Gj.
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A6 All but at most εnd/4 of the edges of E(P1 ∪ . . .∪Pd/2) \E(P ′
1 ∪ . . .∪P ′

d/2) can be decomposed into copies
of P(1−ε)d.

Finally, we give our lemma which can decompose the dense spots along with some paths which all have their
endpoints among the dense spots in a relatively well spread manner, as follows.

Lemma 2.5. Let 1/d ≪ η ≪ p, 1/K ≪ ε. Let G be a graph consisting of a vertex-disjoint family F =
{G1, . . . , Gt} of (η, d,K)-dense graphs and path forests P1, . . . ,Pd/2 where each path in each path forest has both
its endpoints in V (F) and all its internal vertices not in V (F). Suppose also that the following properties hold.

B1 For each i ∈ [t], there is some Xi ⊆ V (Gi) so that Xi contains all of the vertices of V (P1) ∪ . . . ∪ V (Pd/2)
in V (Gi) (which are necessarily endpoints), and, for each v ∈ V (Gi), dGi

(v,Xi) = (1 ± η)pd.

B2 Each vertex v ∈ V (F) is an endpoint of in total at most
√
d paths from P1, . . . ,Pd/2.

B3 For each j ∈ [t] and i ∈ [d/2] at most
√
d of the paths in Pi have at least one endpoint in Gj.

Then, all but at most εd · |V (F)| of the edges of G can be decomposed into copies of P(1−ε)d.

Subject to the proof of these three key lemmas, we can now prove Theorem 1.2, following the steps i)–v) in
Section 2.2.

Proof of Theorem 1.2. Let K ∈ N and η, p > 0 satisfy

1/d ≪ η ≪ p ≪ 1/K ≪ ε ≤ 1.

Let G be an n-vertex d-regular graph. Let F = {G1, . . . , Gt} be a maximal collection of vertex-disjoint (η, d,K)-
dense graphs in G. Using Lemma 2.4, let X ⊂ V (G) be such that the following hold.

C1 |X| ≤ 2pn, and, for each v ∈ V (G), dG(v,X) ≤ 2pd.

C2 For each i ∈ [t], |X ∩ V (Gi)| ≤ 2p|V (Gi)| and, for each v ∈ V (Gi), dG(v,X ∩ V (Gi)) = (1 ± η)pd.

C3 For any (2n/d, d1/4, d1/4)-bounded edge-disjoint collection of path forests P1,P2, . . . ,Pd/2 in G−V (F)−X,
we can find in G−V (F\X) an edge-disjoint collection of path forests P ′

1,P ′
2, . . . ,P ′

d/2 such that the following
hold.

i) For each i ∈ [d/2], every path in P ′
i has both of its endvertices in X ∩ V (F).

ii) Each vertex in V (G) is an endvertex of at most
√
d paths in P ′

i, i ∈ [d/2].

iii) For each j ∈ [t], and each i ∈ [d/2], at most
√
d of the paths in P ′

i end in Gj .

iv) All but at most εnd/4 edges of E(P1 ∪ . . .∪Pd/2) \E(P ′
1 ∪ . . .∪P ′

d/2) can be decomposed into copies
of P(1−ε)d.

Let G′ = G − V (F) − X. If |V (G′)| ≤ εn/2, then let P1 = . . . = Pd/2 = ∅, noting that these cover all but at

most εnd/4 edges of G′ and they therefore trivially form a (2n/d, d1/4, d1/4)-bounded collection of paths which
cover all but at most εnd/4 of the edges of G′. Suppose, otherwise, that |V (G′)| > εn/2. As each Gi, i ∈ [t], is
(η, d,K)-dense, the number of edges incident on V (G′) with, for some i ∈ [t], one vertex in some Gi is at most∑

i∈[t] |V (Gi)| · ηd = ηd|V (F)|. Therefore, by C1,

|E(G′)| ≥ 1

2
d|V (G′)| − ηd|V (F)| − 2pd|X| ≥ 1

2
d(1 − 5p)|V (G′)|.
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Let γ =
√

5p. As ∆(G′) ≤ d, if N is the number of vertices in G′ with degree at most (1 − γ)d in G′, then
N ·γd ≤ 5dp|V (G′)|, so that N ≤ γ|V (G′)|. Thus, as 1/d ≪ p ≪ ε, by Lemma 2.3, G′ contains a (2n/d, d1/4, d1/4)-
bounded edge-disjoint collection of path-forests P1, . . . ,Pd/2 which together cover all but at most εnd/4 of the
edges of G′ = G− V (F) −X.

Then, by C3, we can find an edge-disjoint collection of path-forests P ′
1, . . . ,P ′

d/2 in G − V (F) such that i)–iv)

hold. Using iv), let Q1 be a set of edge-disjoint copies of P(1−ε)d which decompose all but at most εnd/4 edges
of E(P1 ∪ . . . ∪ Pd/2) \ E(P ′

1 ∪ . . . ∪ P ′
d/2).

Let G′′ =
(⋃

i∈[t] Gi

)
∪
(⋃

i∈[d/2]

⋃
P∈P′

i
P
)
. By Lemma 2.5 (with Xi = X ∩ V (Gi) for each i ∈ [t], η′ = 3η, and

using C2 and i)–iii)), let Q2 be a set of edge-disjoint copies of P(1−ε)d which decomposes all but at most εnd/4
of the edges of G′′.

Then, Q1 ∪ Q2 is an edge-disjoint collection of copies of P(1−ε)d which decomposes all but at most εnd/2 edges
of P1, . . . ,Pd/2,F , and therefore all but at most 3εnd/4 of the edges in E(G′) ∪ E(F). As Gi is (η, d,K)-dense
for each i ∈ [t], each vertex in V (F) has at most ηd neighbours in V (G′), so that there are at most ηnd edges in
G between V (F) and V (G′). Furthermore, as |X| ≤ 2pn by C1, there are at most 2pnd edges in G between X
and V (G) \X. Therefore, as the only edges of G which are not in E(G′)∪E(F) are those with a vertex in X or
which are between G′ and V (F), Q1 ∪ Q2 decomposes all but at most 3εnd/4 + ηnd + 2pnd ≤ εnd of the edges
of G into copies of P(1−ε)d, as required.

2.4 Tools

We collect here some standard results we will use in our proofs.

2.4.1 Concentration inequalities

We will use the following standard version of Chernoff’s bound (see, for example, [24, Corollary 2.2 and Theorem
2.10]).

Lemma 2.6 (Chernoff’s bound). Let X be a random variable with mean µ which is binomially distributed or

hypergeometrically distributed. Then, for any 0 < γ < 1, we have that P(|X − µ| ≥ γµ) ≤ 2e−µγ2/3.

Given a product probability space Ω =
∏

i∈[n] Ωi, a random variable X : Ω → R is called C-Lipschitz if |X(ω) −
X(ω′)| ≤ C whenever ω and ω′ differ in at most 1 co-ordinate. We will use the following standard version of
Azuma’s inequality (see, for example, [24, Corollary 2.27]).

Lemma 2.7 (Azuma’s inequality). Let X be C-Lipschitz random variable on a product probability space with n
co-ordinates. Then, for any t > 0,

P(|X − E(X)| > t) ≤ 2e
−t2

2nC2 .

2.4.2 The local lemma

We will use the local lemma of Lovász (see [2]) many times throughout our proofs, so after stating the form that
we use we will make some remarks on how we use it.

Lemma 2.8 (The local lemma). Let B1, B2, . . . , Bn be events in an arbitrary probability space. Suppose that,
for each i ∈ [n], the event Bi is mutually independent of a set of at most ∆ of the other events and P(Bi) ≤ p.
Then, if ep(∆ + 1) ≤ 1, the probability that none of the events Bi, i ∈ [n], occurs is strictly positive.

Each time we apply the local lemma we will do so within a d-regular (or approximately d-regular) n-vertex graph
G. The ‘bad events’ Bi, i ∈ I, that we use, where I is some appropriate index set, will all be of the form that
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‘a binomial or hypergeometric variable is not concentrated around its mean’, where these variables will depend
on some partition of the vertices (or in one case of the edges) for which each vertex (or edge) is placed in a set
of the partition independently at random. Thus, using Lemma 2.6, we can bound the probability of each ‘bad
event’ occurring, which in each instance will be at most p := e−d0.1/100.

Each bad event will, for some central vertex, depend only on the placement of vertices within a distance k of the
central vertex, for some k with 1/d ≪ 1/k. Changing the placement of a single vertex (or edge) in the partition
will affect at most dk of the ‘bad events’. Therefore, for each ‘bad event’, B say, after identifying the central
vertex, we take the set of events which depend on any vertex within a distance k of the central vertex, and note
that B is mutually independent of the set of all the other ‘bad events’. As we have a graph with maximum
degree d, the number of events we omitted from the set is at most ∆ := 2dk · dk. Therefore, as 1/d ≪ 1/k, we

comfortably have that ep(∆ + 1) = e · e−d0.1/100(2dk + 1) ·dk ≤ 1, and we can apply the local lemma, Lemma 2.8,
to show that there is some instance in which none of the ‘bad events’ occur.

Let us also note that, when for example choosing a subset X ⊂ V (G) by including vertices independently at
random with probability p, the ‘bad events’ that we wish to consider may include that |X| ≠ (1 ± γ)pn (where
1/d ≪ p, γ). This event will not be independent of any other bad event we define as it is influenced by every
vertex in G. We could deal with this using the asymmetric local lemma, but, instead, to keep using Lemma 2.8,
we will take an arbitrary partition of V (G) into sets V1, . . . , Vt which each have size between d/2 and d. If, for
each i ∈ [t], Bi is the event that Vi ∩X ̸= (1± γ)p|Vi| then, when no event Bi, i ∈ [t], holds then |X| = (1± γ)pn
and, furthermore, each of these events only depends on the location of at most d vertices.

As an example of how we use the local lemma, we will give here the details of our first application, from Lemma 3.1.
Let s = 2⌈d0.15⌉ and η = 4d−0.4 with 1/d ≪ η ≪ 1. Suppose that G has vertices degrees which are (1 ± η/2)d
and let V (G) = V1∪ . . .∪Vt be a partition of V (G) into sets of size between d/2 and d. Let V (G) = A1∪ . . .∪As

be a partition of V (G) formed by taking each v ∈ V (G) and, independently at random, placing it in each Ai,
i ∈ [s], with probability 1/s. For each v ∈ V (G) and i ∈ [s], let Bv,i be the event that dG(v,Ai) ̸= (1±η)d/s. For
each i ∈ [s] and j ∈ [t], let Bi,j be the event that |Ai ∩ Vj | ≠ (1± η)|Vj |/s. Note that, by Chernoff’s bound, each
of these events occur with probability at most exp(−η2 · (d/2s)/3) ≤ exp(−d0.1). For each v ∈ V (G) and i ∈ [s],
the event Bv,i only depends on whether each vertex in NG(v) is in Ai or not, so therefore on the placement of
at most d vertices in the partition A1 ∪ . . . ∪ As. Similarly, for each i ∈ [s] and j ∈ [t], Bi,j only depends on
the placement of at most d vertices in the partition A1 ∪ . . . ∪ As. For any vertex w ∈ V (G), the placement
of w only affects an event Bv,i with v ∈ V (G) and i ∈ [s] if v is a neighbour of w, so at most ds pairs (v, i).
Furthermore, the placement of w only affects an event Bi,j with i ∈ [s] and j ∈ [t] if w ∈ Vj , and thus affects only
at most s such events. Therefore, the placement of each vertex affects at most ds + s ≤ d2 events. Therefore,
each event in {Bv,i : v ∈ V (G), i ∈ [s]}∪{Bi,j : i ∈ [s], j ∈ [t]} is mutually independent of a set of all but at most
∆ := d · d2 = d3 other events. Thus, as ep∆ = e · exp(−d0.1) · d3 ≤ 1, by Lemma 2.8, we have that, with positive
probability, none of the events in {Bv,i : v ∈ V (G), i ∈ [s]}∪{Bi,j : i ∈ [s], j ∈ [t]} hold. Therefore, we can take a
partition of V (G) into A1∪ . . .∪As for which none of these events hold, and hence, for each v ∈ V (G) and i ∈ [s]
we have dG(v,Ai) = (1 ± η)d/s and, for each i ∈ [s], as no event Bi,j , j ∈ [t], holds, we have |Ai| = (1 ± η)n/s.

Finally, here let us highlight the instance in which we use the most ‘bad events’, in the proof of Lemma 4.3.
There, working with a d-regular graph G, we will consider the collection S of all subsets of V (G) of size at most
k such that these vertices are all pairwise at most k apart in G, where 1/d ≪ 1/k. Each vertex in G will be
allocated to some set X or not independently at random with probability p. There will be some bad events Bi,
i ∈ I, where, for each U ∈ S, at most d|U | + 1 ≤ dk + 1 of the indices i ∈ I will contain U . Any event Bi whose
index includes U ∈ S will depend only whether or not the vertices in

⋃
v∈U NG(v) are in X, where this set has

size at most |U |d ≤ dk. As each vertex w will appear as a neighbour of at most (2d2k+1)k−1 sets in S, we will

have that at most d2k
2 · (dk + 1) events Bi, i ∈ I, depend on whether or not w is in X. As 1/d ≪ 1/k, then, we

can think of this as every event depending on at most a polynomial of d (whose power is a function of k) many
other bad events, while the probability of each bad event will be exp(−d0.1/100), allowing us to apply Lemma 2.8
once again.
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2.4.3 Matchings in bipartite graphs

In order to find the matchings Mij,k described in Section 2.2, we will use the following result.

Lemma 2.9. Let d, n > 0 and let 0 < γ < 1 satisfy γd ≥ 1. Let G be a bipartite graph with vertex class sizes
(1 ± γ)n and d(v) = (1 ± γ)d for each v ∈ V (G). Then, G contains (1 − 10

√
γ)d edge-disjoint matchings which

have size (1 − 10
√
γ)n.

Proof. Note that e(G) ≥ (1 − γ)d · (1 − γ)n > (1 − 2γ)nd. By Vizing’s theorem, the edge set of G can be
partitioned into at most (1 + γ)d+ 1 ≤ (1 + 2γ)d matchings, where we used that γd ≥ 1. If the statement of the
lemma fails, then

e(G) ≤ (1 − 10
√
γ)d · (1 + γ)n + (10

√
γ + 2γ)d · (1 − 10

√
γ)n = (1 − 97γ + 30γ3/2)nd ≤ (1 − 2γ)nd,

a contradiction.

2.4.4 Decomposing complete graphs into paths

In decomposing our dense spots, we will use the following result from [11], which is the special case for paths of
a result for bounded degree trees.

Theorem 2.10 (Böttcher-Hladký-Piguet-Taraz). Let 1/n ≪ ε. Let P be a collection of paths of length at most
n whose total length is at most

(
n
2

)
. Then, P packs into K(1+ε)n.

3 Decomposing outside the dense bits

In this section, we prove Lemma 2.3. We begin, in Section 3.1, by finding an initial collection of path forests
which are, together, weakly bounded (see Definition 2.2), before using this to find a collection of path forests in
Section 3.2 which are more strongly bounded. In Section 3.3, we give a short proof of Theorem 1.4 from this.
In Section 3.4, we take near-regularisation results from [12, 13] and develop them to find very nearly regular
subgraphs in a roughly regular graph. Finally, we put this all together in Section 3.5 to prove Lemma 2.3.

3.1 Initial path forests

We prove the following lemma by partitioning the vertex set of a regular graph using the local lemma and putting
together matchings between different vertex classes, as sketched in Section 2.2.

Lemma 3.1. Let 1/d ≪ ε ≤ 1 and γ = 2d−0.4. Let G be an n-vertex graph with vertex degrees in (1 ± γ)d.
Then, G contains an (n/d1/8, d7/8, d7/8)-bounded edge-disjoint collection P1, . . . ,Pd/2 of path forests which cover
all but at most εnd edges of G.

Proof. Let s = 2⌈d0.15⌉ and η = 4d−0.4. Let V (G) = A1 ∪ . . .∪As be a partition of V (G) formed by taking each
v ∈ V (G) and, independently at random, placing it in each Ai, i ∈ [s], with probability 1/s.

By the local lemma (see Section 2.4.2 for details), with positive probability, we can have the following properties.

D1 For each v ∈ V (G) and i ∈ [s], dG(v,Ai) = (1 ± η)d/s.

D2 For each i ∈ [s], |Ai| = (1 ± η)n/s.
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Figure 2: For s = 12, an embedding of a path of length s − 1 = 11 which can be rotated s/2 = 6 times to
form together a complete graph with s = 12 vertices, with one clockwise rotation depicted in red, giving a
decomposition of Ks into paths of length s− 1 in which each vertex appears as an endpoint exactly once.

Let η′ = 20
√
η = 40d−0.2 and d′ = (1 − η′)d/s. For each edge e = jk in the complete s-vertex graph Ks, using

Lemma 2.9, D1 and D2, find d′ edge-disjoint matchings in G[Aj , Ak] which each have at least (1− η′)n/s edges.
Call these matchings Me,i, i ∈ [d′]. Now, take paths Q1, . . . , Qs/2 of length s − 1 in the complete graph Ks in
which each vertex is the endpoint of exactly one path. (Such a decomposition is well-known to exist when s is
even. See, for example, Figure 2.) For each j ∈ [s/2] and k ∈ [d′], let Pj,k be the union of all the matchings Me,k

with e ∈ E(Qj) and let P ′
j,k be the subcollection of paths in Pj,k of length s− 1.

Claim 3.2. For each j ∈ [s/2] and k ∈ [d′], there are at most εn/3 edges of Pj,k which are not in P ′
j,k.

Proof. Set j ∈ [s/2] and k ∈ [d′]. For each i ∈ [s] which is not an endpoint of Qk, note that the number of
vertices in Ai which can be an endpoint of a path in Pj,k is at most 2(|Ai| − (1 − η′)n/s) ≤ 3η′n/s, using D2.
Therefore, at most 3η′n paths in Pj,k can have an endpoint in some Ai where i is a middle vertex of Qk. As each
path in Pj,k \ P ′

j,k has such an endpoint, there are at most (s − 1) · 3η′n ≤ εn/3 edges of Pj,k which are not in

P ′
j,k, where we have used that s = 2⌊d0.15⌋, η′ = 40d−0.2 and 1/d ≪ ε. ⊡

Relabel the path forests P ′
j,k, j ∈ [s/2] and k ∈ [d′], as Pi, i ∈ [sd′/2]. Noting that sd′/2 = (1 − η′)d/2 ≤ d/2,

let Pi = ∅ for each sd′/2 < i ≤ d/2. The number of edges in Pi, i ∈ [d/2], is, by Claim 3.2 and as 1/s, η′ ≪ ε, at
least

sd′

2
· (s− 1) · (1 − η′)n

s
− sd′

2
· εn

3
≥ sd′

2

((
1 − ε

3

)
n− εn

3

)
=

(1 − η′)d

2
·
(

1 − 2ε

3

)
n ≥ n(1 + η)d

2
− εnd

≥ |E(G)| − εnd.

Thus, it is only left to show that the path forests Pi, i ∈ [d/2], form an (n/d1/8, d7/8, d7/8)-bounded collection.

For each i ∈ [d/2], if Pi ̸= ∅, then there are some distinct j, k ∈ V (Ks) such that all the endvertices of Pi are
in Aj ∪ Ak. Thus, by D1, each vertex in G has at most 4d/s ≤ d7/8 neighbours among the endvertices of Pi

and, by D2, Pi contains at most 2n/s ≤ n/d1/8 paths. Furthermore, for each v ∈ V (G), if j, k are such that
v ∈ Aj and j is an endvertex of Qk, then the only paths in Pi, i ∈ [d/2], that can end in v are those from Pk,k′ ,
k′ ∈ [d′], so that v is the endvertex of at most d′ ≤ d/s ≤ d7/8 paths in Pi, i ∈ [d/2]. Therefore, the path forests
Pi, i ∈ [d/2], form an (n/d1/8, d7/8, d7/8)-bounded collection, as required. □

3.2 Improving a bounded collection of path forests

Having set aside a set Y (which fulfils a similar ‘sample set’ function as X in the sketch in Section 2.2) in a
d-regular graph G, we can then improve a collection of path forests in G− Y by taking each path forest in turn
and iteratively connecting paths in any path forest using a path of length two whose middle vertex comes from
Y (for practical reasons, we actually write this in the proof through taking some maximal set I). In order to
do this efficiently, we use the local lemma to partition Y into ten parts and find as many such paths using a
middle vertex from these sets, exhausting each set in turn. Furthermore, for all but only a few of the remaining
endpoints in the resulting path forest, we attach an extra edge randomly from this endpoint to the last set in the
partition of Y , using the local lemma with regard to all these choices to make sure that no vertex has too many
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neighbours among these new endpoints. This last step is critical in ensuring that (once a few paths are removed
from the resulting path forests) the endpoints of the path forests will be well spread.

Lemma 3.3. Let 1/d ≪ γ ≪ p ≪ ε. Let G be a n-vertex graph with ∆(G) ≤ d. Let Y ⊂ V (G) be such that
|Y | ≤ (1 + γ)pn and, for each v ∈ V (G), dG(v, Y ) = (1 ± γ)pd. Let P1, . . . ,Pd/2 be edge-disjoint path forests in

G− Y which are (n/d1/9, d8/9, d8/9)-bounded.

Then, G contains an edge-disjoint collection of path forests P ′
1, . . . ,P ′

d/2 such that at most εn/d paths can be

removed from each P ′
i, i ∈ [d/2], to get altogether a ((1 + ε)n/d, d1/4, d1/4)-bounded edge-disjoint collection of

path forests, and, for each i ∈ [d/2], E(Pi) ⊂ E(P ′
i).

Proof. Let ∆0 = d1/4 and ∆1 = d1/4. Take a maximal set I ⊂ [d/2] for which there are edge-disjoint collections
Qi, Ri, P ′

i, i ∈ I, of path forests in G, and, for each i ∈ I, a path forest P ′′
i consisting of some of the paths in

P ′
i, such that, for each i ∈ I,

E1 each path in Qi has length 2 with endvertices among the endvertices of Pi and its middle vertex in Y ,

E2 each path in Ri has length 1 with an endvertex among the endvertices of Pi and an endvertex in Y ,

E3 the paths in Qi are vertex disjoint from the paths in Ri,

E4 Pi, Qi, Ri combine to form P ′
i = Pi + Qi + Ri,

E5 P ′′
i contains all but at most of the εn/d paths in P ′

i,

and the collection P ′′
i , i ∈ I, is ((1 + ε)n/d,∆0,∆1)-bounded.

Take such path forests Qi,Ri,P ′
i,P ′′

i , i ∈ I. Note that if I = [d/2], then taking P ′
i, i ∈ [d/2], gives us a

collection of edge-disjoint path forests in G which satisfies the conditions in the lemma (as seen by considering
P ′′
i , i ∈ [d/2]). Therefore, assume for contradiction that I ̸= [d/2].

Let G′ be the graph of all of the edges of G which are not in any of the paths in Qi or Ri for any i ∈ I. As
the collection Pi, i ∈ [d/2], is (n/d1/9, d8/9, d8/9)-bounded, each vertex v ∈ V (G) \ Y appears as the endpoint
of at most d8/9 paths in total among the paths of Pi, i ∈ [d/2], and therefore v has at most d8/9 neighbouring
edges in total in the path forests Qi and Ri, i ∈ I. Thus, as dG(v, Y ) ≥ (1 − γ)pd and 1/d ≪ γ, p, we have
dG′(v, Y ) ≥ (1 − 2γ)pd. Take a random partition Y = Y1 ∪ . . . ∪ Y10 by choosing the location of each v ∈ Y
independently and uniformly at random. Using the local lemma, we can assume that, for each v ∈ V (G) \Y and
j ∈ [10], dG′(v, Yj) ≥ (1 − 3γ)pd/10 and |Yj | ≤ (1 + 2γ)pn/10.

Using that I ̸= [d/2], pick i ∈ [d/2] \ I. For each 1 ≤ j ≤ 10 in turn, let Qi,j be a maximal set of vertex-disjoint
paths of length 2 in G′ such that each path in Qi,j has its middle vertex in Yj and its endvertices among the
endvertices of Pi + Qi,1 + . . . + Qi,j−1, and Pi + Qi,1 + . . . + Qi,j is a path forest. We will show the following.

Claim 3.4. For each 0 ≤ j ≤ 10, Pi + Qi,1 + . . . + Qi,j contains at most (1 + ε/2)n/d + n/d(j+1)/10 paths.

Proof. We will prove this by induction on j, noting that it follows for j = 0 as Pi contains at most n/d1/9 ≤
n/d1/10 paths by the (n/d1/9, d8/9, d8/9)-boundedness condition. Then, suppose j ∈ [10], and that Pi + Qi,1 +
. . .+Qi,j−1 contains at most (1 + ε/2)n/d+n/dj/10 paths. Therefore, Qi,j contains at most 3n/dj/10 paths, and
so, if Y ′

j ⊂ Yj is the set of vertices in Yj not appearing in any path in Qi,j , then |Yj \ Y ′
j | ≤ 3n/dj/10.

Let Xj ⊂ V (G) \ Y be a maximal set of endvertices of Pi + Qi,1 + . . . + Qi,j which are in V (G) \ Y and which
are such that no two vertices in Xj are endpoints of the same path in Pi + Qi,1 + . . . + Qi,j . By the maximality
of Qi,j , no two vertices in Xj have a common neighbour in Y ′

j in G′. Thus, the number of edges in G′ between
Xj and Y ′

j is at most |Y ′
j | ≤ |Yj | ≤ (1 + 2γ)pn/10.
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On the other hand, each vertex v ∈ Xj ⊂ V (G) \ Y satisfies dG′(v, Yj) ≥ (1 − 3γ)pd/10, so the number of edges
in G′ between Xj and Y ′

j is (as each vertex in Yj \ Y ′
j has at most d8/9 neighbours among the endvertices of Pi

by the (n/d1/9, d8/9, d8/9)-boundedness of the Pk, k ∈ [d/2]) at least

|Xj | · (1 − 3γ)pd/10 − |Yj \ Y ′
j | · d8/9 ≥ |Xj | · (1 − 3γ)pd/10 − d8/9 · 3n/dj/10,

so that, as 1/d ≪ p and γ ≪ ε,

|Xj | ≤
(1 + 2γ)pn/10 + d8/9 · 3n/dj/10

(1 − 3γ)pd/10
≤ (1 + 6γ)n/d + n/d(j+1)/10 ≤ (1 + ε/2)n/d + n/d(j+1)/10.

Then, by the definition of Xj , we have that Pi + Qi,1 + . . . + Qi,j contains at most (1 + ε/2)n/d + n/d(j+1)/10

paths, as required. ⊡

Let Qi = Qi,1 + . . . + Qi,10 so that, by the claim with j = 10, Pi + Qi contains at most (1 + ε)n/d paths as
1/d ≪ ε. Let Zi be the set of vertices in Y10 which appear in Qi,10, so that, as Pi + Qi,1 + . . . + Qi,9 contains at
most (1 + ε/2)n/d + n/d paths by Claim 3.4 with j = 9, we have |Zi| ≤ 3n/d. Let Z ⊂ Y be the set of vertices
in Y which are the endvertices of more than ∆0/2 = d1/4/2 of the paths in P ′′

j , j ∈ I. Then, as P ′′
j , j ∈ I, is

((1 + ε)n/d,∆0,∆1)-bounded and hence contains at most |I| · (1 + ε)n/d paths in total, we have, as |I| ≤ d/2,

|Z| ≤ 2 · |I| · (1 + ε)n/d

∆0/2
≤ 4n

∆0
. (1)

Let Ai be the set of endvertices of the paths in Pi +Qi for which both endvertices have at least pd/30 neighbours
in Y10 \ (Z ∪Zi) in G′. Note that, by the maximality of Qi,10, the sets NG′(u, Y10) \Zi and NG′(u′, Y10) \Zi are
disjoint for u, u′ ∈ Ai unless u and u′ are endpoints of the same path in Pi + Qi. Note then that Ai partitions
naturally into a set of unordered pairs Fi where if {u, u′} ∈ Fi then u and u′ are endpoints of the same path in
Pi+Qi. For each {u, u′} ∈ Fi, pick a vertex vu from NG′(u, Y10\(Z∪Zi)) and a vertex vu′ ∈ NG′(u′, Y10\(Z∪Zi))
uniformly and independently at random subject to vu ̸= vu′ and add uvu and u′vu′ to Ri.

For each v ∈ V (G), let Bv be the event that v has more than ∆1 = d1/4 neighbours among the set {vu, vu′ :
{u, u′} ∈ Fi}. For each w ∈ NG(v, Y10), there is at most one pair {u, u′} ∈ Fi for which w ∈ NG′(u)(by the
maximality again of Qi,10). Therefore, as u, u′ ∈ Ai here, P(w ∈ {vu, vu′}) ≤ 2/(pd/30) = 60/pd. Therefore,

by Chernoff’s bound, P(Bv) ≤ e−
√
d as 1/d ≪ p. Note that, for each {u, u′} ∈ Fi, the choice of vu and vu′ can

affect Bv only if v is within a distance 2 of u or u′ in G. Therefore, by the local lemma, we can assume that each
vertex in V (G) has at most ∆1 = d1/4 neighbours among the set {vu, vu′ : {u, u′} ∈ Fi}. Let P ′

i = Pi +Qi +Ri,
and let P ′′

i be the paths in P ′
i with both endvertices in Y10. Then, by the choice from the local lemma, we have

that every vertex in V (G) has at most ∆1 neighbours among the endvertices of P ′′
i . As, furthermore, none of the

endvertices of the paths in P ′′
i are in Z, and there are at most (1 + ε)n/d paths in P ′

i and therefore P ′′
i , we have

that P ′′
j , j ∈ I ∪ {i}, is ((1 + ε)n/d,∆0,∆1)-bounded, while E1–E4 hold for each j ∈ I ∪ {i} by construction.

Therefore, if we can show E5 for i we will get a contradiction to the choice of I, and then we can conclude that
I = [d/2], which, as noted above, finishes the proof.

To prove E5, we simply need to show that at most εn/d of the paths in P ′
i have an endpoint which is not in Ai.

Take a maximal set X of endvertices of the paths in Pi which come from different paths, such that each vertex in
X has at most pd/30 neighbours in Y10 \ (Z ∪Zi). Recall that each vertex in V (G) \Y has at least (1− 3γ)pd/10
neighbours in Y10 in G′. Thus, each vertex in X has at least pd/20 neighbours in Zi ∪ Z in G′.

Now, as the vertices in X are endpoints of different paths in Pi + Qi, we have concluded that they share no
neighbours in Y10 \ Zi, and therefore each vertex in Z \ Zi has at most 1 neighbour in G′, so there are at most
|Z| ≤ 4n/∆0 edges between X and Z \ Z0 in G′ by (1). Furthermore, we deduced that |Zi| ≤ 3n/d and so, as
Pj , j ∈ [d/2], is (n/d1/9, d8/9, d8/9)-bounded, and every vertex in X is an endvertex of some path in Pi, there
are at most |Zi| · d8/9 ≤ 3n/d1/9 edges from X to Zi. Therefore, as 1/d ≪ p, ε,

|X| ≤ (4n/∆0) + (3n/d1/9)

pd/30
≤ εn

d
,
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as required. Thus, by the definition of X, there are at most εn/d paths in P ′
i which are not in P ′′

i . This completes
the proof of E5, and hence the lemma. □

3.3 Proof of Theorem 1.4

Lemma 3.1 and Lemma 3.3 already allow us to prove Theorem 1.4.

Proof of Theorem 1.4. Let d0, γ and p be such that 1/d0 ≪ γ ≪ p ≪ ε and let d ≥ d0. Let G be a d-
regular n-vertex graph. Let Y ⊂ V (G) be a random set chosen by including each vertex independently at
random with probability p. Using the local lemma, and that G is d-regular and 1/d ≪ γ, p, we can assume
that dG(v, Y ) = (1 ± γ)pd for each v ∈ V (G) and |Y | = (1 ± γ)pn. Note that G − Y has vertex degrees in
(1 ± γ)(1 − p)d. Therefore, by Lemma 3.1, and as 1/d ≪ p, G − Y contains an (n/d1/9, d8/9, d8/9)-bounded
edge-disjoint collection P1, . . . ,Pd/2 of path forests which cover all but at most εnd/8 of the edges of G− Y . As
there are at most n · (1 +γ)pd ≤ εnd/8 edges with a vertex in Y , these path forests contain all but at most εnd/4
of the edges of G. Then, applying Lemma 3.3 we get an edge-disjoint collection P ′

1, . . . ,P ′
d/2 of path forests which

cover all but at most εnd/4 edges of G such that (simplifying the conclusion) for each i ∈ [d/2], P ′
i has at most

(1 + ε/4)n/d paths.

Taking j ∈ [d/2] to maximise |E(P ′
j)|, we have that |E(P ′

j)| ≥ (nd/2 − εnd/4)/(d/2) = (1 − ε/2)n. Letting k be
the number of paths in P ′

j , we have that k ≤ (1 + ε/4)n/d, and note that we are done if k ≤ n/(d+ 1), so we can
assume otherwise. Then, observe that the total number of edges in the ⌊n/(d+ 1)⌋ longest paths in P ′

j is at least

(1 − ε/2)n · ⌊n/(d + 1)⌋
k

≥ (1 − ε/2)n · n/(d + 1) − 1

(1 + ε/4)n/d
≥ (1 − ε/2)2n ≥ (1 − ε)n.

Thus, P ′
j contains a set of at most n/(d+ 1) paths which cover all but at most εn vertices of G, as required.

3.4 Almost-spanning nearly-regular subgraphs

The purpose of this section is to prove the following lemma, Lemma 3.5. As discussed in Section 2.2, the removal
of dense spots can significantly weaken the regularity of the graph we are decomposing. Given a graph with such
weaker conditions, the following lemma partitions most of the edges into a few subgraphs which are all very close
to being regular, so that we can later apply Lemma 3.1 to each of them.

Lemma 3.5. Let 1/d ≪ µ ≪ ε ≤ 1 and η = d−0.9. Let G be an n-vertex graph with ∆(G) ≤ d. Then, there is
some k ∈ N such that there are edge-disjoint subgraphs G1, . . . , Gk in G and some even d1, . . . , dk ≥ µd such that
all but at most εnd edges of G are in

⋃
i∈[k] Gi,

∑
i∈[k] di ≤ (1 + ε)d, and, for each i ∈ [k], Gi is (1±η)di-regular.

To prove Lemma 3.5, we will use the following two lemmas, which follow using very recent methods of Chakraborti,
Janzer, Methuku and Montgomery [12, 13]. For completion, we prove the lemmas in an appendix. Each lemma
takes a graph which is roughly regular (with degrees varying by at most a constant multiple C, and a multiple
(1 + γ), respectively) and finds within it a subgraph whose vertex degrees only differ by at most the addition
of a constant multiple of the logarithm of the average degree and which has average degree comparable to the
original graph. In the second lemma, the average degree of the subgraph is particularly close to the original
average degree and the subgraph contains almost all of the original vertices.

Lemma 3.6. Let 1/C ′ ≪ 1/C ≤ 1. For any d, if a graph has degrees between d and Cd, then it contains a
subgraph with degrees between d′ and d′ + C ′ log d′ for some d′ ≥ d/C ′.

Lemma 3.7. There exists some C > 0 such that for each 1/d ≪ γ ≤ 1/100 the following holds. Let G be
a graph with d ≤ δ(G),∆(G) ≤ (1 + γ)d. Then, for some d′ ≥ (1 − 40γ)d, G contains a subgraph G′ with
|V (G′)| ≥ (1 − 40γ)|V (G)| and d′ ≤ δ(G′),∆(G′) ≤ d′ + C log d′.
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To prove Lemma 3.5, we start by taking a maximal collection H1, . . . ,Ht of nearly-regular subgraphs of G whose
average degree is not too far below that of G. It will follow easily from Lemma 3.6 that they will cover most of
the edges of G, however, these subgraphs may contain significantly fewer vertices than G (and so, in particular,
the sum of the average degree of the subgraphs may exceed d). However, each vertex of G will be in very few
of the subgraphs Hi, so we can randomly choose k (for some particular k) almost-spanning subgraphs of G by,
for the jth subgraph, allocating each vertex to a different subgraph Hi which contains that vertex and including
in the jth subgraph any edge of any Hi which has both vertices allocated to Hi for the jth subgraph. These k
subgraphs will not be edge-disjoint. In fact, using the local lemma, we will choose such subgraphs so that each
edge in each Hi will appear in many of the k subgraphs; for each of these edges we will then randomly allocate
it to one such subgraph and delete it from all the others. By carefully choosing all the probabilities involved,
and using again the local lemma, we will be able to get subgraphs G′

i, i ∈ [k], which contain almost all of the
vertices of G and which are nearly regular. Finally, as these subgraphs will not be quite regular enough (as the
application of the local lemma cannot preserve as much of the near-regularity as we would like), we will boost
the near-regularity of each G′

i using Lemma 3.7 to get a more regular subgraph Gi ⊂ G′
i with only the loss of

relatively few edges or vertices.

Proof of Lemma 3.5. Let γ and β be such that 1/d ≪ γ ≪ µ ≪ β ≪ ε and note that we can assume ε ≪ 1.
Let H1, . . . ,Ht be a maximal edge-disjoint collection of subgraphs of G such that, for each i ∈ [t], there is some
d′i ≥ βd such that Hi is (1 ± γ)d′i-regular. Let H =

⋃
i∈[t] Hi.

Claim 3.8. We have |E(G) \ E(H)| ≤ εnd/3.

Proof. Suppose, for contradiction, that |E(G) \ E(H)| > εnd/3. Then, by the well-known folklore result, G \H
has a subgraph G′ with minimum degree at least εd/3. Using that ∆(G) ≤ d and β ≪ ε, apply Lemma 3.6
with C = 3/ε to find a subgraph Ht+1 of G′ that is (1 ± γ)dt+1-regular for some dt+1 ≥ βd, contradicting the
maximality of the subgraphs Hi, i ∈ [t].

For each i ∈ [t], let βi = (1−γ)d′i/d ≥ β/2. For each v ∈ V (G), let Iv be the set of i ∈ [t] with v ∈ V (Hi), noting
that

d ≥ dG(v) ≥
∑
i∈Iv

dHi
(v) ≥

∑
i∈Iv

βid ≥ |Iv| · βd/2,

so that |Iv| ≤ 2/β. Take k = 1/2µ. For every j ∈ [k], take disjoint subsets R
(j)
1 , . . . , R

(j)
t of V (G), by determining

the location of each v ∈ V (G) independently and uniformly at random subject to the following rule.

• For each i ∈ Iv, there are exactly ⌊βik⌋ values of j ∈ [k] for which v ∈ R
(j)
i .

To see that this is possible, note that, for each v ∈ V (G),
∑

i∈Iv
βid ≤

∑
i∈Iv

dHi
(v) ≤ d, so that

∑
i∈Iv

βi ≤ 1.

For each i ∈ [t], let H ′
i ⊂ Hi be the subgraph of edges e ∈ E(Hi) such that the number of j ∈ [k] with V (e) ⊂ R

(j)
i

is (1 ± β)β2
i k. Let H ′ =

⋃
i∈[t] H

′
i.

Claim 3.9. With positive probability, |E(H) \E(H ′)| ≤ εnd/6 and, for each i ∈ [t] and j ∈ [k], if R
(j)
i ̸= ∅, then

H ′
i[R

(j)
i ] is (1 ± β)β2

i d-regular.

Proof. For each v ∈ V (G) and i ∈ Iv, let Bv,i be the event that at least εd′i/3 edges incident to v in Hi are

not in H ′
i. Let v ∈ V (G) and i ∈ Iv, and suppose we know which sets R

(j)
i , j ∈ [k], contain v. Then, for each

u ∈ NHi
(v) the probability that uv ∈ E(H ′), or, equivalently, that u is not in (1 ± β)β2

i k of the ⌊βik⌋ sets

R
(j)
i , j ∈ [k] which contain v, is, by Chernoff’s bound applied to the appropriate hypergeometric variable, at

most exp(−β2β2
i k/12) ≤ ε/6, where we have used that 1/k ≪ β, ε and βi ≥ β/2. Furthermore, these events are
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independent over each u ∈ NGi(v). Thus, by Chernoff’s bound, P(Bv) ≤ 2e−ε2(1−γ)d′
i/10

3 ≤ e−
√
d, as d′i ≥ βd

and 1/d ≪ β, ε.

For each v ∈ V (G), i ∈ Iv and j ∈ [k], let Bi,j
v be the event that v ∈ R

(j)
i but dH′

i
(v,R

(j)
i ) ̸= (1 ± β)β2

i d. Let

v ∈ V (G), i ∈ Iv and j ∈ [k] and suppose we know which sets v lies in, and that one of these sets is R
(j)
i . Then,

for each u ∈ NHi(v) and j ∈ [k] the probability that u ∈ R
(j)
i is ⌊βik⌋/k = (1 ± γ)βi, and, when this happens,

the probability that, of the ⌊βik⌋ − 1 other sets R
(j)
i which contain v, u is not in (1 ± γ)(β2

i k − 1) of them is, by
Chernoff’s bound applied to the appropriate hypergeometric variable, at most exp(−γ2β2

i k/12) ≤ γ. Thus, for

each u ∈ NHi(v) and j ∈ [k] with v ∈ R
(j)
i , the probability that u ∈ R

(j)
i and u ∈ NH′

i
(v) is (1 ± 2γ)βi. Note

furthermore, that these events are independent over each u ∈ NGi(v) and dHi(v) = (1 ± γ)d′i = (1 ± 3γ)βid.

Thus, P(Bi,j
v ) ≤ e−

√
d by Chernoff’s bound.

Note that any bad event we have defined depends on the placement of a vertex w only if the vertex v in the
subscript is within a distance 1 of each other in G, where ∆(G) ≤ d, and the placement of each vertex w therefore
affects at most (d + 1) · (2/β) · k ≤ d2 events (where we have used that, for each v ∈ V (G), |Iv| ≤ 2/β, and
1/d ≪ µ, β). Thus, by the local lemma, with positive probability none of the events Bv,i, v ∈ V (G) and i ∈ Iv,
or Bi,j

v , v ∈ V (G), i ∈ Iv and j ∈ [k] hold. If none of the events Bi,j
v , v ∈ V (G), i ∈ Iv and j ∈ [k] hold, then, for

each i ∈ [t] and j ∈ [k], if R
(j)
i ̸= ∅, then H ′

i[R
(j)
i ] is (1 ± β)β2

i d-regular. We will show that if none of the events
Bv,i, v ∈ V (G) and i ∈ Iv, hold, then |E(H) \ E(H ′)| ≤ εnd/6, which completes the proof of the claim.

For this, note that, if none of the events Bv,i, v ∈ V (G) and i ∈ Iv, hold, then

|E(H) \ E(H ′)| =
1

2

∑
v∈V (G)

(dH(v) − dH′(v)) =
1

2

∑
v∈V (G)

∑
i∈Iv

(dHi
(v) − dH′

i
(v)) ≤ 1

2

∑
v∈V (G)

∑
i∈Iv

εd′i
3

≤ 1

2

∑
v∈V (G)

∑
i∈Iv

εdHi
(v)

3
≤ 1

2

∑
v∈V (G)

εd

3
=

εnd

6
.

Thus, with positive probability, the properties in the claim hold. ⊡

Fix a choice of R
(j)
i , i ∈ [t] and j ∈ [k], satisfying the properties in the claim. For each i ∈ [t] and e ∈ E(H ′

i),

independently and uniformly at random assign e to some j ∈ [t] with V (e) ⊂ R
(j)
i and let f(e) = j. Then, for

each j ∈ [k], let G′
j be the graph with vertex set

⋃
i∈[t] R

(j)
i and edge set

⋃
i∈[t]{e ∈ E(H ′

i) : f(e) = j}. Let

d′ = d/k and note that the graphs G′
j , j ∈ [k], are, by design, edge disjoint.

Claim 3.10. With positive probability, for each j ∈ [k], G′
j is (1 ± 4β)d′-regular.

Proof. Let v ∈ V (G), i ∈ Iv and j ∈ [k] with v ∈ R
(j)
i . Recall that the degree of v in H ′

i[R
(j)
i ] is (1 ± β)β2

i d, and

each edge e in H ′
i has (1 ± β)β2

i k indices j′ ∈ [k] with V (e) ⊂ R
(j′)
i . Therefore, the expected degree of v in G′

j is

at least (1 − β)β2
i d/(1 + β)β2

i k and at most (1 + β)β2
i d/(1 − β)β2

i k, so that

E(dG′
j
(v)) = (1 ± 3β)d/k = (1 ± 3β)d′.

Thus, as 1/d ≪ µ, β and k = 1/2µ, using Chernoff’s bound, for each v ∈ V (G), j ∈ [k], we have with probability

at most e−
√
d that if v ∈ V (G′

j) then dG′
j
(v) ̸= (1 ± 4β)d′. For each edge e, which graph G′

j , j ∈ [k], is in affects
the degrees of at most 2d − 1 vertices in each of the k graphs, and each degree is affected by the location of at
most d edges, and therefore an application of the local lemma implies the claim. ⊡

Using this claim, we can thus partition H ′ ⊂ G into edge-disjoint graphs Gi, i ∈ [k], in G such that, for each
i ∈ [k], G′

i is (1 ± 4β)d′-regular. For each i ∈ [k], by Lemma 3.7 (with γ = 10β and d = 1 − 4β) we can find
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some Gi ⊂ G′
i and even di with (1 − 400β)(1 − 4β)d′ ≤ di ≤ (1 + 5β)d′ such that |V (Gi)| ≥ (1 − 400β)|V (G′

i)| is
(1 ± η)di-regular (where we have used that η = d−0.9 and 1/d ≪ β, 1/k). Note that,∑

i∈[k]

|E(G′
i) \ E(Gi)| ≤

∑
i∈[k]

((1 + 4β)d′ · |V (Gi) \ V (G′
i)| + n · ((1 + 4β) − (1 − 400β)(1 − 4β))d′

≤ k · (1 + 4β)d′ · 400βn + k · n · 410βd′ ≤ 1000βdn ≤ εn/3,

as β ≪ ε and d′ = d/k. Thus, combined with the properties from Claim 3.8 and Claim 3.9, we have that the
graphs G1, . . . , Gk cover all but at most 2εnd/3 + εnd/6 ≤ εnd edges of G, so that, as µ ≪ β, they satisfy the
conditions of the lemma as ∑

i∈[k]

di ≤ (1 + 5β)
∑
i∈[k]

d′ = (1 + 5β)d ≤ (1 + ε)d. □

3.5 Proof of Lemma 2.3

Given Lemmas 3.1, 3.3 and 3.5 it is now short work to prove Lemma 2.3.

Proof of Lemma 2.3. Recall that we have 1/d ≪ γ ≪ ε ≤ 1 and G is an n-vertex graph with maximum degree
at most d in which all but at most γn vertices have degree at least (1 − γ)d. Let p satisfy γ ≪ p ≪ ε. Let
Y ⊂ V (G) be a random set chosen by including each vertex independently at random with probability p. Using
the local lemma, we can assume that, for every v ∈ V (G) with dG(v) ≥ (1− γ)d, we have dG(v, Y ) = (1± 2γ)pd,
and that |Y | ≤ (1 + γ)pn.

Let X be the set of vertices v ∈ V (G) \ Y with dG(v, Y ) = (1± 2γ)pd, so that |X| ≥ n− (1 + γ)pn− γn, and let
G′ = G[X]. Note that

|E(G) \ E(G′)| ≤ ((1 + γ)pn + γn) · d ≤ εnd/4.

Let η = d−0.9. By Lemma 3.5, there is some k ∈ N such that there are edge-disjoint subgraphs G1, . . . , Gk in G′

and some even d1, . . . , dk ≥ γd such that all but at most εnd/4 edges of G′ are in
⋃

i∈[k] Gi,
∑

i∈[k] di ≤ (1+ε/10)d

and, for each i ∈ [k], Gi is (1 ± η)di-regular. Note that k ≤ 2/γ. For each i ∈ [k], using Lemma 3.1, find in Gi

an (n/d
1/8
i , d

7/8
i , d

7/8
i )-bounded edge-disjoint collection Pi

1, . . . ,Pi
di/2

of path forests which cover all but at most

εndi/3 edges of G. If (
∑

i∈[k] di)/2 < d/2, then relabel these path forests as Pj , 1 ≤ j ≤ (
∑

i∈[k] di)/2 and, for

each (
∑

i∈[k] di)/2 ≤ i ≤ d/2, let Pi be an empty path forest. If (
∑

i∈[k] di)/2 ≥ d/2, then let Pj , j ∈ [d/2], be

path forests from Pi
j , j ∈ [di/2] and i ∈ [k], which maximise the total number of edges in Pj , j ∈ [d/2]. Note

that, as
∑

i∈[k] di ≤ (1 + ε/10)d, these path forests contain all but at most εnd/4 of the edges in Pi
j , j ∈ [di/2]

and i ∈ [k].

Note that, as k ≤ 2/γ and 1/d ≪ γ, the collection of path forests Pi, i ∈ [d/2], is (n/d1/9, d8/9, d8/9)-bounded,
and contains all but at most εn ·

∑
i∈[t] di/4 ≤ εnd/4 of the edges of Pi

j , j ∈ [di/2] and i ∈ [k]. Then, by

Lemma 3.3, there is a ((1 + ε)n/d, d1/4, d1/4)-bounded collection of edge-disjoint path forests in G′ which covers
all of the edges of Pi, i ∈ [d/2]. Thus, this collection of paths forests covers all but at most εnd/4 of the edges of
Pi
j , j ∈ [di/2] and i ∈ [k], and hence all but at most εnd/2 of the edges of

⋃
i∈[t] Gi, and hence all but at most

3εnd/4 of the edges of G′, and hence all but at most εnd of the edges of G, as required.

4 Connecting to the dense bits

In this section we prove Lemma 2.4. In Section 4.1, we show that there will exist a ‘good sample’ X which samples
certain important dense spots appropriately, before using this to connect paths to a maximal set of dense spots
through X in Section 4.2.
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4.1 Sampling of dense spots

In order to facilitate our use of the local lemma, we need some control over the number of dense spots that we
consider for our ‘sampling’. We do this using the following definition.

Definition 4.1. Say a (µ, d,K)-dense graph H ⊂ G[X] is (k, η, d)-approximable in G by neighbourhoods
in X if G contains a set V of at most k vertices, which are pairwise a distance at most k apart in G, and such
that |V (H)△

⋃
v∈V NG(v,X)| ≤ ηd.

We now formalise the notion of a good sample. The following definition will be used with V as the set of vertex
sets of the dense spots in the maximal collection F (see Section 2.2). The set X should be thought of as a
random set (with properties chosen to exist together with strictly positive probability by the local lemma) with
vertex density p in V (G), which then has approximately the expected size, as well as approximately the expected
intersection with each of the sets in V ∈ V, and, moreover, similar properties with respect to the neighbourhoods
of each vertex in all these subsets (see F1 and F2). Finally, and most importantly, if there is an (appropriately
approximable) dense spot in G[X], then there must be a larger dense spot H in G such that if H intersects on
quite a few vertices in V ∈ V then the original smaller dense spot must also intersect that V (this will be used
to join the smaller dense spot to one of the dense spots in F in our application).

Definition 4.2. A set X ⊂ V (G) is a (d, γ, k, η,K, p,V)-good-sample in G, where V is a set of subsets of
V (G), if the following hold.

F1 |X| = (1 ± γ)p|V (G)| and, for any v ∈ V (G) we have that dG(v,X) = (1 ± γ)pd.

F2 For each V ∈ V, |V ∩X| = (1±γ)p|V |, and, for any v ∈ V (G) we have that dG(v, V ∩X) = p·dG(v, V )±γpd.

F3 For any H ⊂ G[X] which is (η, pd,K)-dense and (k, η, pd)-approximable in G by neighbourhoods in X,
there exists some H ′ ⊂ G which is (6η, d, 2K)-dense such that, for each V ∈ V, if |V ∩ V (H ′)| ≥ d/2, then
V ∩ V (H) ̸= ∅.

Given these definitions, using the local lemma (as discussed in Section 2.4.2), it is relatively straightforward to
show the existence of the good samples that we will need, as follows.

Lemma 4.3. Let 1/d ≪ γ, 1/k, η, 1/K, p. Let G be a d-regular graph and let V be a set of vertex-disjoint subsets
of V (G) which each have size at least d/2 and at most 2Kd. Then, there is a (d, γ, k, η,K, p,V)-good-sample X
in G.

Proof. Let t = ⌈|V (G)|/d⌉, and let Ai, i ∈ [t], be a partition of V (G) into sets which each have size between
d/2 and d. Let X ⊂ V (G) be chosen by including each vertex independently at random with probability p. For
each v ∈ V (G), let Bv be the event that dG(v,X) ̸= (1 ± γ)pd. For each V ∈ V, let BV be the event that
|V ∩X| ≠ (1 ± γ)p|V |. For each i ∈ [t], let Bi be the event that |Ai ∩X| ≠ (1 ± γ)p|Ai|. For each V ∈ V and
v ∈ V (G), let BV,v be the event that dG(v, V ∩X) ̸= p · dG(v, V ) ± γpd.

Let S consist of all of the subsets of V (G) of size at most k such that these vertices are all pairwise at most k
apart in G. For each U ∈ S, let YU = ∪u∈UNG(u) and let BU be the event that the following do not all hold.

G1 For each v ∈ V (G), we have dG(v, YU ∩X) ≤ p · dG(v, YU ) + ηpd.

G2 If ZU is the set of vertices in YU with at least (1− 3η)d neighbours in G[YU ], then |ZU ∩X| ≤ p|ZU |+ ηpd.

G3 |YU ∩X| = p|YU | ± ηpd.

For each U ∈ S and V ∈ V with YU ∩ V ̸= ∅, let BU,V be the event that the following does not hold.
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G4 |(YU ∩ V ) ∩X| ≥ p|YU ∩ V | − ηpd.

Using the local lemma, we can assume that none of the events we have defined holds (see Section 2.4.2).

As no event Bi, i ∈ [t], or Bv, v ∈ V (G), holds, we have that F1 holds. As no event BV , V ∈ V, or BV,v, V ∈ V
and v ∈ V (G), holds, we have that F2 holds. It is left then only to show that F3 holds.

For this, suppose we have H ⊂ G[X] which is (η, pd,K)-dense and (k, η, pd)-approximable in G by neighbourhoods
in X. By the approximability of H, there exists some U ∈ S such that |V (H)△(YU ∩X)| ≤ ηpd. Note that every
vertex in V (H)∩YU has at least (1−2η)pd neighbours in YU ∩X as H ⊂ G[X] is (η, pd,K)-dense, and, by G1, if a
vertex v ∈ V (G) has at least (1−2η)pd neighbours in YU∩X, then it has at least 1

p (dG(v, YU∩X)−ηpd) ≥ (1−3η)d

neighbours in YU in G, and hence belongs to ZU (as defined in G2). Therefore, ZU ∩X ⊂ YU ∩X has size at
least |V (H) ∩ YU | ≥ |YU ∩X| − ηpd and hence

p|ZU | + ηpd
G2
≥ |ZU ∩X| ≥ |YU ∩X| − ηpd

G3
≥ p|YU | − 2ηpd,

so that |ZU | ≥ |YU | − 3ηd. Thus, setting H ′ := G[ZU ], we have δ(H ′) ≥ (1− 6η)d by the definition of ZU in G2.
Furthermore,

|ZU | ≤ |YU |
G3
≤ 1

p
(|YU ∩X| + ηpd) ≤ 1

p
(|V (H)| + 2ηpd) ≤ 1

p
(Kpd + 2ηpd) ≤ 2Kd,

and therefore H ′ is (6η, d, 2K)-dense.

To show the last part of F3 holds for H ′ = G[ZU ], suppose that V (H ′) intersects with at least d/2 vertices in
V , for some V ∈ V. Then, as YU contains ZU as so also interests with at least d/2 vertices in V , and as the
event BU,V does not hold, we have |(YU ∩ V ) ∩X| ≥ pd/4. As |(YU ∩X) \ V (H)| ≤ ηpd, we have by G4 that
V ∩ V (H) ̸= ∅. Thus, F3 holds, and therefore X is a (d, γ, k, η,K, p,V)-good-sample in G, as required.

4.2 Proof of Lemma 2.4

We come now to perhaps the most important part of our proof. Using a good sample, say X, provided by
Lemma 4.3, we show that X has the property required in Lemma 2.4. That is, given a bounded edge-disjoint
collection of path-forests P1, . . . ,Pd/2 in G − V (F) − X (as in the set up of Lemma 2.4), we join lots of these
paths together in an edge-disjoint fashion before joining all but at most a few of the resulting paths into the
dense spots, all in some relatively well spread manner (that is, A4 and A5 will hold). To do this, we join as
many of the paths together in each path forest using vertices in X (using paths with length at most 2k where
1/d ≪ 1/k ≪ η, p, which together form the path forests denoted in the proof by Qi, i ∈ [d/2]), and then try
to join as many of the paths into the dense spots in a well spread fashion using vertices in X (using paths with
length at most k, which together form the path forests denoted by Ri, i ∈ [d/2]). We then show (for Claim 4.4)
that all of the d/2 resulting path forests will not have that many paths which do not end in some dense spot.

We will show this by contradiction: If we can pick many endvertices of some Pi that have not had a path joined
to them in Qi or Ri, then, looking at the iterative neighbourhoods in X from these vertices, if they intersect
within distance k we will have a path we could perhaps add to Qi (if the path uses no vertices in Qi). This will
imply that not many of these iterating neighbourhoods can grow very large, and thus allow us to connect one
of the path ends to an approximable dense spot in G[X], and, hence, to one of the dense spots in the maximal
collection F , using F3. In order to get a contradiction, we will need these iterating neighbourhoods to avoid
vertices in Qi and Ri, the edges of all the connecting paths we have found, and some further vertices in order to
ensure the final paths will be well spread (for A4 and A5) – all of these vertices we collect into the set Zi in the
proof of Claim 4.4 (see I1–I3) and all of these edges we delete from G to get G′. We cannot find a subgraph of
G′[X \ Zi] with all its degrees close to pd (as we would need for a simple iterating neighbourhood argument to
work), but what we can do is find a large subset Xk of almost all of X \Zi such that we can iteratively find many
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neighbours in G′ in X from vertices in Xk as long as we only iterate up to k times (by finding neighbours in
subsequent sets Xk−1 ⊂ . . . ⊂ X1 ⊂ X \ Zi that we found in reverse order, showing they are large by induction,
as at (4)). Then, if there are too many unconnected endvertices of some Pi, from at least one such endpoint we
can do this iteration without growing in total very much (as intersecting iterated neighbourhoods would provide
a short path connect two more original endpoints together).

Not only will this allow us to connect one more of the path ends in Pi to a dense spot in G′[X \Zi], but, in this
iteration we can easily find a sequence of vertices which are at distance at most 2k apart pairwise in G whose
neighbourhoods in X together approximate the dense spot we find in G′[X \ Zi]. This allows us to use F3 to
connect the endpoint of Pi into a dense spot in F , gaining the contradiction that will conclude the proof of the
key claim, Claim 4.4, from which we easily deduce Lemma 2.4.

Proof of Lemma 2.4. Let V = {V (Gi) : i ∈ [t]} and take γ and k such that 1/d ≪ γ ≪ 1/k ≪ p, η. Using
Lemma 4.3, let X ⊂ V (G) be a (d, γ/4, k, η/6,K/2, p,V)-good-sample in G. That is, the following hold.

H1 |X| = (1 ± γ/4)pn and, for any v ∈ V (G) we have that dG(v,X) = (1 ± γ/4)pd.

H2 For each i ∈ [t], |V (Gi)∩X| = (1± γ/4)p|V (Gi)|, and, for any v ∈ V (G) we have that dG(v, V (Gi)∩X) =
p · dG(v, V (Gi)) ± γpd/4.

H3 For any H ⊂ G[X] which is (η/6, pd,K/2)-dense and (k, η/6, pd)-approximable in G by neighbourhoods in
X, there exists some H ′ ⊂ G which is (η, d,K)-dense such that if H ′ intersects with some Gi, i ∈ [t], in at
least d/2 vertices then V (Gi) ∩ V (H) ̸= ∅.

Due to the maximality of F = {G1, . . . , Gt}, and as any two (η, d,K)-dense spots in G that intersect on some
vertex must intersect in at least (1 − 2η)d ≥ d/2 vertices (as ∆(G) ≤ d), H3 immediately implies the following.

H4 For any H ⊂ G[X] which is (η/6, pd,K/2)-dense and (k, η/6, pd)-approximable in G by neighbourhoods in
X, there exists some i ∈ [t] with V (Gi) ∩ V (H) ̸= ∅.

We will show that X satisfies the required property. Firstly, A1 follows from H1, and A2 follows from H2 and
each Gi being (η, d,K)-dense. Now, take any (2n/d, d1/4, d1/4)-bounded edge-disjoint collection of path-forests
P1, . . . ,Pd/2 in G− V (F) −X. We will show that there exists in G− (V (F) \X) an edge-disjoint collection of
path forests P ′

1,P ′
2, . . . ,P ′

d/2 such that A3–A6 hold, completing the proof of the lemma.

Let Y = V (G) \ (V (F) ∪X). Let Q1, . . . ,Qd/2 be edge-disjoint path forests of paths in G[X ∪ Y ] with length at
most 2k and no internal vertices in Y , such that, for each i ∈ [d/2], all of the endvertices of Qi are among the
endvertices of Pi, and Qi+Pi creates a path forest. Subject to this, maximise the total number of all of the paths
in Q1, . . . ,Qd/2. Then, take edge-disjoint path forests R1, . . . ,Rd/2 of paths in G[Y ∪X] with length at most k,
such that, for each i ∈ [d/2], the paths in Ri each have one endvertex among the endvertices of Pi +Qi and one
endvertex in X ∩V (F) and all of their internal vertices in X \V (F ∪Pi∪Qi), and such that each vertex in V (G)
is an endvertex in total of at most

√
d paths in Ri, i ∈ [d/2], and, for each j ∈ [t] and i ∈ [d/2], at most

√
d of

the paths in Ri end in Gj . Subject to this, maximise the total number of all of the paths in R1, . . . ,Rd/2. For
each i ∈ [d/2], let P ′

i be the set of paths in Pi +Qi +Ri which have both endvertices in V (F). By construction,
we have that A3, A4 and A5 hold, so it is left only to prove A6.

For each i ∈ [d/2], let P ′′
i be the path forest of paths in Pi + Qi + Ri which are not in P ′

i. We will show the
following.

Claim 4.4. For each i ∈ [d/2], P ′′
i contains at most 16n/Kd paths.

Proof. Suppose, for a contradiction, that there is some i ∈ [d/2] for which P ′′
i contains at least 16n/Kd paths.

Let Zi be the set of vertices v ∈ X such that one of the following holds.
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I1 v is in a path in Qi + Ri.

I2 v is in Gj for some j ∈ [t] such that at least
√
d/2 of the paths in P ′

i end in Gj .

I3 v is an endpoint of at least
√
d/2 paths in the collection P ′

i′ , i
′ ∈ [d/2].

Then,

|Zi| ≤
2n

d
· 2k + Kd · 2 · n/d√

d/2
+

d/2 · 2n/d · 2√
d/2

≤ 10Kn√
d

. (2)

Let G′ be the graph G with every edge in
⋃

i∈[d/2] Qi and
⋃

i∈[d/2] Ri removed, so that

|E(G) \ E(G′)| ≤ d

2
· 2 · 2n

d
· 2k = 4nk. (3)

Let X0 = X \ Zi. Iteratively, for each 1 ≤ j ≤ k, let Xj be the set of vertices in Xj−1 with at least (1 − γ/2)pd
neighbours in Xj−1 in G′. We will show, by induction, that, for each 0 ≤ j ≤ k,

|X \Xj | ≤ (16/γ)j · 10Kn√
d

. (4)

Note first that this holds for j = 0 by (2). Let then j ∈ [k] and assume that |X \Xj−1| ≤ (16/γ)j−1 · 10Kn/
√
d.

Then, as every vertex in Xj−1 has at least (1 − γ/4)pd neighbours in X in G by H1, every vertex in Xj−1 \Xj

has at least γpd/4 neighbouring edges which are either in G[X] \G′ or which lead to a vertex of X \Xj−1. Thus,
using H1 for each vertex in X \Xj−1,

|Xj−1 \Xj | ·
γpd

4
≤ |X \Xj−1| · 2pd+E(G[X] \G′)

(3)

≤ (16/γ)j−1 · 10Kn√
d

· 2pd+ 4nk ≤ 3 · (16/γ)j−1 · 10Kn√
d

· pd,

so that |Xj−1 \Xj | ≤ (12/γ) · (16/γ)j−1 · 10Kn/
√
d, and hence

|X \Xj | ≤ (12/γ) · (16/γ)j−1 · 10Kn√
d

+ (16/γ)j−1 · 10Kn√
d

≤ (16/γ)j · 10Kn√
d

,

as required. This completes the proof of the induction hypothesis, and therefore, (4) holds for every 0 ≤ j ≤ k.
In particular, then, |X \Xk| ≤ (16/γ)k · 10Kn/

√
d ≤ n/d1/3, as 1/d ≪ γ, 1/k, 1/K.

Now, recalling that P ′′
i contains at least 16n/Kd paths, we will show that at least 8n/Kd of these paths has an

endpoint which is not in V (F) which has at least pd/4 neighbours in G′ in Xk. Suppose to the contrary that
there is a set A of at least 8n/Kd of the endpoints of P ′′

i which are each not in V (F) and have at most pd/4
neighbours in G′ in Xk. For each v ∈ A, as v /∈ V (F), and as P1, . . . ,Pd/2 is (2n/d, d1/4, d1/4)-bounded, v is the

endvertex of at most d1/4 paths in P1, . . . ,Pd/2, and, hence, has degree at most d1/4 in G − G′. Thus, by the
choice of A and by H1, v has at least pd/2 neighbours in G in X \Xk. On the other hand, again as P1, . . . ,Pd/2

is (2n/d, d1/4, d1/4)-bounded, each vertex in X \Xk is the neighbour of at most d1/4 of the vertices in A (a subset
of the endpoints of Pi). Therefore,

4pn

K
=

8n

Kd
· pd

2
≤ |A| · pd

2
≤ |X \Xk| · d1/4 ≤ n

d1/12
,

a contradiction as 1/d ≪ 1/K, p.

Therefore, P ′′
i contains at least 8n/Kd paths with an endpoint which is not in V (F) and has at least pd/4

neighbours in G′ in Xk. Thus, taking r = 8n/Kd, we can let v1, . . . , vr /∈ V (F), be endvertices of different paths
in P ′′

i which each have at least pd/4 neighbours in Xk in G′.

Now, by the maximality of the path forests Q1, . . . ,Qd/2 and I1, there is no path of length at most 2k in G′−Zi

with internal vertices in X between any two of the vertices vj , j ∈ [r]. Therefore, we can pick some j ∈ [r]
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for which there are at most |X|/r ≤ 2pd/r ≤ Kpd/2 vertices in X \ Zi which can be reached by a path of
length at most k from vj in G′ with vertices otherwise in X \ Zi. Let w1 = vj and A1 = NG′(vj , Xk), so that
|A1| ≥ pd/4. Then, for each 2 ≤ i′ ≤ k, if possible, pick wi′ ∈ Ai′ with |NG′(wi′−1, Xk−i′+1 \ Ai′−1)| ≥ ηpd/12
and let Ai′ = Ai′−1∪NG′(wi′ , Xk−i′+1), and, otherwise, stop. As each |Ai′ | ≤ Kpd/2 and |Ai′ \Ai′−1| ≥ ηpd/12,
this must stop for some i′ < k as 1/k ≪ η, 1/K. Let H = G′[Ai′ ]. We will show that H is (η/6, pd,K/2)-dense
and (k, η/6, pd)-approximable in G by neighbourhoods in X.

As i′ < k, for each v ∈ Ai′ ⊂ Xk−i′+1, v has at least (1 − γ/2)pd neighbours in G′ in Xk−i′ and at most ηpd/12
neighbours in Xk′−i′+1 \ Ai′ , so at least (1 − η/6)pd neighbours in Ai′ . Thus, as |V (H)| = |Ai′ | ≤ Kpd/2, H is
(η/6, pd,K/2)-dense. Furthermore, each vertex w1, . . . , wi′ ∈ X1 has at most 2γpd neighbours in G[X] outside
of H by H1 and the definition of X1, and therefore, as γ ≪ 1/k, η, p, the vertices altogether have at most
k · (2γpd) ≤ ηpd/6 vertices outside of V (H) in X. Therefore, as V (H) ⊂

⋃
i′′∈[i′] NG(wi′′ , X), H ⊂ G[X] is

(k, η/6, pd)-approximable in G by neighbourhoods in X.

Therefore, by H4, there exists some m ∈ [t] with V (Gm) ∩ V (H) ̸= ∅. Then, we can find a path from vj to
V (Gm) ∩ V (H) with length at most k, which contradicts the maximality of the path forests Ri′′ , i′′ ∈ [d/2],
where we recall that V (H) contains no vertex in Zi and use I1, I2 and I3. ⊡

As all but at most (1− ε)d edges of each path in P ′′
i , i ∈ [d/2], can be decomposed into paths of length (1− ε)d,

and 1/K ≪ ε, by Claim 4.4 all but at most (d/2) · (1 − ε)d · (16n/Kd) ≤ εnd/4 edges of E(P ′′
1 ∪ . . . ∪ P ′′

d/2) can
be decomposed into copies of P(1−ε)d, so that A6 holds, as required. □

5 Decomposing inside the dense bits

In this section, we will (mostly) decompose the dense spots with attached paths (see Section 2.2). Firstly we
note that so far we have no conditions on the dense spots that imply they are connected, which we will need
to connect various paths together. Therefore, in Section 5.1 we give the notation of connectivity we will use
(Definition 5.1) and show that we can partition the vertices of our dense spots into (essentially) connected dense
spots (Lemma 5.3) and in each such connected dense spot find a small vertex subset which can connect each pair
of vertices in the connected dense spot using many possible short edge-disjoint paths using internal vertices only
in that vertex subset. In Section 5.2, we show we can decompose a dense spot into many path forests of some
specified numbers of vertices and few overall paths (which we later connect up, including to an attached path
where appropriate, using our connectivity property). Finally, in Section 5.3, we put this all together and prove
Lemma 2.5, thus completing the proof of all our key lemmas, and hence Theorem 1.2.

5.1 Connectivity

First, we define our connectivity.

Definition 5.1. A graph G is (ζ, λ, d)-connected if, for all A,B ⊆ V (G) with |A|, |B| ≥ ζd, and for all
F ⊆ E(G) such that |F | ≤ λd2, there exists a path between A and B in G− F .

Observe that any graph with fewer than 2ζd vertices is trivially (ζ, λ, d)-connected. We also have the following
observation.

Observation 5.2. If G is (ζ, λ, d)-connected and F ⊆ E(G) satisfies |F | ≤ τd2, then G − F is (ζ, λ − τ, d)-
connected.

We now show how to partition a dense graph into highly connected subgraphs.
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Lemma 5.3. Let 1/d ≪ λ ≪ 1/K, β with β ≤ 1/4. Let G be a (β, d,K)-dense graph. Then, for some t ≤ 2K,
there exists a set J ⊆ V (G) and vertex-disjoint subgraphs G1, . . . , Gt ⊂ G with V (G) = V (G1)∪ . . .∪V (Gt) such
that

J1 |J | ≤
√
λd,

J2 Gi − J is (2β, d,K)-dense for each i ∈ [t], and

J3 Gi is (λ1/4, λ, d)-connected for each i ∈ [t].

Proof. Set ζ := λ1/4. Initialise S = {G}, and, while there is some G′ ∈ S which is not (ζ, λ, d)-connected, take
such a G′ and use this to find a set F ⊆ E(G′) and partition V (G′) = V1∪V2 such that |F | ≤ λd2, |V1|, |V2| ≥ ζn
and eG−F (V1, V2) = 0, before deleting the edges of F and replacing G′ in S by G′[V1] and G′[V2].

Once this process terminates, for t := |S|, enumerate S as {G1, . . . , Gt}. Note that, from the process, if i ̸= j,
then we have deleted all of the edges in G between V (Gi) and V (Gj), while each Gi is (ζ, λ, d)-connected (and
so, in particular, J3 holds) with size at least ζd, and we deleted at most t · λd2 edges from G to get

⋃
i∈[t] Gi.

Noting that V (G) = V (G1) ∪ . . . ∪ V (Gt) is a partition, we will define a J satisfying J1 and J2, and show that
t ≤ 2K, completing the proof of the lemma.

Note that, t ≤ |V (G)|/(ζd) ≤ K/ζ = Kλ−1/4, and the number of deleted edges is at most t · λd2. Denote by J
the vertices of G which are incident to more than λ1/5d deleted edges. Note that

|J | ≤ 2t · λd2

λ1/5d
≤ 2Kλ−1/4 · λd2

λ1/5d
≤

√
λd, (5)

where we have used that λ ≪ 1/K. Thus, J1 holds.

Now, for each i ∈ [t] and v ∈ V (Gi)\J , v is adjacent to at most λ1/5d edges in G that were deleted (as v /∈ J) and
at most |J | ≤

√
λd edges to J . Thus, as G is (β, d,K)-dense and λ ≪ β, v has at least (1− β)d−

√
λd−λ1/5d ≥

(1 − 2β)d neighbours in Gi − J . As |V (Gi)| ≤ |V (G)| ≤ Kd, Gi − J is therefore (2β, d,K)-dense, so J2 holds.
As, for each i ∈ [t], we now have |V (Gi)| ≥ (1 − 2β)d ≥ d/2, we get the improved bound t ≤ 2|V (G)|/d ≤ 2K,
completing the proof of the required properties.

Next, we show that our connectivity implies we can find a short connecting path between any two vertex sets
which are not too small.

Lemma 5.4. Let 1/d, ζ, λ ≤ 1 and K ≥ 1. Let G be (ζ, λ, d)-connected and have at most Kd vertices, and
suppose U, V ⊂ V (G) are sets with size at least ζn.

Then, G contains a path from U to V with length at most 8K/λ.

Proof. Let ℓ = 4/(Kλ). Let U0 = U . For each 1 ≤ i ≤ 2ℓ in turn, let Ui = Ui−1 ∪ NG(Ui−1). Then,
U0 ⊂ U1 ⊂ U2 ⊂ . . . ⊂ U2ℓ is a nested sequence of sets in V (G), and |V (G)| ≤ Kd, so there must be > ℓ values
of i ∈ [2ℓ] for which |Ui \Ui−1| ≤ 2Kd/ℓ. Therefore, we can find some j ∈ [2ℓ− 1] such that |Uj \Uj−1| ≤ 2Kd/ℓ
and |Uj+1 \ Uj | ≤ 2Kd/ℓ. Then,

eG(Uj , V (G) \ Uj) = eG(Uj \ Uj−1, Uj+1 \ Uj) ≤
(2Kd

ℓ

)2

≤ λd2.

As G is (ζ, λ, d)-connected, we therefore must have that either |Uj | < ζd or |V (G)\Uj | < ζd. As |Uj | ≥ |U0| ≥ ζd,
we thus must have |V (G) \ Uj | < ζd, and hence V ∩ Uj ̸= ∅. That is, there is a path from U to V in G with
length at most j ≤ 2ℓ− 1 ≤ 8K/λ, as required.

Combined with Observation 5.2, this tells us that many such (almost as short) paths will exist, as follows.
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Corollary 5.5. Let 1/d, ζ, λ ≤ 1 and K ≥ 1. Let G be (ζ, λ, d)-connected and have at most Kd vertices, and
suppose U, V ⊂ V (G) are sets with size at least ζn.

Then, G contains at least λ2d2/32K edge-disjoint paths from U to V with length at most 16K/λ.

Proof. Take a maximal collection R of edge-disjoint paths from U to V in G which each have length at most
16K/λ and let the set of all of their edges be E. Then, by Lemma 5.4, the maximality of R implies that G−E is
not (ζ, λ/2, d)-connected. Therefore, by Observation 5.2, we must have |E| ≥ λd2/2. Thus, |R| ≥ |E|/(16K/λ) ≥
λ2d2/32K, as required.

From this corollary, we can now show that we can even find many of these paths which only use internal vertices
in a pre-selected, small vertex set (chosen randomly within the proof).

Lemma 5.6. 1/d ≪ q ≪ λ, ζ, 1/K, ε ≤ 1. Let G be a (ζ, λ, d)-connected graph such that ∆(G) ≤ d, |V (G)| ≤ Kd,
and δ(G) ≥ ζd.

Then, there is some W ⊆ V (G) with |W | ≤ 2ε|V (G)| and the following properties.

K1 For each distinct v, w ∈ V (G), G[W ] contains at least qd2 edge-disjoint paths of length at most 1/q between
NG(v) and NG(w).

K2 For all v ∈ V (G), dG(v,W ) ≤ 2εd.

Proof. Let W be a random subset of V (G), sampled by including each vertex independently at random with
probability ε. For each u, v ∈ V (G), we will show that K1 does not hold for that pair of vertices with probability

at most e−
√
d. Taking a union bound over all pairs of vertices will then show that K1 holds with probability at

least 3/4.

Fix then u, v ∈ V (G). Using Corollary 5.5, take a collection Ru,v of at least λ2d2/32K edge-disjoint paths from
NG(u) to NG(v) in G which each have length at most 16K/λ. Let Xu,v be the number of paths in Ru,v whose
vertices all lie in W . Note that, as the paths are edge-disjoint and ∆(G) ≤ d, changing whether a vertex is in W
or not can change Xu,v by at most d, so therefore Xu,v is d-Lipschitz. Furthermore, each path in Ru,v has all of
its vertices in W with probability at least ε1+16K/λ, so EXu,v ≥ (λ2d2/32K) · ε1+16K/λ ≥ 2qd2 as q ≪ λ, 1/K, ε.
Therefore, by Lemma 2.7, we have

P(Xu,v < qd2) ≤ 2 exp
(
− 1

2|V (G)|
·
(qd2

d

)2)
≤ 2 exp

(
− (qd)2

2Kd

)
≤ exp(−

√
d),

as claimed. Thus, as described above, by a suitable union bound, we have that K1 holds with probability at
least 3/4.

Furthermore, by a simple application of Chernoff’s bound and a union bound, as ∆(G) ≤ d, with probability at
least 3/4 we have that K2 holds. Finally, again by a simple application of Chernoff’s bound, with probability
at least 3/4 we have that |W | ≤ 2ε|V (G)|. Together, then, W satisfies all of the properties in the lemma with
positive probability, and hence some such W as desired must exist.

5.2 Decomposing dense spots into path forests with specified sizes

Using the work in Section 5.1 we can decompose each dense spot in Lemma 2.5 into a few connected dense spots
and join up any paths in the same path forest coming into the same connected dense spot. This will leave at
most d/2 paths coming into each dense spot, as there are at most d/2 distinct path forests to begin with. For
example, suppose we have paths P1, . . . , Pd/2 which are attached to a well connected dense spot G, where every
path Pi has length d/2. Having set aside a vertex subset of G to make connections (as in Section 5.1), we will
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then wish to find in G plenty (almost d/2) edge-disjoint paths of length (1 − ε)d − d/2 to join to the paths Pi

to get (roughly) a path of length (1 − ε)d, while decomposing the rest of the edges mostly into paths of length
(1 − ε)d. To make this easier, we find instead an edge-disjoint path forest of few paths which have the right
number of vertices, before using the connectivity property to join them up (including possibly to some path Pi).

To find edge-disjointly path forests with specified numbers of vertices in our dense spots we will use the following
lemma. Its proof is similar to that of Lemma 3.1: we partition the vertices into sets Ai, i ∈ [s], with s = 2d0.15

and find many large matchings between each of them, putting them together to find large path forests without
too many paths. Instead of decomposing the auxiliary graph Ks into paths of length (s − 1), however, we will
use Theorem 2.10 to mostly decompose Ks into paths of different lengths, chosen so that the path forests we
produce will have the desired size. For this, we start the proof by batching together the desired path forest sizes
into groups with similar sizes, as each path we find in Ks will produce many path forests with a similar size.

Lemma 5.7. Let 1/d ≪ β, 1/K ≪ ε ≤ 1. Let G be a (β, d,K)-dense graph. Let r ∈ N, and suppose n1, . . . , nr ∈
[εd, (1 − ε)d] are such that

∑
i∈[r] ni ≤ (1 − 103ε)|V (G)|d/2.

Then, G contains edge-disjoint path forests F1, . . . , Fr such that, for each i ∈ [r], |V (Fi)| = ni and Fi contains
at most d9/10 paths.

Proof. Note that we can assume that ε ≤ 1/103. Let n = |V (G)| ≤ Kd and note that r ≤ |E(G)|/(εd) ≤ Kd/2ε.
Let s = 2d0.15 and n̄ = ⌊n/s⌋ ≥ (1−ε)n/s. Take µ such that 1/d ≪ µ ≪ β, 1/K and µn ∈ N with µn = 0 mod n̄.
We will batch the lengths ni together so that in each batch they have length varying by only up to µn. For this,
for each i ∈ [r], let n′

i = ⌈ni/µn⌉ · µn ≤ ni + µn. Note that there are at most d/(µd) + 1 ≤ 2/µ different values
taken by n′

i, i ∈ [r], and∑
i∈[r]

n′
i ≤

∑
i∈[r]

(ni + µn) ≤ (1 − 103ε)n · d
2

+
Kd

2ε
· µn ≤ (1 − 5 · 102ε)n · d

2
, (6)

as 1/d ≪ µ ≪ β, 1/K, ε.

Let imin = min{n′
i/n̄ : i ∈ [r]} and imax = max{n′

i/n̄ : i ∈ [r]}, so that imin ≥ εn/n̄ ≥ εs and imax ≤
(1 − ε + µ)n/n̄ ≤ (1 − ε/2)s. Let I = {i : ∃j ∈ [r] s.t. n′

j = i · n̄}, so that imin ≤ i ≤ imax for each i ∈ I,

and |I| ≤ 2/µ. For each i ∈ I, let mi be the number of n′
j , j ∈ [r], with n′

j = i · n̄. Let η′ = 40d−0.2 and
d′ = (1 − η′)(1 − 100β)d/s. For each i ∈ I, let si = ⌈mi/d

′⌉. Then,

∑
i∈I

i · si ≤
∑
i∈I

i +
∑
i∈I

i · mi

d′
≤ 2s

β
+
∑
i∈I

i ·
|{j ∈ [r] : n′

j = i · n̄}|
(1 − η′)(1 − 100β)d/s

≤ εs2

10
+

∑
j∈[r]

n′
j

n̄
· s

(1 − η′)(1 − 100β)d

≤ εs2

10
+

∑
j∈[r]

n′
j

(1 − ε)n/s
· s

(1 − η′)(1 − 100β)d

(6)

≤ εs2

10
+ (1 − 5 · 102ε)n · d

2
· 1

(1 − ε)n/s
· s

(1 − η′)(1 − 100β)d

≤ (1 − ε/4)

(
s

2

)
≤

(
(1 −

√
ε/3)s

2

)
.

Thus, by Theorem 2.10, we can take a collection Q of edge-disjoint paths in Ks such that, for each i ∈ I, there
are si paths with i vertices in Q. For each i ∈ I, let Qi be the set of paths in Q with i vertices, so that |Qi| = si.

Let γ = 2d−0.4. Apply Lemma 3.7 to G with (1−ε)d in place of d and 2ε in place of γ to find a subgraph G′ ⊂ G
with |V (G′)| ≥ (1 − 100ε)|V (G)| and some d0 ≥ (1 − 100ε)d such that, for each v ∈ V (G′), dG′(v) = (1 ± γ)d0.
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Let η = 4d−0.4. As in the proof of Lemma 3.1, using the local lemma, take a partition of V (G′) as A1, . . . , As

for which the following properties hold.

L1 For each v ∈ V (G) and i ∈ [s], dG(v,Ai) = (1 ± η)d/s.

L2 For each i ∈ [s], |Ai| = (1 ± η)n/s.

Note that η′ = 40d−0.2 = 20
√
η and d′ = (1 − η′)d0/s. For each edge e = jk in the complete s-vertex graph Ks,

using Lemma 2.9, L1, and L2, find d′ edge-disjoint matchings in G[Aj , Ak] which each have at least (1 − η′)n/s
edges. Call these matchings Me,i, i ∈ [d′].

For each P ∈ Q and i ∈ [d′], let FP,i be the path forest with vertex set ∪j∈V (P )Aj and edge set ∪e∈E(P )Me,i.
Observe that, as the paths in Q are edge-disjoint, the subgraphs FP,i, P ∈ Q and i ∈ [d′] are edge disjoint.
Moreover, observe that, for each P ∈ Q and i ∈ [d′], if j is an interior vertex of P , then there are at most
2(|Aj | − (1 − η′)n/s) vertices in Aj which are an endvertex of a path in FP,i. Thus, the number of paths in FP,i

is at most, by L2,

2(1 + η)
n

s
+ (s− 2) · 2((1 + η) − (1 − η′))

n

s
≤ 3n

s
+ 4η′n ≤ 4n

s
≤ d9/10,

as n ≤ Kd, s = 2d0.15 and 1/d ≪ 1/K.

Thus, the path forests FP,i, P ∈ Q and i ∈ [d′], are edge-disjoint, each have at most d9/10 paths, and, for each
i ∈ I, there are at least si · d′ ≥ mi path forests with n̄ · i vertices. Thus, by the choice of the mi, i ∈ I, we can
find r edge-disjoint path forests Fi, i ∈ [r], in G such that, for each i ∈ [r], Fi has at most d9/10 paths and at least
n′
i ≥ ni vertices. Iteratively removing n′

i − ni leaves from Fi, for each i ∈ [r], then gives the desired paths.

For our application, we now prove a simple variant of Lemma 5.7 in which the endvertices of the paths additionally
satisfy some weak spreadness condition.

Corollary 5.8. Let 1/d ≪ β, 1/K ≪ ε ≤ 1. Let G be a (β, d,K)-dense graph. Let r ∈ N, and suppose
n1, . . . , nr ∈ [εd, (1 − ε)d] are such that

∑
i∈[r] ni ≤ (1 − 2 · 103ε)|V (G)|d/2.

Then, G contains edge-disjoint path forests F1, . . . , Fr such that, for each i ∈ [r], ni ≤ |V (Fi)| ≤ (1 + ε)ni and Fi

contains at most d9/10 paths, and each vertex in G appears as the endpoint of at most d19/20 paths in F1, . . . , Fr.

Proof. For each i ∈ [r], let n′
i = (1 + ε)ni, noting that∑

i∈[r]

n′
i = (1 + ε)

∑
i∈[r]

ni ≤ (1 − ε)(1 − 2 · 103ε) · |V (G)|
2

≤ (1 − 103ε) · |V (G)|
2

.

Therefore, by Lemma 5.7, we can find edge-disjoint path forests F ′
1, . . . , F

′
r in G such that, for each i ∈ [r],

|F ′
i | = n′

r and F ′
i contains at most d9/10 paths.

For each 1 ≤ i ≤ r in turn do the following to find Fi ⊂ F ′
i with at most d9/10 paths. Let Zi be the vertices of

G which appear as the endpoints of at least d19/20 different paths in Fj , j < i, so that |Zi| ≤ r · 2d9/10/d19/20 ≤
(Kd2/εd) · 2d−1/20 ≤ ε2d ≤ εni. Thus, we can iteratively delete any endpoints in Zi from the paths in F ′

i until
they are all outside of Zi, to get Fi, while deleting at most |Zi| ≤ εni vertices, so that, hence, |Fi| ≥ ni. By the
choice of Zi, i ∈ [r], the path forests Fi, i ∈ [r], have our desired properties.

We now use Corollary 5.8 to deduce an almost decomposition of a connected dense spot with a few attached
paths, as follows.
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Lemma 5.9. Let 1/d ≪ λ ≪ p, 1/K ≪ ε ≤ 1. Let G be a (λ1/4, λ/2, d)-connected graph which contains a set
J ⊂ V (G) with |J | ≤ εd/4 such that G − J is (p, d,K)-dense, and suppose that δ(G) ≥ d/8K and ∆(G) ≤ d.
Let P1, . . . , Pd/2 be edge-disjoint paths which each have exactly one vertex in G, which is, moreover, an endvertex

and in J . Suppose that no vertex of G is the endvertex of more than
√
d paths Pi, i ∈ [d/2].

Then, all but at most ε|V (G)|d edges of G ∪ P1 ∪ . . . ∪ Pd/2 can be decomposed into copies of P(1−ε)d.

Proof. Let q be such that 1/d ≪ q ≪ λ. By Lemma 5.6, there is a set W ⊂ V (G) with |W | ≤ λ|V (G)| and the
following property.

M For each distinct v, w ∈ V (G), there are at least qn2 edge-disjoint paths with length at most 1/q between
NG(v) and NG(w) in G[W ] with all their vertices in W .

Now, as G− J is (p, d,K)-dense, and |W | ≤ λd, G′ := G− J −W is (2p, d,K)-dense, and

|V (G′)| ≥ |V (G) \ J | − |W | ≥ δ(G− J) − λd ≥ (1 − p)d− pd = (1 − 2p)d. (7)

For each i ∈ [d/2], let ℓi be the length of Pi, and let ni ∈ [(1 − ε)d] be such that ℓi + ni = 0 mod (1 − ε)d. Note
that ∑

i∈[d/2]

ni ≤ (1 − ε)d · d/2
(7)

≤ (1 − ε/4)|V (G′)|d/2.

Using this, let s be the largest integer such that

(s− d/2) · (1 − ε)d +
∑

i∈[d/2]

ni ≤ (1 − ε/4)|V (G′)|d/2, (8)

and, for each d/2 < i ≤ s, let ℓi = 0 and ni = (1 − ε)d. Note that, by the choice of s,

(1 − ε/4)|V (G′)|d/2
(8)

≥
∑
i∈[s]

ni = (s− d/2) · (1 − ε)d +
∑

i∈[d/2]

ni ≥ (1 − ε/4)|V (G′)|d/2 − (1 − ε)d

≥ (1 − ε)|V (G)|d/2 ≥ |E(G)| − ε|V (G)|d/2, (9)

where we have used that ∆(G) ≤ d.

By Corollary 5.8, there are edge-disjoint path forests F1, . . . , Fs ⊂ G′, each of at most d9/10 paths, such that
ni ≤ |V (Fi)| ≤ (1 + ε)ni for each i ∈ [s] and every vertex in V (Gj) appears as the endvertex of at most d19/20

of the paths in F1, . . . , Fs. Now, for each i ∈ [s], let Ei be a set of pairs of vertices from the endvertices of
Fi and Pi so that Pi ∪ Fi + Ei is a path, and note that |Ei| ≤ d9/10 as Fi contains at most d9/10 paths. Let
F ⊂ {(i, xy) : i ∈ [d/2], xy ∈ Ei} be a maximal set for which there are edge-disjoint paths Ri,xy, (i, xy) ∈ F , for
which the following hold.

N1 For each (i, xy) ∈ F , Ri,xy is an x, y-path in G with length at most 2/q and internal vertices in W .

N2 For each i ∈ [d/2], the internal vertices of Ri,e, (i, e) ∈ F , are all distinct.

N3 Every vertex in V (G) appears in at most 2d199/200 edges in
⋃

(i,xy)∈F :v/∈{x,y} Ri,xy.

Suppose for contradiction that there is some (i, xy) with i ∈ [d/2] and xy ∈ Ei such that (i, xy) /∈ F . By N3
and as each vertex in G appears as the endvertex of at most

√
d paths Pi, i ∈ [d/2], and at most d19/20 of the

paths in F1, . . . , Fs, each vertex is in at most 2d199/200 + 2
√
d+ 2d19/20 ≤ qd/4 edges in paths in

⋃
(i,xy)∈F Ri,xy.

Using M, find a set R of qd2 edge-disjoint paths of length at most 1/q between NG(x) and NG(y) and internal
vertices in W . Note that, due to the maximality of F , every path in R must either contain an edge of Ri′,e,
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(i′, e) ∈ F , or contain an internal vertex in Ri,e, (i, e) ∈ F , or contain a vertex appearing in at most 2d199/200

edges in
⋃

(i′,e)∈F Ri′,e, or there is an edge from its endpoints to {x, y} which is in
⋃

(i,xy)∈F Ri,xy. However, in
order, this implies that

|R| ≤ s · d9/10 · 2

q
+ d9/10 · 2

q
· d +

s · 2 · d9/10 · (2/q)

2d199/200
· d + 2 · d9/10 · d ≤ qd2

2
, (10)

where we have used that s ≤ |V (G)| · (d/2)/((1 − ε)d) ≤ Kd. As (10) contradicts that |R| ≥ qd2, we must then
have that F = {(i, xy) : xy ∈ Ei}.

Now, note that, for each i ∈ [s], Pi ∪ Fi ∪ (
⋃

e∈Ei
Ri,e) is a path with length at least ℓi + ni. As, for each i ∈ [s],

ℓi + ni = 0 mod (1 − ε)d, Pi ∪ Fi ∪ (
⋃

e∈Ei
Ri,e) contains edge-disjoint copies of P(1−ε)d which cover at least

ℓi + ni edges. Therefore, in total, we can find edge-disjoint copies of P(1−ε)d which cover at least
∑

i∈[s](ℓi + ni)

edges of G ∪ (P1 ∪ . . . ∪ Pd/2). As the number of edges in P1 ∪ . . . ∪ Pd/2 is
∑

i∈[s] ℓi, and, from (9), these paths

cover all but at most ε|V (G)|d edges of G ∪ P1 ∪ . . . ∪ Pd/2, as required.

5.3 Proof of Lemma 2.5

Finally, then, we can prove Lemma 2.5.

Proof of Lemma 2.5. Take q and λ with 1/d ≪ q ≪ λ ≪ η. We will prove the lemma by induction on t = |F|.
If |F| = 0, then we must have that all of the path forests are empty, as there is nowhere for their endvertices to
go, and thus the result is trivial in this case. Suppose then that t ≥ 1 and that the lemma is true if |F| = t− 1,
and let |F| = t.

Let H = Gt, and, using B1, let XH ⊆ V (H) be such that XH contains all the vertices of ∪i∈[d/2]Pi in V (Gi)
(which are necessarily endpoints), and, for each v ∈ V (H), dH(v,XH) = (1 ± η)pd. From this, and as H is
(η, d,K)-dense, we have that H −XH is (2p, d,K)-dense. Therefore, by Lemma 5.3, we can find some s ∈ N and
a set J ⊂ V (H) \XH and vertex-disjoint subgraphs H1, . . . ,Hs whose vertex sets partition V (H) \XH such that
each Hi, i ∈ [s], is (λ1/4, λ, d)-connected, each Hi − J is (4p, d,K)-dense, s ≤ 2K, and |J | ≤

√
λd. Furthermore,

using that H is (η, d,K)-dense, and so each vertex in XH has at least (1 − η)d− (1 + η)pd ≥ d/2 neighbours in
V (H) \XH , partition XH as

⋃
i∈[s] XH,i so that, for each i ∈ [s] and v ∈ XH,i, v has at least d/4K neighbours

in G in V (Hi).

Let Q0 = ∅ and, for each i ∈ [d/2], let P0
i = Pi. We will show by induction the following claim, where, essentially,

for each j in turn, we look to connect paths in Pj−1
i (for each i ∈ [d/2]) with endvertices in Hj together while

decomposing at most 1 path from each Pj−1
i , i ∈ [d/2], along with the unused edges in Hj into copies of P(1−ε)d

using Lemma 5.9 (below, these copies of P(1−ε)d appear as those in the set Qj , while Pj
i will be some of the paths

in Pj−1
i which have been joined up where necessary so that they have no endpoints in Hj).

Claim 5.10. For each 0 ≤ j ≤ s, there are edge-disjoint path forests Pj
i , i ∈ [d/2], and Qj such that the following

hold (where O1–O3 allow us to maintain the properties for the paths Pj
i that will later allow us to apply the

induction hypothesis to these paths and G1, . . . , Gt−1).

O1 For each i ∈ [t−1], there is some Xi ⊆ V (Gi) so that Xi contains all of the vertices of V (Pj
1)∪ . . .∪V (Pj

d/2)

in V (Gi), and, for each v ∈ V (Gi), dGi
(v,Xi) = (1 ± η)pd.

O2 Each vertex v ∈ V (G1) ∪ . . . ∪ V (Gt−1) is an endpoint of in total at most
√
d paths from Pj

1 , . . . ,P
j
d/2.

O3 For each j′ ∈ [t− 1] and i ∈ [d/2] at most
√
d of the paths in Pj

i have at least one endpoint in Gj′ .

O4 For each i ∈ [d/2], the path forest Pj
i is contained in Pi ∪ (

⋃
j′≤j Hj′) and its paths have both endpoints in

∪j′>jXj′ .
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O5 Qj is a collection of edge-disjoint copies of P(1−ε)d with edges in E(
⋃

j′≤j Hj′) ∪ (
⋃

i∈[d/2] E(Pi)) which is

edge-disjoint from each Pj
i , i ∈ [d/2].

O6 The number of edges in
⋃

j′≤j Hj′ and
⋃

i∈[d/2] Pi which are not in Pj
i , i ∈ [d/2], or Qj is at most∑

j′≤j ε|V (Hj′)|d/2.

Proof. Note that this is easily true for j = 0 using that we set P0
i = Pi for each i ∈ [d/2] and Q0 = ∅, where

O1–O3 follow from B1–B3. Assume then that j ∈ [s] and that we have edge-disjoint path forests Pj−1
i , i ∈ [d/2],

and Qj−1 satisfying O1–O6 with j − 1 in place of j. For each i ∈ [d/2], let Ei ⊂ X
(2)
H,j be a maximal set of pairs

of vertices from the endpoints of Pj−1
i in XH,j such that Pj−1

i +Ei is a path forest (where it may be that none of

the pairs in Ei are edges in the graph). Note that in Pj−1
i + Ei at most 1 path will have an endpoint in V (Hj),

by the maximality of Ei.

We will now greedily find edge-disjoint paths Ri,e, i ∈ [d/2] and e ∈ Ei, such that, the following hold.

P1 For each i ∈ [d/2] and xy ∈ Ei, Ri,xy is an x, y-path in Hj with length at most 2/q.

P2 For each i ∈ [d/2], the internal vertices of Ri,e, e ∈ Ei, are all pairwise disjoint.

P3 Every vertex in V (Hj) appears in at most 2d3/4 edges in
⋃

i∈[d/2],e∈Ei
Ri,e.

To see this is possible, suppose we have found paths Ri,e, (i, e) ∈ F , for some F ⊂ {(i, e) : i ∈ [d/2], e ∈ Ei
j} and

are looking to find the path Ri′,xy, for some i′ ∈ [d/2] and xy ∈ Ei with (i′, xy) /∈ F . Let Zi′,xy be the set of
vertices v in Hj which either

• are in at least d3/4 edges in
⋃

(i,e)∈F Ri,e, or

• are an internal vertex of one of the paths Ri′,e, (i′, e) ∈ F , or

• are such that xv or yv are in some Ri,e, (i, e) ∈ F .

By O3 we have |F | ≤ d3/2, so that, using O3 and O2, we have

|Zi′,xy| ≤
d3/2 · (2/q)

d3/4
+ (2/q) ·

√
d + 2

√
d ≤ qd

4
. (11)

Let EF be the set of all the edges of all the paths Ri,e, i ∈ [d/2] and e ∈ Ei, so that |EF | ≤ (2/q) · d3/2 ≤ qd2/2
by O3. By the choice of XH,j , and as x, y ∈ XH,j implies dG(x, V (Hj)), dG(y, V (Hj)), and as λ ≪ 1/K and Hj

is (λ1/4, λ, d)-connected, by Corollary 5.5 there is a set R of at least qd2 edge-disjoint paths of length at most
1/q between NG(x, V (Hj) \ Zi′,xy) and NG(y, V (Hj) \ Zi′,xy) in G. As ∆(G) ≤ d, for each v ∈ V (G) at most d
of the paths in R go through v. Therefore, as |EF | ≤ qd2/2 and as |Zi′,xy| ≤ qd/4 by (11), we can find a path
R′

i′,xy ∈ R which has no vertex in Zi′,xy or edge in EF . Say R′
i′,xy has endpoints x′ ∈ NG(x, V (Hj) \Zi′,xy) and

y′ ∈ NG(y, V (Hj) \ Zi′,xy). Add edges xx′ and yy′ to R′
i′,xy and call this path Ri′,xy. Then, by the choice of

Zi′,xy (so that xx′, yy′ /∈ EF ) and EF , this path avoids all of the edges in EF , and its internal vertices are disjoint
from those of Ri′,e, (i′, e) ∈ F , and no vertex in V (Hj) appears in more than 2d3/4 edges in

⋃
(i,e)∈F∪{(i′,xy)} Ri,e.

Therefore, we can pick Ri′,xy as required, and thus can pick paths Ri,e, i ∈ [d/2] and e ∈ Ei satisfying P1–P3.

Now, for each i ∈ [d/2], by the choice of Ei and by P1 and P2, we have that Pj−1
i ∪ (

⋃
e∈Ei

Ri,e) is a path forest.

Let Pj
i be the path forest of paths in Pj−1

i ∪ (
⋃

e∈Ei
Ri,e) with no endvertices in Xj , so that, therefore, O4 holds.

For each i ∈ [d/2], by the maximality of Ei we have that there is at most one path in Pj−1
i \ Pj

i – call this path

Pi where it exists, and otherwise set Pi = ∅. Let H ′
j be Hj with the edges of the paths in Pj

i removed. Then, as
Hj − J is (4p, d,K)-dense, by P3, we have that H ′

j − J is (5p, d,K)-dense. Furthermore, as we removed at most
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(2/q) · d3/2 ≤ λd2/2 edges from Hj to get H ′
j , we have that H ′

j is (λ1/4, λ/2, d)-connected. Finally, each path Pi

which is non-empty has an endvertex with at least d/4K −
√
d ≥ d/8K neighbours in V (Hj) in G′. Thus, by

Lemma 5.9, there is a set, Q say, of copies of P(1−ε)d which decomposes all but at most ε|V (Hj)|d/2 of the edges
of G′

j ∪ (∪i∈[d/2]Pi). Let Qj = Qj−1 ∪ Q, and note that both O5 and O6 are satisfied. Finally, then, note that

O1–O3 hold as, for each i ∈ [t], all the endvertices of Pj
1 , . . . ,P

j
d/2 in V (Gi) are endvertices of Pj−1

1 , . . . ,Pj−1
d/2 .

Thus, O1–O6 hold, as required. ⊡

Setting j = s in Claim 5.10, take edge-disjoint path forests Ps
i , i ∈ [d/2], and Qs, such that O1–O6 hold. Now,

O4 implies that the collections of paths all have no endpoints in H, and therefore Qs is a collection of edge
disjoint copies of P(1−ε)d in G by O5 which, by O6, decomposes all but at most ε

∑
j∈[s] |V (Hj)|d/2 of the edges

of
⋃

j∈[s] Gj and Pi, i ∈ [d/2], which are not in Ps
i , i ∈ [d/2]. As there are at most |J |d+|V (Gt)|·pd ≤ ε|V (Gt)|d/2

edges of Gj which are not in
⋃

j∈[s] Hj , all but at most ε|V (Gt)|d edges of Gt and Pi, i ∈ [d/2], are contained

in Qs or Ps
i , i ∈ [2]. Then, using O1–O3, by the induction hypothesis on F ′ = {G1, . . . , Gt−1} and the paths

Ps
i , i ∈ [d/2], there is a set Q of copies of P(1−ε)d which decomposes all but at most ε

∑t−1
i=1 |V (Gi)|d edges of

F ′ = {G1, . . . , Gt−1} and the paths Ps
i , i ∈ [d/2]. Combined with Qs, this gives a set of copies of P(1−ε)d which

decomposes all but at most ε
∑t

i=1 |V (Gi)|d = ε|V (G)|d of the edges of F and Pi, i ∈ [d/2]. This completes the
proof of the induction step, and hence the lemma. □

6 Concluding remarks

In this paper, we showed that it is possible to approximately decompose d-regular graphs into paths with length
approximately d. Improving this to give a full answer to Kotzig’s orginal problem (Problem 1.1), even for large
d, appears very hard and certainly requires further new ideas and methods. This is true even for strengthening
Theorem 1.2 to find paths of length d instead of ⌈(1 − ε)d⌉, where it should be noted that our ‘dense spots’ may
have (slightly) fewer than d vertices and thus may not approximately decompose into paths of length d. Though
this paper is motivated by the paucity of results on the decomposition of sparse graphs, we note that Kotzig’s
problem is unsolved even in the dense regime, and showing that, when d = Ω(n), any d-regular n-vertex graph
can be decomposed into copies of Pd is an interesting open problem.

Decompositions of regular sparse graphs into other subgraphs have also been studied, where the existence of
sparse regular graphs with high girth mean that we can only study comparable questions to Problem 1.1 when
the graph will be decomposed into trees. Here, Graham and Häggkvist [23] conjectured in 1989 that any 2d-
regular graph decomposes into any d-edge tree, giving a far reaching generalisation of Ringel’s conjecture. This
problem is wide open. Theorem 1.2 implies that every 2d-regular graph decomposes approximately into copies of
Pd, and it would be very interesting to generalise this to obtain an approximate decomposition of any 2d-regular
graph into any d-edge tree, which appears to be beyond the capabilities of the methods used here.
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A Near regularisation: Proof of Lemmas 3.6 and 3.7

In this appendix, we prove the two lemmas we need to efficiently find near-regular subgraphs, which we restate
here for convenience.

Lemma 3.6. Let 1/C ′ ≪ 1/C ≤ 1. For any d, if a graph has degrees between d and Cd, then it contains a
subgraph with degrees between d′ and d′ + C ′ log d′ for some d′ ≥ d/C ′.

Lemma 3.7. There exists some C > 0 such that for each 1/d ≪ γ ≤ 1/100 the following holds. Let G be
a graph with d ≤ δ(G),∆(G) ≤ (1 + γ)d. Then, for some d′ ≥ (1 − 40γ)d, G contains a subgraph G′ with
|V (G′)| ≥ (1 − 40γ)|V (G)| and d′ ≤ δ(G′),∆(G′) ≤ d′ + C log d′.

As noted in [13, Section 8], these lemmas can be proved using a recent technique of Chakraborti, Janzer, Methuku
and Montgomery [12, 13]. In this, we take any graph G which is approximately regular and carefully take a random
subgraph G′ which we can show is slightly closer to being regular with positive probability (see [13, Section 2.4] for
a more detailed sketch). This will give us the following lemma, which we can then apply iteratively to ultimately
find a very nearly regular subgraph without losing very much in the average degree.

Lemma A.1. Let 1/d ≪ 1, ε ≤ 1/100 and γ ≥ 10ε such that εd ≥ 103 log d. Let G be a graph in which
d ≤ d(v) ≤ (1 + γ)d for each v ∈ V (G). Then, for some d′ ≥ (1 − 2ε)d, G contains a subgraph G′ with
d′ ≤ dG′(v) ≤ (1 + γ)(1 − ε/2)d′ and |V (G′)| ≥ (1 − 2ε)|V (G)|.

Proof. Let n = |V (G)| and assume that G has no edges between any vertex with degree at least d + 1 (for
otherwise we could delete such an edge and maintain that δ(G) ≥ d). Let UL = {v ∈ V (G) : d(v) ≤ (1 + γ/2)d}
and UH = {v ∈ V (G) : d(v) > (1 + γ/2)d} be the set of low and high degree vertices in G respectively, and note
that there are no edges in G[UH ]. Let G′ be a random subgraph of G given by
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• deleting each edge from UL to UH independently at random with probability ε, and
• deleting each vertex in UL independently at random with probability ε.

For each v ∈ V (G), let Bv be the event that v ∈ V (G′) but dG′(v) /∈ [(1 − 5ε/4)d, (1 − 7ε/4)(1 + γ)d]. Let
t = ⌈|V (G)|/d⌉ and let V (G) = A1 ∪ . . . ∪ At be an arbitrary partition of V (G) into sets with size between
d and d/2. For each i ∈ [t], let Bi be the event that |V (G′) ∩ Ai| < (1 − 2ε)|Ai|. Let d′ = (1 − 5ε/4)d, so
that, as (1 − 7ε/4) ≤ (1 − 5ε/4)(1 − ε/2), if no event Bv, v ∈ V (G), occurs, then the degrees of G′ are in
[d′, (1 − ε/2)(1 + γ)d′]. Furthermore, if no event Bi, i ∈ [t], occurs, then |V (G′)| ≥ (1 − 2ε)|V (G)|. Therefore, it
is sufficient to show that, with positive probability, no event Bv, v ∈ V (G), or Bi, i ∈ [t], holds.

For each i ∈ [t], as |Ai| ≥ d/2, we have, by Chernoff’s bound, that

P(Bi) = P(|Ai \ V (G′)| > 2ε|Ai|) ≤ 2 exp(−εd/24) ≤ d−3. (12)

If v ∈ UH , then, for each u ∈ V (G) with uv ∈ E(G), we have u ∈ UL, and so uv ∈ E(G′) exactly when u and uv are
not deleted, so the probability that uv ∈ E(G′) is (1−ε)2. Thus, if v ∈ UH , then E(dG−G′(v)) = (2ε−ε2) ·dG(v).
As γ ≥ 10ε and ε ≤ 1/100, we have here that (1 − 9ε/4) · dG(v) ≥ (1 − 9ε/4)(1 + γ/2)d ≥ (1 − 5ε/4)d. Thus,

P(Bv) ≤ P(dG′(v) /∈ [(1 − 9ε/4) · dG(v), (1 − 7ε/4) · dG(v)]) = P(dG−G′(v) /∈ [(7ε/4) · dG(v), (9ε/4) · dG(v)]).

Then, by Chernoff’s bound (in particular, Lemma 2.6 applied with γ = 1/10)

P(Bv) ≤ 2 exp(−(2ε− ε2)d/300) ≤ d−3. (13)

Now, suppose v ∈ UL. If v survives into V (G′), then, note that, for each uv ∈ E(G), if v ∈ UL, then the
probability that uv /∈ E(G′) is ε (the probability that v is deleted), while if v ∈ UH then the probabilty that
uv ∈ E(G′) is also ε (the probability that uv is deleted). Thus, if v ∈ UL, then E(dG−G′(v)|v ∈ V (G′)) = ε·dG(v).
As γ ≥ 10ε and ε ≤ 1/100, we have that dG(v) ≤ (1 + γ/2)d ≤ (1− 7ε/4)(1 + γ)d, so that, by Chernoff’s bound

P(Bv) ≤ P(dG−G′(v) ≥ 5εdG(v)/4|v ∈ V (G′)) ≤ exp(−εdG(v)/48) ≤ exp(−εd/48) ≤ d−3. (14)

By (12), (13), and (14), all the ‘bad events’ we have defined occur with probability at most d−3. Each ‘bad event’
is affected by the possible deletion of at most (1+γ)d vertices and (1+γ)d edges, and the possible deletion of each
vertex/edge affects at most (1+γ)d+1 ‘bad events’. As 1/d ≪ 1, we have e ·d−3 ·(2(1+γ)d((1+γ)d+1)+1) ≤ 1,
so by the local lemma there is some choice of G′ for which none of the ‘bad events’ hold, as required.

Note that if γ ≤ 1/10, then we can iteratively apply Lemma A.1 with ε = γ/20 at most 50 times to immediately
get the following corollary.

Corollary A.2. Let 1/d ≪ 1 and γ ≤ 1/10 such that γd ≥ 105 log d. Let G be a graph in which d ≤ d(v) ≤ (1 +
γ)d for each v ∈ V (G). Then, for some d′ ≥ (1−10γ)d, G contains a subgraph G′ with d′ ≤ dG′(v) ≤ (1 +γ/2)d′

and |V (G′)| ≥ (1 − 10γ)|V (G′)|.

We can now apply Corollary A.2 iteratively to prove Lemma 3.7.

Proof of Lemma 3.7. Let G0 = G, and let r be the smallest integer with γd/2r ≤ 105 log d. For each 0 ≤ i < r in
turn, apply Corollary A.2 with γ′ = γ/2i to Gi to get Gi+1 with |V (Gi+1)| ≥ (1 − 10γ/2i)|V (Gi+1)| and vertex
degrees in [di+1, (1 + γ/2i+1)di+1] for some di+1 ≥ (1 − 10γ/2i)di. Then, we have

|V (Gr)| ≥
r−1∏
i=0

(1 − 10γ/2i)|V (G)| ≥
(

1 − 10γ ·
∞∑
i=0

2−i
)
|V (G)| = (1 − 20γ)|V (G)|
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and the degrees in Gr are between [dr, (1 + γ/2r+1)dr] ⊂ [dr, dr + 105 log d], where

dr ≥
r−1∏
i=0

(1 − 10γ/2i)d ≥ (1 − 20γ)d,

so that G′ = Gr satisfies the required conditions with C = 2 · 105 as log dr ≥ (log d)/2.

Finally, we can prove Lemma 3.6.

Proof of Lemma 3.6. Note that we can assume that C ≥ 10 and 1/d ≪ 1. Let ε = 1/1000 and k = 105 logC.
Let G be a graph with vertex degrees between d and Cd. Apply Lemma A.1 iteratively k times to G to get a
subgraph G′′ in which the vertex degrees differ by a factor of at most max{1 + 10ε, (1− ε/4)k ·C} ≤ 1 + 1

100 with
d(G′) ≥ (1 − 2ε)kd(G) ≥ 2d/C ′. Then, applying Lemma 3.7 gives the required subgraph.
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