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Abstract

In 1975, Erdős asked for the maximum number of edges that an n-vertex graph can have if it does not contain
two edge-disjoint cycles on the same vertex set. It is known that Turán-type results can be used to prove an upper
bound of n3/2+o(1). However, this approach cannot give an upper bound better than Ω(n3/2). We show that, for
any k ≥ 2, every n-vertex graph with at least n · polylog(n) edges contains k pairwise edge-disjoint cycles with
the same vertex set, resolving this old problem in a strong form up to a polylogarithmic factor. The well-known
construction of Pyber, Rödl and Szemerédi of graphs without 4-regular subgraphs shows that there are n-vertex
graphs with Ω(n log log n) edges which do not contain two cycles with the same vertex set, so the polylogarithmic
term in our result cannot be completely removed.

Our proof combines a variety of techniques including sublinear expanders, absorption and a novel tool for
regularisation, which is of independent interest. Among other applications, this tool can be used to regularise an
expander while still preserving certain key expansion properties.

1 Introduction

Many questions in Extremal Graph Theory concern finding cycles, for example, see [14, 16, 44], and the nice survey
by Verstraëte [45]. There have been numerous powerful methods for embedding cycles (and paths) developed in the
past three decades, such as Robertson and Seymour’s work on graph linkage [38], Krivelevich and Sudakov’s use of
Depth First Search [31], and the use of expanders in a long line of work by Krivelevich (see, e.g., the survey [30]).

Determining, for each k ≥ 2, the maximum number of edges an n-vertex graph can have without containing a cycle
with length 2k is a fundamental problem in Turán theory that goes back to a paper by Erdős in 1938 [17]. The famous
conjecture that the answer to this problem should be Ω(n1+ 1

k ), to match an upper bound of Bondy and Simonovits [8],
remains wide open for k = 4 and k ≥ 6. What can we say about the cycles in graphs with n1+o(1) edges? This has
long been a subject of interest, and, for example, recently, answering a question of Erdős [20] from 1984, Liu and
Montgomery [33] showed among other related results that there is a constant c such that any n-vertex graph with at
least cn edges contains a cycle whose length is a power of 2.

In 1975, Erdős [19, Problem 29] proposed the following three simple-looking problems concerning cycles. What is the
maximum number of edges that an n-vertex graph can have if it does not contain

• two edge-disjoint nested cycles?
• two edge-disjoint nested cycles with no geometric crossings?
• two edge-disjoint cycles with the same vertex set?

Here, a sequence of cycles C1, C2, . . . , Ck is said to be nested if V (C1) ⊆ V (C2) ⊆ . . . ⊆ V (Ck). Two edge-disjoint
nested cycles are said to have no geometric crossings if, when the longer cycle is embedded to make a convex polygon,
the other cycle has no crossing edges.
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Bollobás [7] resolved the first problem in 1978 by showing that there is a constant c such that any n-vertex graph with
at least cn edges contains two edge-disjoint nested cycles. In 1996, Chen, Erdős and Staton [13] extended this result
by showing there is a constant ck such that any n-vertex graph with at least ckn edges contains k edge-disjoint nested
cycles. Fernández, Kim, Kim and Liu [21] resolved the second problem by showing that there is a constant c such that
any n-vertex graph with at least cn edges must contain two edge-disjoint nested cycles with no geometric crossings.

The third problem, however, is different because the answer is not linear in n. Indeed, Pyber, Rödl, and Szemerédi [37]
observed that this problem is related to the well-known Erdős-Sauer problem (as discussed further later), and used
their remarkable construction of n-vertex graphs with Ω(n log log n) edges and no 4-regular subgraph, to show that
there are n-vertex graphs with Ω(n log log n) edges which do not contain two edge-disjoint cycles with the same vertex
set. In this paper, we consider this third problem of Erdős, which we restate for convenience.

Problem 1 (Erdős [19], 1975). What is the maximum number of edges that an n-vertex graph can have if it does
not contain two edge-disjoint cycles with the same vertex set?

In the nearly 50 years since Erdős posed this problem, it has been reiterated several times in the literature, including
by Bollobás [6, Chapter 7, Problem 23] in his popular book Extremal Graph Theory, by Pyber, Rödl and Szemerédi [37]
in 1995 in the context of the Erdős-Sauer problem as mentioned above, and by Chen, Erdős and Staton [13] in 1996
in the context of finding cycles with many chords. However, despite this, and the development of powerful embedding
techniques for paths and cycles, the only progress on Problem 1 has been concluded from results on Turán numbers.
Here, Chen, Erdős and Staton [13] observed that the upper bound O(n7/4) for Problem 1 follows from a well-known
theorem of Kővári, Sós and Turán [29], since the complete bipartite graph K4,4 contains two edge-disjoint cycles
with the same vertex set. More generally, we can use as an upper bound the Turán number of any fixed graph H

which contains two edge-disjoint cycles with the same vertex set. This approach, however, cannot yield an upper
bound better than n3/2+o(1), by a simple application of the probabilistic deletion method. In recent years it has been
observed [42] that this upper bound can indeed be proven using developments on Turán-type problems. For instance,
as the 2-blowup of a cycle contains two edge-disjoint cycles with the same vertex set, a result of Janzer [23] gives an
upper bound of n3/2+o(1) for Problem 1. (Here the 2-blowup of a graph F is the graph obtained by replacing each
vertex of F with an independent set of size 2 and each edge of F by a K2,2.)

In this paper, we give the first methods to directly approach this problem (Problem 1), greatly reducing the gap
between the previous best known upper bound of n3/2+o(1) and the best known lower bound of Ω(n log logn), and
resolving the problem up to a polylogarithmic factor in the following stronger form.

Theorem 2. There is some t such that the following holds. For each k ≥ 2, there is a constant c = c(k) such that
any n-vertex graph with at least cn(log n)t edges contains k pairwise edge-disjoint cycles with the same vertex set.

Key to our result is a novel technique for efficiently finding a nearly regular subgraph in a graph whose vertex
degrees differ by at most some constant multiple. Importantly, this technique combines well with sublinear expansion
properties (see Section 7), allowing us to find subgraphs which are very close to being regular and which have some
expansion properties. Our new regularisation method has further applications, as discussed in Section 8, and is thus
of independent interest.

More on lower bounds and further related results. As mentioned above, Pyber, Rödl, and Szemerédi [37]
noted that the problem of finding edge-disjoint cycles on the same vertex set is related to the well-known Erdős-Sauer
problem [18] which asks for the maximum number of edges an n-vertex graph can have without containing a k-regular
subgraph. Indeed, for any k ≥ 2, the graph consisting of k pairwise edge-disjoint cycles on the same vertex set is
a 2k-regular graph. Answering a question of Erdős and Sauer, and building on important work of Alon, Friedland
and Kalai [4], Pyber [36] famously proved that for each ε > 0 and positive integer k, if n is sufficiently large, then
every n-vertex graph with at least n1+ε edges contains a k-regular subgraph. The construction of Pyber, Rödl, and
Szemerédi [37] mentioned before shows that, in fact, there is a constant c > 0 such that for every n, there exists an
n-vertex graph with at least cn log log n edges which does not contain a k-regular subgraph for any k ≥ 3. Janzer and
Sudakov [24] recently showed that this lower bound is best possible, thus resolving the Erdős-Sauer problem. More
precisely, they showed that there is a constant c = c(k) such that any n-vertex graph with at least cn log log n edges
contains a k-regular subgraph. It would be very interesting to determine whether our bound in Theorem 2 can also
be improved to Ok(n log log n).
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Note that if we have two edge-disjoint cycles C1, C2 on the same vertex set, then C1 is a cycle with at least as many
chords as it has vertices (as the edges of C2 are chords of C1). In 1996, Chen, Erdős and Staton [13] considered the
problem of finding such a cycle. They showed that any n-vertex graph with at least 2n3/2 edges has a cycle with as
many chords as vertices. Improving this bound, Draganić, Methuku, Munhá Correia and Sudakov [15] recently showed
that any n-vertex graph with at least n(log n)8 edges contains a cycle with as many chords as vertices. (Note that
Theorem 2 implies this result up to a polylogarithmic factor.) Furthermore, resolving a problem of Erdős [18] from
1975, Bradač, Methuku and Sudakov [9] showed that there exists a constant c such that every n-vertex graph with
at least cn3/2 edges contains a cycle with all diagonals (where a diagonal in a cycle is a chord joining two vertices at
maximum distance on the cycle).

Organisation. The rest of this paper is organised as follows. In Section 2, we give an overview of the proof of
Theorem 2. In Section 3, we present the key lemmas that we will need, some of whose proofs are given in the later
sections. In Section 4, we prove our key regularisation lemma. In Section 5, we prove some more auxiliary lemmas
that are needed in our proof. We prove our main result (Theorem 2) in Section 6. In Section 7, building on the work
of [11], we prove a general lemma for expanders which we use to connect pairs of vertices using vertex-disjoint paths
through random subsets of vertices. Some further upcoming applications and extensions of our regularisation lemma
are discussed in Section 8. Finally, in an appendix, we include the variant we need of a standard approach to find a
sublinear expander in an arbitrary graph.

Notation. We use standard graph theoretic notation throughout the paper. In particular, for a graph G, we denote
by d(G) its average degree, and by δ(G), ∆(G) its minimum degree and maximum degree, respectively. A graph G

is called K-almost-regular if ∆(G) ≤ Kδ(G). We call a graph (d± d′)-nearly-regular if every vertex in the graph has
degree between d− d′ and d+ d′. For a set F ⊆ E(G), we denote by G− F the graph obtained from G after deleting
all the edges in F . For a set S ⊆ V (G), let G[S] denote the subgraph of G induced by S. We denote the number of
edges of G by e(G), and for S ⊆ V (G), let eG(S) denote the number of edges of G induced by S. For v ∈ V (G) and
S ⊂ V (G), we write dG(v, S) for |NG(v) ∩ S|. For two disjoint sets A,B ⊆ V (G), G[A,B] is the bipartite subgraph
of G with parts A and B consisting of all edges of G between A and B. Moreover, eG(A,B) is the number of edges
of G which are incident to both A and B. For a bipartite graph G with the bipartition A ∪ B, a set S ⊂ V (G) is
called balanced (with respect to the bipartition of G) if |S ∩ A| = |S ∩ B|. A p-random subset of a set S is obtained
by keeping each element of S independently at random with probability p.

For distinct vertices u, v, a u-v path is a path joining u and v. For a u-v path P , the vertices u, v are called the
endpoints of P , and the rest of the vertices of P are called internal vertices of P . For a set V , a path through V is
one whose internal vertices are all in V .

The asymptotic notation o(1) denotes a function that tends to 0 as n → ∞, unless specified otherwise. Throughout
the paper we often omit the rounding functions of real numbers for the clarity of presentation. For a positive integer
n, we write [n] to denote the set {1, 2, . . . , n}. Logarithms are with base 2.

2 Proof sketch

In order to first introduce the main ideas in our proof, we will describe how to approach a simplified version of our
problem in Subsection 2.1, before covering the additional ideas needed for the full problem in Subsection 2.2. We
then give a detailed outline of our proof of Theorem 2 in Subsection 2.3 and a sketch of our key near-regularisation
lemma in Subsection 2.4. In our discussion, we say a graph is ‘almost-regular’ if its vertex degrees are the same up to
a constant factor, while it is ‘(very) nearly regular’ if it is much closer to being regular and the vertex degrees are the
same up to some small additive polylogarithmic term.

2.1 A simplified problem: combining near-regularity and expansion

In order to introduce some of the ideas we use, we will first consider a simpler ‘approximate’ version of the problem.
Suppose we have an n-vertex graph G with at least n(log n)C edges (for some large constant C) in which we wish to
find k edge-disjoint cycles Ci, i ∈ [k], such that |V (Ci)△V (Cj)| = o(|Ci|) for each i ̸= j. Suppose we found within
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G a d-regular subgraph H with d ≈ (log n)C/2 (this can be achieved with known techniques, using, e.g., Pyber [36]).
Taking t = (log n)C/4, we could divide V (H) into t sets V1, V2, . . . , Vt of roughly equal size and conclude using a simple
Chernoff bound that, with high probability, every H[Vj , Vj+1] is approximately regular. Within each H[Vj , Vj+1] we
could use this near-regularity (via, for example, Vizing’s theorem) to find k large edge-disjoint matchings, M i

j , i ∈ [k].
These matchings will be large enough that, for each i ∈ [k], letting F i be ∪jM i

j together with some isolated vertices,
F i will be a linear forest with vertex set V (H) with (1 + o(1))|V (H)|/t paths. Dividing into random vertex sets and
finding matchings to glue together to create linear forests is a well known technique, used, for example in [25]. If we
can then, edge-disjointly, join up each linear forest F i into a cycle Ci using short connecting paths, we will have found
k edge-disjoint cycles with almost the same vertex set.

A common way to join vertices by paths is to use expansion properties. We will use a very weak form of expansion
called sublinear expansion (which originates from the work of Komlós and Szemerédi [27, 28] and has since found several
important applications, see e.g., [2, 11, 26, 33] and the nice survey by Letzter [32]). It is easy to prove that sublinear
expanders can be found in essentially any graph. Moreover, recent work by Bucić and Montgomery [11] (using some
ideas from Tomon [43]) shows that random vertex subsets in sublinear expanders with at least polylogarithmic average
degree are likely to inherit some expansion properties. Thus, if the graph H above was also a sublinear expander (see
Subsection 3.1 for the notion of expansion we use), we could change our partition of V (H) to R, V1, . . . , Vt, before
proceeding as outlined above to obtain edge-disjoint linear forests F i, i ∈ [k], with vertex set ∪tj=1Vj and then using
vertices from R to connect each linear forest F i into a cycle Ci.

In order to successfully combine these approaches by regularity and by expansion, we will need to answer the following
meta-question.

Question. Given any graph with at least polylogarithmic average degree, can we find a dense subgraph H which is
extremely close to being regular and which has some expansion properties?

Despite regularity and sublinear expansion being key properties that have been used to prove various results about
sparse graphs, there has been no good answer to this meta-question so far in the literature. Perhaps the closest is
by Draganić, Methuku, Munhá Correia and Sudakov [15], who recently used sublinear expanders which are almost-
regular, but the 100-almost-regularity they achieve is far too weak for the proposed outline above. A key contribution
of this paper is to address this issue by developing a novel near-regularisation technique for a graph G that is (say)
already 100-almost-regular, allowing us to find a subgraph H of G which is not only extremely close to being regular
but also contains a large random set of vertices A ⊂ V (G), and which contains a good proportion of the density of G.
In conjunction with our careful development of the techniques in [11] (for transferring some expansion properties into
the random subset A), this would allow us to carry out the outline above to find k edge-disjoint cycles with almost
the same vertex set.

This new regularisation technique has the potential to be an important tool in this area, and variants of this tool
allow it to be effective even in graphs with only (large) constant average degree. For example, in our upcoming paper
[12], building on this technique, we develop powerful methods for finding regular (or nearly-regular) subgraphs of large
degree. Variants of this lemma will also be used in [35]. For more on this, see the concluding remarks in Section 8.
We now state the variant we prove for this paper.

Lemma 3 (Regularisation lemma). For every λ > 1, there is some C ≥ 1 such that the following holds. Let G be an
n-vertex graph in which every vertex has degree between d and λd. Let A ⊂ V (G) be chosen by including each vertex
of G independently at random with probability 1/C. Then, with probability 1 − o(1), G contains a (d′ ± 105λ5 log n)-
nearly-regular subgraph H with d/C ≤ d′ ≤ d and A ⊂ V (H).

Due to its independent interest, we give a sketch of the proof of Lemma 3 in Subsection 2.4 before giving a complete
proof in Section 4. To reiterate, what makes this lemma particularly effective for our application (and potentially
others) is that it ensures that a large random subset A of vertices of the original graph G is contained in the nearly-
regular subgraph H (with high probability), allowing us to exploit the expansion properties of G. To illustrate this,
suppose that G is an expander. Then it is quite possible that the nearly-regular subgraph H we find in it is not an
expander (making H potentially useless for making the path connections required for building our edge-disjoint cycles
with the same vertex set). However, fortunately, since A is a random subset of the expander G, the lemma still allows
us to use the expansion properties of G to connect vertices of H using paths in G through the random subset A.
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2.2 The full problem: incorporating absorption

In order to find k edge-disjoint cycles with exactly the same vertex set, we will use absorption (the powerful method first
codified by Rödl, Ruciński and Szemerédi [39]). A natural absorption strategy applied to the outline in Subsection 2.1
would be to find a path Qi (for each i ∈ [k]) which can absorb any set Li ⊂ R of vertices that we do not use for
connecting the paths in the linear forest F i. Here, this would mean that there is a path Qi

∗ with the same endvertices
as Qi which has vertex set V (Qi) ∪ Li. To simplify matters, imagine that we could even find Qi as one of the paths
within F i. Then, substituting Qi by Qi

∗ in the cycle Ci in the outline (given in Subsection 2.1) will give a cycle with
vertex set exactly V (F i) ∪R = V (H) for all i ∈ [k].

It is relatively easy to find a suitable absorbing path Qi using expansion properties; however, we cannot guarantee that
it is one of the paths within F i, so the difficulty here is to find Qi in a way that it combines well with our approach
requiring near-regularity. More precisely, suppose that the final vertex set of the cycles Ci that we aim to find is V ∪R
for some V ⊂ V (H)\R. Then, note that, for the strategy outlined in Subsection 2.1 to succeed, we would like to have
that H[V \V (Qi)] is very nearly regular, for each i ∈ [k]. (Indeed, if this near-regularity does hold, then we can find a
spanning linear forest F i with few components in H[V \ V (Qi)], and we can connect the endpoints of the paths in F i

and the endpoints of Qi using paths through R to form a cycle, which can absorb the unused vertices of R, yielding a
cycle Ci with vertex set V ∪R for all i ∈ [k].) We will achieve this near-regularity by constructing the absorbing paths
Qi by concatenating s randomly selected short absorbing paths, each able to absorb just one pair of vertices. More
precisely, for some s, and vertex set X = {x1, . . . , xs+1}, each path Qi will consist of the concatenation of s short
absorbing paths, each joining xj and xj+1 for some j ∈ [s], and with (log n)O(1) vertices. To randomise these s short
absorbing paths, we do the following. Using some set U disjoint from X, we will construct for each j ∈ [s], k short
absorbing paths joining xj and xj+1 (using vertices from U) with the absorption property we want (see Definition 4
and the discussion after it) so that, across all j ∈ [s] the short absorbing paths found are vertex disjoint outside of
X. For each j ∈ [s], independently at random, we will assign the k short absorbing xj-xj+1 paths to the k cycles we
are constructing, and then, for each i ∈ [k], concatenate these s short absorbing paths to form the absorbing path Qi

assigned to the i-th cycle.

Let Uabs ⊆ U be the set of all the vertices outside of X used in the absorbing paths Qi over all i ∈ [k]. Then,
because of the randomised construction of Qi, for each vertex v, the expected degree (in H) of v into Uabs \ V (Qi) is
(1− 1

k )dH(v, Uabs). Take W ⊂ U \Uabs by including each vertex uniformly at random with probability (1− 1
k ). Then,

for every vertex v, the expected degree of v into W ∪(Uabs \V (Qi)) is equal to (1− 1
k )dH(v, U). As the short absorbing

paths are, indeed, short, there will be sufficient concentration that with high probability every vertex v will have
around (1− 1

k )dH(v, U) neighbours in W ∪ (Uabs \ V (Qi)). Thus, if all the vertex degrees in H are approximately the
same into U (which will hold because H is very nearly regular and U is a random subset), then with high probability,
we will have that H[W ∪ (Uabs \ V (Qi))] is approximately regular for each i ∈ [k]. Hence (by the discussion in the
previous paragraph, letting V = W ∪Uabs∪X) we can then carry out the strategy outlined in Subsection 2.1 to obtain
k edge-disjoint cycles with vertex set W ∪ Uabs ∪X ∪R, as desired.

Until now, we have ignored one complication which we now address. Our graph may be bipartite, and, indeed, as is
standard we may as well assume it is so. Therefore, an absorbing path will only be able to ‘absorb’ a balanced set
of vertices, that is, with the same number of vertices in each side of the bipartition. To be more precise, we use the
following notion of absorbers for our ‘short absorbing paths’.

Definition 4 (Absorber). Given distinct vertices a, b, y, z, and a set S of vertices with a, b, y, z ̸∈ S, an absorber for
the pair a, b is the union of two paths joining y and z, one with internal vertex set S, and another with internal vertex
set S ∪ {a, b}. We say that S is the interior of the absorber, and y and z are the endpoints of the absorber.

In the above outline, for every i ∈ [k], we would like to partition the ‘leftover set’ Li ⊂ R into balanced vertex pairs,
before absorbing the vertex pairs into the absorbing path Qi. It will not be hard to make sure that Li is balanced,
but we cannot take an absorber for every possible balanced pair of vertices, as there are too many possible pairs.
Therefore, we use a ‘robustly matchable’ bipartite graph (introduced by Montgomery [34]) as an auxiliary graph to
tell us for which pairs of vertices we need to construct absorbers. In more detail, we take random balanced sets R1, R2,
and let R = R1 ∪ R2. Let K be a robustly matchable bipartite graph with s edges, with small maximum degree and
with vertex set R1 ∪R2. We will ensure that each of the s short absorbing paths used to construct the absorbing path
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Qi is capable of absorbing a unique pair {a, b} with ab ∈ E(K). Then, once we have used (a balanced set of) vertices
from only R1 to connect the paths in the linear forest F i, K will have a perfect matching even after removing the
vertices in R1 which have been used (since it is ‘robustly matchable’). We can then absorb all of the vertex pairs in
this matching into Qi so that every vertex in R = R1 ∪R2 is contained in the cycle Ci.

2.3 Detailed outline

We will now make precise the ideas introduced in the previous two subsections and give a detailed overview of our
proof. Our aim is to find k edge-disjoint cycles on the same vertex set in a graph G with sufficiently many edges.

(a) Find a bipartite subgraph G′ of G which is a suitable expander such that G′ is an n-vertex graph with average
degree at least (log n)C (where C is a sufficiently large constant), where the vertex degrees differ by at most a
factor of 18 (using Lemma 6).

(b) Using Lemma 3, find a subgraph H ⊂ G′ that is very nearly regular, almost as dense as G′, and which contains
a random vertex subset A.

(c) Take pairwise disjoint random balanced subsets R1, R2, X, U in V (H) of appropriate sizes, where, as A∩R1 ⊂ R1

and A∩U ⊂ U , with high probability we will be able to connect vertex pairs in H using paths (in the expander
G′) through R1 and U . Let X := {x1, . . . , xs+1}. We think of R := R1 ∪R2 as a random ‘reservoir’.

Constructing absorbers

(d) Take a collection K := {p1, . . . , ps} of Θ(|R|) many balanced pairs in R such that K is ‘robustly matchable’
in the following sense: for every balanced set R′

1 ⊆ R1 with |R′
1| ≤ |R1|/2, there is a perfect matching in

K[(R1 ∪R2) \R′
1]. (Here, with a slight abuse of notation, we denote by K the graph whose vertex set is R and

whose edge set is K.)

(e) Using the expansion properties of G′, for every pj ∈ K, construct k absorbers Absij , i ∈ [k], with endpoints
xj and xj+1 whose interiors Si

j are pairwise disjoint subsets of U of size at most (log n)12. Here, each of the
absorbers Absij contains two paths joining xj and xj+1, one with internal vertex set Si

j , and another with internal
vertex set Si

j ∪ pj (i.e., Absij contains a path joining xj and xj+1 which can ‘absorb’ the pair pj). Let Uabs be
the set of vertices of U used in these absorbers.

(f) For every pj ∈ K, independently and randomly assign each of the k absorbers Absij , i ∈ [k], to a different cycle
that we aim to construct. For every i ∈ [k], let U i

abs be the (balanced) subset of Uabs consisting of those vertices
which are used in the absorbers assigned to the i-th cycle.

Observe that the union of absorbers assigned to the i-th cycle contains a path Qi (joining x1 and xs+1) with
vertex set U i

abs ∪X such that any pair in K can be ‘absorbed’ into Qi.

(g) Choose a balanced set W ⊂ U \ Uabs of size (1− 1
k )|U \ Uabs| uniformly at random.

Constructing k edge-disjoint linear forests

(h) For every i ∈ [k], let V i = W ∪ (Uabs \ U i
abs). (Note that V i is approximately distributed like a random subset

of U where each element of U is chosen with probability 1− 1
k .) Let V i

1 , . . . , V
i
t be a random partition of V i into

t balanced sets of equal size (where t is chosen appropriately).

(i) For every i ∈ [k], find nearly perfect matchings M i
j in H[V i

j , V
i
j+1] for all j ∈ [t−1] such that all these matchings

are pairwise edge-disjoint, and edge-disjoint from the absorbers. (This can be done since H[V i
j , V

i
j+1] is very

nearly regular due to the fact that H[U ] is very nearly regular and V i is distributed like a random subset of U .)
For every i ∈ [k], let F i be the linear forest obtained by taking the union of the matchings M i

j for j ∈ [t− 1].
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Extending the linear forests to k edge-disjoint cycles on the same vertex set

(j) Using the expansion properties of G′, connect the paths in F i and the endpoints x1 and xs+1 of the ‘absorbing’
path Qi through R1 (see Figure 1, where the connecting paths are the red, blue and purple paths). Ensure, in
addition, that all these connecting paths are internally vertex-disjoint and edge-disjoint from the absorbers.

(k) These connecting paths together with F i yield a path P i joining x1 and xs+1 with internal vertex set V i ∪Ri
1 =

W ∪ (Uabs \U i
abs)∪Ri

1, where Ri
1 ⊆ R1 is the set of vertices in R1 used in these connecting paths. We will ensure

that |Ri
1| ≤ |R1|/2. Note that the paths P i for i ∈ [k] are pairwise edge-disjoint since all of the connecting paths

are internally vertex-disjoint, and the linear forests F i (given by (i)) are pairwise edge-disjoint. Furthermore,
each P i is edge-disjoint from the absorbers too (as both the linear forests F i and the connecting paths through
R1 are).

(l) Since K is ‘robustly matchable’, (d) ensures that there is a perfect matching Ki in K[(R1 \Ri
1) ∪R2] for every

i ∈ [k]. By ‘absorbing’ all of the pairs in Ki into the path Qi (given by (f)), we obtain a path Qi
∗ with endpoints

x1 and xs+1 and with vertex set V (Qi
∗) = U i

abs ∪ X ∪ (R1 \ Ri
1) ∪ R2. The path Qi

∗ together with the path
P i (given by (k)) yields a cycle Ci with vertex set W ∪ Uabs ∪ X ∪ R for every i ∈ [k]. Hence, we found k

edge-disjoint cycles on the same vertex set, as desired.

Figure 1: Constructing the i-th cycle Ci.

2.4 Finding very nearly regular subgraphs

Let us now give a sketch of the proof of Lemma 3. We will obtain the desired nearly-regular subgraph in G by finding
a sequence G =: G0 ⊃ G1 ⊃ G2 ⊃ . . . of subgraphs such that each Gi+1 is a ‘bit more regular’ than Gi but has
similar average degree. We terminate the process once Gi is sufficiently regular and let H be this final subgraph. Let
us explain how, given a graph Gi whose degrees are between di and (1 + γ)di, we find a subgraph Gi+1 ⊂ Gi with
better regularity properties. Let UL = {v ∈ V (Gi) : dGi

(v) ≤ (1 + γ/2)di} be the set of ‘low-degree vertices’ in Gi,
and let UH = {v ∈ V (Gi) : dGi(v) > (1 + γ/2)di} be the set of ‘high-degree vertices’ in Gi. Let ε = γ/100 and let
Gi+1 be the subgraph of Gi obtained by

• deleting edges within UH independently at random with probability 2ε− ε2,
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• deleting edges from UL to UH independently at random with probability ε, and
• deleting vertices in UL independently at random with probability ε.

It is easy to see that if v ∈ UL, then

E[dGi+1(v) | v ∈ V (Gi+1)] = (1− ε)dGi(v),

whereas if v ∈ UH , then

E[dGi+1
(v)] = (1− ε)2dGi

(v).

This means that, on average, the degrees of high-degree vertices drop faster than the degrees of low-degree vertices.
Hence, (provided that we have suitable concentration), Gi+1 will have slightly better regularity properties than Gi.
This can be continued as long as degrees differ by more than an additive term of roughly log n, as we then have enough
concentration to take a union bound over all vertices in Gi. Thus, we eventually arrive at a graph that is extremely
close to being regular. The other crucial property, namely that V (H) contains a large random subset A of V (G), will
follow from the observation that in each step we keep each vertex v ∈ V (Gi) with probability at least 1 − ε, so even
after taking many steps of this process, vertices in G ‘survive’ with at least a positive constant probability.

3 Key lemmas and tools

One of the key results we will use in the proof of Theorem 2 is our regularisation lemma (Lemma 3), discussed in the
proof sketch (Section 2). In the following subsections we present the other main tools that we will need in our proof.

3.1 Sublinear expansion

We use the following definition of an expander graph from [11] (see [11] for more details of the development of this
style of expansion, including related definitions developed independently by Haslegrave, Kim, and Liu [22] and by
Sudakov and Tomon [41]).

Definition 5. An n-vertex graph G is an (ε, s)-expander if, for every U ⊆ V (G) and F ⊆ E(G) with 1 ≤ |U | ≤ 2
3n

and |F | ≤ s|U |, we have

|NG−F (U)| ≥ ε|U |
(log n)2

. (1)

The following lemma finds an almost-regular (bipartite) expander in any graph while losing at most a logarithmic
factor in the average degree. In our proof of Theorem 2, we use this lemma to pass to such an expander.

Lemma 6. Let n be a sufficiently large integer and let 0 < ε < 2−3. Let G be an n-vertex graph with d(G) ≥ (log n)4.
Then, G contains an 18-almost-regular bipartite subgraph G′ with d(G′) ≥ d(G)

400 logn which is an (ε, s)-expander for some

s ≥ d(G′)
(log |V (G′)|)2 .

The proof of Lemma 6 is by now standard. Following, for example, [15] we first find within G a 6-almost-regular
bipartite subgraph with average degree at least d(G)/100 log n (using a result proved in [3] and [10]), before finding
within this an expander with large minimum degree using the variation in [11] on the standard proofs to find sublinear
expanders. For completeness, we include a full proof of Lemma 6 in the appendix.

3.2 Connecting pairs of vertices using vertex-disjoint paths through a random set

In the proof of Theorem 2, we will often connect pairs of vertices with internally vertex-disjoint paths through a given
set. The following definition describes a set through which we can simultaneously connect many pairs of vertices. The
condition on the pairs we connect is a little intuitive as it restricts the number of neighbours (with multiplicity) some
vertices can have among the vertices in the pairs. This condition will be convenient for us to use as we will be working
in almost-regular subgraphs G, where we will have D ≈ d(G)1−ε for some small ε > 0.
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Definition 7 (Connecting set). Let G be an n-vertex graph. We say that a set V ⊂ V (G) is D-connecting (in G)
if for every sequence x1, . . . , xr, y1, . . . , yr of (not necessarily distinct) vertices outside of V such that each vertex in
V has at most D neighbours in the multiset {x1, . . . , xr, y1, . . . , yr}, there is a collection of internally vertex-disjoint
paths Pxiyi , i ∈ [r], such that, for each i ∈ [r], Pxiyi is an xi − yi path (in G) through V of length at most (log n)6.

The following lemma shows that random subsets of vertices of (a sufficiently regular) expander are connecting sets.

Lemma 8. Let G be an n-vertex (ε, s)-expander with minimum degree δ and maximum degree ∆, where 2−90 < ε < 1

and s ≥ p−4(log n)30 for some 100 logn
δ ≤ p ≤ 1. Let V be a p-random subset of V (G). Then, with probability 1− o(1),

V is D-connecting for D = p9sδ
∆(logn)73 .

We prove this lemma in Section 7. Its proof is an adaptation of arguments from [11] together with some new ideas.
At the beginning of Section 7, we provide a detailed overview of how our result and argument differ from those in [11].

3.3 Absorbers

For convenience, we recall here our definition for an absorber.

Definition 9 (Absorber). Given distinct vertices a, b, y, z, and a set S of vertices with a, b, y, z ̸∈ S, an absorber for
the pair a, b is the union of two paths joining y and z, one with internal vertex set S, and another with internal vertex
set S ∪ {a, b}, neither of which contains any edges between the vertices a, b, y and z. We say that S is the interior of
the absorber, and y and z are the endpoints of the absorber.

Note that, compared to Definition 4, we have added the technical condition that there is no edge between a, b, y and
z in the absorbers. We will now construct an absorber for a given pair of vertices a, b (see Figure 2), using a natural
construction that appears in, for example, [34].

An absorber for the pair a, b. Let t be an even integer. Let u1, u2, . . . , ut and v1, v2, . . . , vt be two paths such that
u1 = v1 = a, ut = vt = b and ui ̸= vj for all 1 < i, j < t. Take two new vertices, y and z. Let P 1 be a path from y to v2,
let P t−1 be a path from ut−1 to z, and for 2 ≤ i ≤ t− 2 let P i be a path joining ui and vi+1. Suppose, moreover, that
the paths P 1, P 2, . . . , P t−1 are pairwise vertex-disjoint and do not contain a or b. Let S = (∪t−1

i=1V (P i)) \ {a, b, y, z}.

Consider the following two paths.

• y, P 1, v2, a, u2, P 2, v3, v4, P 3, . . . , ut−3, ut−2, P t−2, vt−1, b, ut−1, P t−1, z.

• y, P 1, v2, v3, P 2, u2, u3, P 3, v4, v5, P 4, u4, . . . , ut−3, P t−3, vt−2, vt−1, P t−2, ut−2, ut−1, P t−1, z.

Note that the first path has internal vertex set S∪{a, b}, and the second path has internal vertex set S (see Figure 2).
Hence, the union of these paths is an absorber for a, b with endpoints y and z.

Figure 2: The absorber for the pair a, b when t = 8. The edges are coloured blue, and the
paths P 1, P 2, . . . , P 7 are coloured red.

The next lemma allows us to construct absorbers for given pairs of vertices by first connecting the pairs using paths
through a connecting set U1, and then making further connections using paths through another connecting set U2.
(The existence of such connecting sets will come from Lemma 8.)
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Lemma 10. Let G be a bipartite graph with parts A and B, and let U1, U2 ⊆ V (G) be disjoint sets such that Ui is
Di-connecting for each i ∈ [2]. Let y1, . . . , yr, z1, . . . , zr ∈ V (G), a1, . . . , ar ∈ A and b1, . . . , br ∈ B be (not necessarily
distinct) vertices outside of U1 ∪ U2 such that yi, zi, ai and bi are distinct for each i ∈ [r],

(i) every vertex in U1 has at most D1

(logn)6 neighbours in the multiset {a1, . . . , ar, b1, . . . , br}, and

(ii) every vertex in U2 has at most D2 neighbours in the multiset U1 ∪ {y1, . . . , yr, z1, . . . , zr}.

Then, for each i ∈ [r] there is an absorber Absi for the pair ai, bi with endpoints yi and zi such that the interiors of
these absorbers are pairwise disjoint subsets of U1 ∪ U2 of size at most (log n)12.

Proof. Consider the sequence σ obtained by replacing every element of the sequence a1, . . . , ar, b1, . . . , br with (log n)6

copies of that element. Then, by (i) of the lemma, every vertex in U1 has at most D1 neighbours in the multiset
consisting of the elements of σ. Therefore, since U1 is D1-connecting (see Definition 7), we can find (log n)6 many
ai-bi paths of length at most (log n)6 with internal vertices in U1 for every i ∈ [r] such that all these paths are pairwise
internally vertex-disjoint. Thus, for every i ∈ [r], we can find two paths Qi, Q

′
i between ai and bi such that the lengths

of Qi and Q′
i are the same, the paths Qi, Q

′
i have their internal vertices in U1, and all these paths are pairwise internally

vertex-disjoint. For every i ∈ [r], let Qi = u1
iu

2
i . . . u

ti
i and Q′

i = v1i v
2
i . . . v

ti
i , where u1

i = v1i = ai and uti
i = vtii = bi (see

e.g., the two blue paths between a and b in Figure 2). Note that ti must be even because ai and bi are on opposite sides
of the bipartition A∪B. Next, since U2 is D2-connecting, using (ii) of the lemma, we can find paths P 1

i , P
2
i , . . . , P

ti−1
i

of length at most (log n)6 joining the pairs (yi, v2i ), (u2
i , v

3
i ), (u

3
i , v

4
i ), . . . , (u

ti−2
i , vti−1

i ), (uti−1
i , zi), respectively, for every

i ∈ [r] (see e.g., the red paths in Figure 2) such that all these paths are pairwise internally vertex-disjoint, and the
internal vertices of all these paths are in U2. For each i ∈ [r], let Si = ∪ti−1

j=1 V (P j
i ) \ {ai, bi, yi, zi}. Then, for each

i ∈ [r], by the discussion before Figure 2, there exists an absorber Absi for the pair ai, bi with interior Si and endpoints
yi and zi. As the sets Si, i ∈ [r], are pairwise disjoint subsets of U1 ∪ U2 of size at most (log n)6 · (log n)6 = (log n)12

by construction, this completes the proof of the lemma.

We use the following lemma to construct our absorbers in the proof of Theorem 2 (see Subsection 6.2).

Lemma 11. Let k be a positive integer and let G be a bipartite graph with parts A and B. Let R,X,U1, U2 ⊆ V (G)

be disjoint sets such that Ui is Di-connecting for i ∈ [2]. Let K ⊆ (R∩A)× (R∩B) be a set of vertex pairs such that
no vertex of R appears in more than 200 pairs in K. Assume that |X| = |K| + 1 and write X = {x1, . . . , xs+1} and
K = {p1, . . . , ps}. Suppose that

(i) every vertex v ∈ U1 satisfies dG(v,R) ≤ D1

200k(logn)6 , and

(ii) every vertex v ∈ U2 satisfies dG(v, U1 ∪X) ≤ D2

2k .

Then, for all i ∈ [k] and j ∈ [s] there is an absorber Absij for the pair pj with endpoints xj and xj+1 such that the
interiors of these absorbers (for all i ∈ [k] and j ∈ [s]) are pairwise disjoint subsets of U1∪U2 of size at most (log n)12.

Proof. Let r = ks. For j ∈ [s], let pj = (p1j , p
2
j ). For every i ∈ [r], find the unique j ∈ [s] such that s divides i− j, and

set ai = p1j , bi = p2j , yi = xj and zi = xj+1. Since each vertex in R appears in at most 200 pairs (p1j , p2j ) ∈ K, it follows
that each vertex in R appears at most 200k times in the multiset {a1, . . . , ar, b1, . . . , br}. Thus, by (i) of the lemma,
every vertex in U1 has at most D1

(logn)6 neighbours in the multiset {a1, . . . , ar, b1, . . . , br}. Moreover, each vertex in X

appears at most 2k times in the multiset {y1, . . . , yr, z1, . . . , zr} (and every element of the multiset is in X). Hence,
by (ii) of the lemma, every vertex in U2 has at most D2 neighbours in the multiset U1 ∪ {y1, . . . , yr, z1, . . . , zr}. Thus,
we can apply Lemma 10 to find the desired absorbers.

3.4 Robustly matchable bipartite graphs

We use robustly matchable bipartite graphs as auxiliary graphs to tell us which pairs of vertices to construct absorbers
for (see Subsection 6.2 for more details). These graphs were introduced in [34] to find spanning trees in random graphs.
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Lemma 12 (Lemma 10.7 in [34]). For every sufficiently large m, there exists a bipartite graph H with maximum
degree at most 100 with vertex classes X and Y ∪Z, with |X| = 3m and |Y | = |Z| = 2m such that the following holds.
For every Z ′ ⊆ Z with |Z ′| = m, there is a perfect matching in H between X and Y ∪ Z ′.

We deduce the following bipartite analogue of the above lemma, which is essential for our proof.

Lemma 13. For every sufficiently large m, there exists a bipartite graph H with an odd number of edges, with maximum
degree at most 102, and with vertex classes A1 ∪ A2 and B1 ∪B2, with |A1| = |B1| = 2m and |A2| = |B2| = 5m such
that the following holds. For every A′

1 ⊆ A1 and B′
1 ⊆ B1 with |A′

1| = |B′
1| ≥ m, there is a perfect matching in H

between A′
1 ∪A2 and B′

1 ∪B2.

Proof. Consider a bipartite graph H satisfying the property in Lemma 12 with m, and take two vertex-disjoint copies
of it, H1 and H2, where Hi has vertex classes Xi and Yi∪Zi. Define A1 = Z1, B1 = Z2, A2 = X2∪Y1 and B2 = X1∪Y2.
Consider a perfect matching M between A1 and B1. Consider the graph H that is the union of H1, H2, and M . If
this graph H contains an even number of edges, then we add an arbitrary edge to it so the number of edges is odd.
We next show that this graph satisfies the other desired properties. Clearly, H has maximum degree at most 102 and
|A1| = |B1| = 2m and |A2| = |B2| = 5m. Now, suppose that A′

1 ⊆ A1 and B′
1 ⊆ B1 with |A′

1| = |B′
1| ≥ m. Then, first,

find a matching M ′ ⊆ M between A′
1 and B′

1 of size |A′
1| −m. Let A′′

1 = A′
1 \ V (M ′) and B′′

1 = B′
1 \ V (M ′). Since

|A′′
1 | = |B′′

1 | = m, by the properties of Hi, we can find a perfect matching M1 between X1 and Y1 ∪ A′′
1 and another

perfect matching M2 between X2 and Y2 ∪ B′′
1 . By taking the union of M ′, M1, and M2, we get the desired perfect

matching between A′
1 ∪A2 and B′

1 ∪B2.

3.5 Concentration inequalities

We will use the following basic version of the Chernoff bound for the binomial random variable (see, for example, [5]).

Lemma 14 (Chernoff bound). Let n be an integer and 0 ≤ δ, p ≤ 1. If X ∼ Bin(n, p), then, setting µ = E[X] = np,

we have

P(X > (1 + δ)µ) ≤ e−δ2µ/2 and P(X < (1− δ)µ) ≤ e−δ2µ/3.

We will also often use the following well-known martingale concentration result (see Chapter 7 of [5]).

Lemma 15. Suppose that X :
∏N

i=1 Ωi → R is k-Lipschitz. Then, for each t > 0,

P(|X − E[X]| > t) ≤ 2 exp

(
−t2

2k2N

)
.

4 Finding a nearly-regular subgraph containing a random vertex subset

In this section we prove our regularisation lemma (Lemma 3) following the sketch in Subsection 2.4. At the heart of
its proof is the following lemma, which shows, roughly speaking, that in any graph G we can find a subgraph with
similar average degree to G but with slightly better regularity properties, and which in addition contains a very large
random subset of the vertices.

Lemma 16. Let ε, γ > 0 with ε ≤ 1/100 and γ ≥ 10ε. Let n and d be such that εd ≥ 104 log n. Let G be a graph on at
most n vertices such that d ≤ dG(v) ≤ (1 + γ)d for each v ∈ V (G). Let A ⊂ V (G) be chosen by including each vertex
of G independently at random with probability 1− ε. Then, with probability at least 1− 1

n2 , G contains a subgraph G′

such that A ⊂ V (G′) and, for some (1− 2ε)d ≤ d′ ≤ d, we have d′ ≤ dG′(v) ≤ (1− ε
2 )(1 + γ)d′ for each v ∈ V (G′).

Proof. Let UL = {v ∈ V (G) : dG(v) ≤ (1 + γ/2)d} and UH = {v ∈ V (G) : dG(v) > (1 + γ/2)d} be the set of low and
high degree vertices in G, respectively.

Let G′ be the random subgraph of G obtained by
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(i) deleting edges within UH independently at random with probability 2ε− ε2,

(ii) deleting edges from UL to UH independently at random with probability ε, and

(iii) deleting vertices in UL independently at random with probability ε.

Note that, equivalently, V (G′) can be generated by taking V (G′) = (A ∩ UL) ∪ UH . Hence, we may assume that
A ⊂ V (G′).

Now note that if v ∈ UL and uv ∈ E(G), then conditional on v ∈ V (G′), the probability that uv ∈ E(G′) is precisely
1 − ε. Indeed, if u ∈ UL, then (conditional on v ∈ V (G′)) uv ∈ E(G′) holds if and only if u did not get deleted by
(iii), which has probability 1− ε, and if u ∈ UH , then (conditional on v ∈ V (G′)) uv ∈ E(G′) holds if and only if the
edge uv did not get deleted by (ii), which has probability 1− ε.

Moreover, if v ∈ UH and uv ∈ E(G), then the probability that uv ∈ E(G′) is precisely (1− ε)2 = 1− 2ε+ ε2. Indeed,
if u ∈ UL, then uv ∈ E(G′) holds if and only if u did not get deleted by (iii) and the edge uv did not get deleted by
(ii), which has probability (1 − ε)2, whereas if u ∈ UH , then uv ∈ E(G′) holds if and only if the edge uv did not get
deleted by (i), which has probability 1− (2ε− ε2).

Hence, if v ∈ UL, then conditional on v ∈ V (G′) the distribution of dG′(v) is Bin(dG(v), 1 − ε), and if v ∈ UH , then
the distribution of dG′(v) is Bin(dG(v), (1− ε)2).

It follows from the Chernoff bound (Lemma 14) that if v ∈ UL, then, as dG(v) ≥ d,

P
(
dG′(v) <

(
1− 5

4
ε
)
d | v ∈ V (G′)

)
≤ P

(
Bin(d, 1− ε) <

(
1− 5

4
ε
)
d

)
= P

(
Bin(d, ε) >

5

4
εd

)
≤ e−(1/4)2εd/2 ≤ 1

n4
.

Moreover, if v ∈ UH , then

P
(
dG′(v) >

(
1− 7

4
ε
)
(1 + γ)d

)
≤ P

(
Bin((1 + γ)d, (1− ε)2) >

(
1− 7

4
ε
)
(1 + γ)d

)
= P

(
Bin((1 + γ)d, 2ε− ε2) <

7

4
ε(1 + γ)d

)
≤ P

(
Bin

(
(1 + γ)d,

15

8
ε
)
<

7

4
ε(1 + γ)d

)
≤ e−(1/15)2εd/3 ≤ 1

n4
,

where the penultimate inequality follows from the Chernoff bound (Lemma 14 applied with δ = 1/15), using that
7
4ε(1 + γ)d = (1− 1

15 ) · E[Bin((1 + γ)d, 15
8 ε)] and εd ≤ E[Bin((1 + γ)d, 15

8 ε)]. Furthermore, if v ∈ UH , then

P
(
dG′(v) <

(
1− 5

4
ε
)
d

)
≤ P (dG′(v) < d) ≤ P

(
Bin((1 + γ/2)d, (1− ε)2) < d

)
≤ P (Bin((1 + γ/2)d, 1− 2ε) < d)

= P (Bin((1 + γ/2)d, 2ε) > γd/2) ≤ e−εd ≤ 1

n4
,

where the penultimate inequality follows from the Chernoff bound since 2εd ≤ E[Bin((1 + γ/2)d, 2ε)] ≤ γd/4.

Note also that, if v ∈ UL ∩ V (G′), then dG′(v) ≤ (1 + γ
2 )d ≤ (1 − 7

4ε)(1 + γ)d (with probability 1). Thus, for every
v ∈ V (G), conditional on v ∈ V (G′), the probability that (1− 5

4ε)d ≤ dG′(v) ≤ (1− 7
4ε)(1 + γ)d is at least 1− 1

n3 .

Hence, by the union bound, the probability that (1− 5
4ε)d ≤ dG′(v) ≤ (1− 7

4ε)(1 + γ)d for each v ∈ V (G′) is at least
1− 1

n2 . Setting d′ = (1− 5
4ε)d, we have

d′ ≤ dG′(v) ≤
(
1− 7

4
ε

)
(1 + γ)d =

1− 7
4ε

1− 5
4ε

(1 + γ)d′ ≤
(
1− ε

2

)
(1 + γ)d′

for each v ∈ V (G′), as required.

Proof of Lemma 3. Let C be sufficiently large (in terms of λ) to support our argument. If d < C log n, then we may
take d′ = d/C and let H be the empty graph on vertex set V (G), so let us assume that d ≥ C log n. Let ε = 104λ5 logn

d .
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Since C is sufficiently large and d ≥ C log n, we have ε ≤ 1/100. Let k be the smallest non-negative integer such that
λ(1− ε/2)k ≤ 1+10ε. Since λ(1− ε/2)n ≤ λe−εn/2 ≤ λe−εd/2 < 1, we have k ≤ n. Moreover, clearly λ(1− ε/2)k ≥ 1,
so (1− ε/2)k ≥ 1/λ.

We will prove by induction on i that

(∗) for each 0 ≤ i ≤ k, if Ai is a (1− ε)i-random subset of V (G), then with probability at least 1− i
n2 , G contains a

subgraph Gi such that Ai ⊂ V (Gi) and for some (1 − 2ε)id ≤ di ≤ d, we have di ≤ dGi
(v) ≤ λ(1 − ε/2)idi for each

v ∈ V (Gi).

Assuming that (∗) holds, we have in particular (taking i = k) that if Ak is a (1 − ε)k-random subset of V (G),
then with probability at least 1 − k

n2 = 1 − o(1), G contains a subgraph Gk such that Ak ⊂ V (Gk) and for some
(1 − 2ε)kd ≤ dk ≤ d, we have dk ≤ dGk

(v) ≤ λ(1 − ε/2)kdk for each v ∈ V (Gk). Then we have dk ≤ dGk
(v) ≤

(1 + 10ε)dk ≤ dk + 10εd = dk + 105λ5 log n for each v ∈ V (Gk), so Gk is (dk ± 105λ5 log n)-nearly-regular. Moreover,
since (1−ε/2)k ≥ 1/λ, it follows that (1−2ε)k ≥ 1/λ5, hence dk ≥ d/λ5 ≥ d/C. Finally, since (1−ε)k ≥ 1/λ5 ≥ 1/C,
Ak (and hence V (Gk)) contains a suitable random subset of V (G), so H = Gk and d′ = dk satisfy the conditions of
the lemma.

It remains to prove (∗). Note that (∗) trivially holds for i = 0. Assume now that it holds for some 0 ≤ i < k. Let
Ai ⊂ V (G) have the property that G contains a subgraph Gi such that Ai ⊂ V (Gi) and, for some (1− 2ε)id ≤ di ≤ d,
we have di ≤ dGi

(v) ≤ λ(1 − ε/2)idi for each v ∈ V (Gi). By the definition of k, we have λ(1 − ε/2)i ≥ 1 + 10ε.
Moreover, since (1 − ε/2)i ≥ 1/λ, we have di ≥ (1 − 2ε)id ≥ d/λ5 as before, so εdi ≥ 104 log n. Now let Ri+1 be
a (1 − ε)-random subset of V (Gi), and let Ai+1 = Ri+1 ∩ Ai. Then, by applying Lemma 16 (with Gi and Ri+1

playing the roles of G and A respectively), with probability at least 1 − 1
n2 , Gi contains a subgraph Gi+1 such that

Ai+1 ⊂ Ri+1 ⊂ V (Gi+1) and, for some (1 − 2ε)di ≤ di+1 ≤ di, we have di+1 ≤ dGi+1(v) ≤ λ(1 − ε/2)i+1di+1 for all
v ∈ V (Gi+1). Moreover, Ai+1 is a (1− ε)-random subset of Ai. Hence, if Ai is a (1− ε)i-random subset of V (G), then
Ai+1 is a (1− ε)i+1-random subset of V (G). This completes the induction step and the proof of the lemma.

5 Further auxiliary lemmas

We now give the results that we use to find the linear forests (in Subsection 5.1) and well-behaved vertex subsets (in
Subsections 5.2 and 5.3) in the proof of Theorem 2.

5.1 Matchings covering most vertices

We will use the following lemma to construct our linear forests in the proof of Theorem 2 (see Subsection 6.3) by
taking the union of almost-perfect matchings that are chosen randomly. Crucially, the lemma allows us to appropriately
bound the degrees of vertices into the set Y of ‘unmatched’ vertices (which is essential for connecting these vertices
using paths through R1 in (j) in Subsection 2.3 of the proof sketch).

Lemma 17. Let G be a graph and let V1, . . . , Vt be disjoint subsets of V (G) such that, for each j ∈ [t− 1], the degree
of every vertex in G[Vj , Vj+1] is between δ and ∆. Let T1, . . . , Tn be subsets of V (G) such that, for each i ∈ [n] and
j ∈ [t], we have |Ti ∩ Vj | ≤ r. Assume that 1− δ/∆ ≤ t−1/2 log n. Then, there exist matchings Mj for each j ∈ [t− 1]

in G[Vj , Vj+1] such that, if Y consists of all those vertices y ∈ V1 ∪ Vt which belong to neither M1 nor Mt−1 and all
those vertices y ∈ Vj with 2 ≤ j ≤ t− 1 which do not belong to both Mj−1 and Mj, then |Y | ≤ 10|

⋃t
i=1 Vi|t−1/2 log n

and |Y ∩ Ti| ≤ 10rt1/2 log n for all i ∈ [n].

Proof. It is well known that every bipartite graph with maximum degree at most ∆ has a proper edge-colouring with
∆ colours. Let us take such a colouring of G[Vj , Vj+1] for each j ∈ [t − 1]. The colour classes give a collection of
at most ∆ matchings in G[Vj , Vj+1] which partition the edge set of G[Vj , Vj+1]. For each j ∈ [t − 1] independently,
let Mj be the matching defined by a uniformly random colour class in G[Vj , Vj+1]. For each vertex u ∈ G[Vj , Vj+1],
the probability that u belongs to Mj is at least d(u)/∆ where d(u) is the degree of u in the graph G[Vj , Vj+1].
Hence, the probability that u does not belong to Mj is at most 1 − δ/∆. It follows that, for each i ∈ [t], we have
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E[|Y ∩ Ti|] ≤ tr · 2(1− δ/∆) ≤ 2rt1/2 log n. Moreover, the choice for Mj changes the value of |Y ∩ Ti| by at most 2r

(since |Ti ∩ Vj |, |Ti ∩ Vj+1| ≤ r). Hence, by Lemma 15,

P
(
|Y ∩ Ti| ≥ 10rt1/2 log n

)
≤ P

(
|Y ∩ Ti| − E[|Y ∩ Ti|] ≥ 5rt1/2 log n

)
≤ 2 exp

(
−(5rt1/2 log n)2

2(2r)2t

)
≤ 1

2n
.

Thus, by the union bound over all i ∈ [n], with probability at least 1/2 we have |Y ∩ Ti| ≤ 10rt1/2 log n for all i ∈ [n].

Furthermore, since the probability that any given vertex u ∈ V (G) is in Y is at most 2(1−δ/∆) ≤ 2t−1/2 log n, it follows
that E[|Y |] ≤ 2|

⋃t
i=1 Vi|t−1/2 log n. Hence, by Markov’s inequality, the probability that |Y | ≥ 10|

⋃t
i=1 Vi|t−1/2 log n

is at most 1/5. Thus, with positive probability, the matchings Mj for j ∈ [t− 1] satisfy the desired properties.

5.2 Degrees to a random subset of vertices

For (i) in Subsection 2.3 (of the proof sketch), we want to preserve some near-regularity conditions while taking a
random vertex subset, for which we use the following lemma.

Lemma 18. Let G be an n-vertex graph. Let V ⊆ V (G). Let d ≥ (log n)15, let 0 ≤ d′ ≤ d and let 1 ≤ t ≤ d be an
integer. Let U be a uniformly random subset of V of size ⌊ 1t |V |⌋.

(a) If v ∈ V (G) satisfies dG(v, V ) ≤ d+ d′, then dG(v, U) ≤ 1
t d+ d′ + d2/3 with probability 1− n−ω(1).

(b) If v ∈ V (G) satisfies dG(v, V ) ≥ d− d′, then dG(v, U) ≥ 1
t d− d′ − d2/3 with probability 1− n−ω(1).

We will deduce this from the following more general technical lemma which allows, in addition to the uniformly random
subset U , some further random subsets in which vertices can appear with some dependencies (as we need for picking
our absorbers randomly in (f) in Subsection 2.3 (of the proof sketch)). Lemma 18 easily follows from the following
result by setting V = V ′, τ = 1, and s = 0.

Lemma 19. Let G be an n-vertex graph. Let V ′ ⊆ V (G). Let d ≥ (log n)15, 0 ≤ d′ ≤ d and let 1 ≤ t ≤ d and s ≥ 0

be integers. Let τ = 1 or τ = t − 1. Let V i
j , i ∈ [t] and j ∈ [s], be pairwise disjoint sets in V (G) \ V ′ satisfying

|V i
j | ≤ d1/8. Let V = V ′ ∪

(⋃
i∈[t],j∈[s] V

i
j

)
. For every j ∈ [s], let Sj be a uniformly random subset of [t] of size τ . Let

U be a uniformly random subset of V ′ of size ⌊ τt |V
′|⌋. Let Z denote the random set U ∪

(⋃
j∈[s],i∈Sj

V i
j

)
.

(1) If v ∈ V (G) satisfies dG(v, V ) ≤ d+ d′, then dG(v, Z) ≤ τ
t d+ d′ + d2/3 with probability 1− n−ω(1).

(2) If v ∈ V (G) satisfies dG(v, V ) ≥ d− d′, then dG(v, Z) ≥ τ
t d− d′ − d2/3 with probability 1− n−ω(1).

Proof. To avoid unimportant technicalities, assume that |V ′| is divisible by t. Note that it suffices to prove the lemma
in the special case where V ′ = ∅. Indeed, in the general case, let us take an enumeration

{
ui
j : i ∈ [t], s+1 ≤ j ≤ s+ |V ′|

t

}
of the elements of the set V ′ uniformly at random and define new sets V i

j := {ui
j} for i ∈ [t], s + 1 ≤ j ≤ s + |V ′|

t .
Then we can apply the lemma in the V ′ = ∅ case (with s replaced by s+ |V ′|

t and with the sets V i
j for all i ∈ [t] and

j ∈
[
s + |V ′|

t

]
), since the random subset Z has the same distribution as before. Thus, for the rest of the proof we

assume that V ′ = ∅.

We have E[dG(v, Z)] = τ
t dG(v, V ). Since τ = 1 or τ = t − 1 and |V i

j | ≤ d1/8 for each i ∈ [t] and j ∈ [s], changing
the choice of Sj (for some j ∈ [s]) can change the value of dG(v, Z) by at most d1/8. Note that the random variable
dG(v, Z) depends on at most dG(v, V ) ≤ d + d′ ≤ 2d choices of Sj , j ∈ [s], namely only those j ∈ [s] for which
NG(v) ∩

(⋃
i∈[t] V

i
j

)
̸= ∅. Thus, for each v ∈ V (G), we can apply Lemma 15 with some N ≤ 2d for both (1) and (2),

to show that the corresponding event does not occur with probability at most

P
(∣∣dG(v, Z)− E[dG(v, Z)]

∣∣ ≥ d2/3
)
≤ 2 exp

(
−(d2/3)2

2(d1/8)2 · 2d

)
= n−ω(1),

completing the proof.
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5.3 Finding vertex sets with good degree control and good connectivity properties

The following lemma will be used to find a suitable subgraph G′ and connecting sets R1, R2, X, U1, U2 ⊂ V (G′) in
the proof of Theorem 2 (see Subsection 6.1). The lemma ensures that the degrees of vertices to the sets R1, R2, X, U1

in G are bounded appropriately. More crucially, it also ensures that G′[U1 ∪ U2] = G′[U ] is extremely close to being
regular (which is essential for constructing nearly perfect matchings, as explained in (i) in Subsection 2.3 of the proof
sketch).

Lemma 20. There is an absolute constant C such that the following holds. Let t be a fixed positive integer, let n be
sufficiently large and let G be a bipartite n-vertex 18-almost-regular (ε, s)-expander with average degree d = d(G) ≥
(log n)C , where s ≥ d/(log n)2 and 2−90 < ε < 1. Let m1, . . . ,mt be positive integers greater than n/d1/10 and smaller
than n/(t log n). Then, there exists a graph G′ ⊂ G and pairwise disjoint subsets S1, . . . , St ⊂ V (G′) such that, for
each i ∈ [t], we have that

(i) Si is balanced (with respect to the bipartition of G),

(ii) |Si| = 2mi,

(iii) Si is Di-connecting in G for Di =
p9
id

(logn)76 , where pi =
mi

n ,

(iv) there exists some di such that dmi

Cn ≤ di ≤ Cdmi

n , and di − d
2/3
i ≤ dG′(v, Si) ≤ di + d

2/3
i holds for every v ∈ V (G′)

and

(v) dG(v, Si) ≤ Cdmi

n holds for every v ∈ V (G).

Proof. We will take C to be large enough so that the following arguments hold when d ≥ (log n)C . By Lemma 3 (with
λ = 18), there exists some constant C0 such that if A is a (1/C0)-random subset of V (G), then with probability 1−o(1),
G contains a (d′ ± C0 log n)-nearly-regular subgraph G′, where d/C0 ≤ d′ ≤ d and A ⊂ V (G′). Let n′ = |V (G′)|.
Note that, since A ⊂ V (G′), with probability 1− o(1) we have n′ ≥ n/(2C0). Furthermore, for each i ∈ [t], if Bi ⊂ A

is chosen by including each vertex independently at random with probability mi/n, then Bi is a (mi/nC0)-random
subset of V (G). Thus, by Lemma 8 and as G is 18-almost-regular, mi > n/d1/10, and s ≥ d

(logn)2 , we have that Bi is
Di-connecting in G with probability 1− o(1).

Therefore, in total, we can conclude that we can choose some G′ ⊂ G with the following properties.

(a) G′ is (d′ ± C0 log n)-nearly-regular (for some d/C0 ≤ d′ ≤ d).

(b) n′ ≥ n/(2C0) (where n′ = |V (G′)|).

(c) For each i ∈ [t] and any p ≥ mi/n, a p-random subset of V (G′) is Di-connecting in G with probability 1− o(1).

We will now choose disjoint sets Ri, Ti ⊂ V (G′), i ∈ [t], randomly and show that, with high probability, any sets Si

with Ri ⊂ Si ⊂ Ri ∪ Ti for each i ∈ [t], will satisfy each of (iii)–(v), and, furthermore, that we can pick such sets Si

such that (i) and (ii) hold.

For this, randomly take disjoint sets Ri, Ti, i ∈ [t], in V (G′), by, for each vertex v ∈ V (G′), independently placing v

in each Ri with probability 2mi

n′ − 4C0mi logn
d′n′ − m

3/5
i

n′ and in each Ti with probability 10C0mi logn
d′n′ +

2m
3/5
i

n′ . Note that

this is possible as, for each i ∈ [t], 4C0mi logn
d′n′ +

m
3/5
i

n′ ≤ 2mi

n′ , and

∑
i∈[t]

(
2mi

n′ −
4C0mi log n

d′n′ − m
3/5
i

n′ +
10C0mi log n

d′n′ +
2m

3/5
i

n′

)
≤ 2n

n′ log n
+

10C0n

d′n′ +
2n

n′ log n
≤ 1,

as mi ≤ n/(t log n) for all i ∈ [t], n′ ≥ n/(2C0) and d′ ≥ d/C0 ≥ (log n)C/C0. Furthermore, for each i ∈ [t], choose Si

arbitrarily such that Ri ⊂ Si ⊂ Ri ∪ Ti, and, if possible, satisfying (i) and (ii). We will now show that each of (i)–(v)
hold with high probability, so that, as n is large, we can take the required sets Si, i ∈ [t]. Note first that, by (c) we have

that (iii) holds with probability 1− o(1) since Ri is a p-random subset of V (G′) for p = 2mi

n′ − 4C0mi logn
d′n′ − m

3/5
i

n′ ≥ mi

n .
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Let X ∪ Y be the bipartition of G′ inherited from the unique bipartition of G, labelling so that |X| ≥ |Y |. Then, as
G′ is (d′ ± C0 log n)-nearly-regular, we have

|Y | ≥
1− C0 logn

d′

1 + C0 logn
d′

· |X| ≥
(
1− 2 · C0 log n

d′

)
n′

2
, and |X| = n′ − |Y | ≤

(
1 + 2 · C0 log n

d′

)
n′

2
,

so that n′

2 −
C0n

′ logn
d′ ≤ |X|, |Y | ≤ n′

2 + C0n
′ logn
d′ . Since |X| ≤ n′

2 + C0n
′ logn
d′ , for each i ∈ [t] we have

E[|Ri ∩X|] ≤ n′

2
·

(
2mi

n′ −
4C0mi log n

d′n′ − m
3/5
i

n′

)
+

C0n
′ log n

d′
· 2mi

n′ = mi −
m

3/5
i

2
.

As mi ≥ n/d1/10 ≥ n9/10, it follows by the Chernoff bound that with probability at least 1− 1
n , we have |Ri ∩X| ≤

mi. On the other hand, |X| ≥ n′

2 −
C0n

′ logn
d′ and the probability that some v ∈ V (G′) belongs to Ri ∪ Ti is

2mi

n′ + 6C0mi logn
d′n′ +

m
3/5
i

n′ , so

E[|(Ri ∪ Ti) ∩X|] ≥
(
n′

2
− C0n

′ log n

d′

)
·

(
2mi

n′ +
6C0mi log n

d′n′ +
m

3/5
i

n′

)

≥ n′

2
·

(
2mi

n′ +
6C0mi log n

d′n′ +
m

3/5
i

n′

)
− C0n

′ log n

d′
· 3mi

n′ = mi +
m

3/5
i

2
.

Hence, by the Chernoff bound, we have, with probability at least 1− 1
n , that |(Ri ∪ Ti) ∩X| ≥ mi. By symmetry, we

also have |Ri ∩ Y | ≤ mi ≤ |(Ri ∪ Ti)∩ Y | with probability at least 1− 1
n . Therefore, by a union bound, it follows that

for all i ∈ [t], we have |Ri ∩X| ≤ mi ≤ |(Ri ∪ Ti) ∩X| and |Ri ∩ Y | ≤ mi ≤ |(Ri ∪ Ti) ∩ Y | with probability at least
1− 2t

n = 1− o(1), so with high probability we will have selected the Si, i ∈ [t], so that (i) and (ii) hold.

As G is 18-almost-regular with average degree d, each vertex v ∈ V (G) has dG(v) ≤ 18d. Note that, then, as the
probability that a given vertex u ∈ V (G′) belongs to Ri ∪ Ti is at most 3mi

n′ , for any i ∈ [t] and v ∈ V (G), we have
E[dG(v,Ri ∪ Ti)] ≤ dG(v) · 3mi

n′ ≤ 18d · 3mi

n′ ≤ 108C0dmi

n ≤ Cdmi

2n (provided that C is sufficiently large). Hence, by
the Chernoff bound, the probability that dG(v, Si) > Cdmi

n is at most 1
n2 . It follows by the union bound that with

probability 1− o(1), (v) of the lemma is satisfied.

For each i ∈ [t], let di = 2d′mi/n
′. Note that since d/C0 ≤ d′ ≤ d, n/(2C0) ≤ n′ ≤ n, and C can be chosen larger

than 4C0, we have dmi

Cn ≤
2dmi

C0n
≤ di ≤ 4C0dmi

n ≤ Cdmi

n . Now let v ∈ V (G′). Since dG′(v) ≥ d′ − C0 log n, we have

E[dG′(v,Ri)] ≥ d′ ·

(
2mi

n′ −
4C0mi log n

d′n′ − m
3/5
i

n′

)
− C0 log n ·

2mi

n′ = di − 6C0 log n ·
mi

n′ − d′
m

3/5
i

n′ .

Since 6C0 log n ·mi/n
′ + d′m

3/5
i /n′ ≤ (log n)2 + di/(2m

2/5
i ) ≤ d

2/3
i /2, we have E[dG′(v,Ri)] ≥ di − d

2/3
i /2, therefore,

by the Chernoff bound, with probability at least 1− 1
n2 , we have dG′(v,Ri) ≥ di − d

2/3
i . Furthermore, since dG′(v) ≤

d′ + C0 log n and d′ ≥ d/C0 ≥ (log n)C/C0, we have

E[dG′(v,Ri ∪ Ti)] ≤ (d′ + C0 log n) ·

(
2mi

n′ +
6C0mi log n

d′n′ +
m

3/5
i

n′

)
≤ d′(1 + d

−1/2
i ) ·

(
2mi

n′

)
(1 + 10d

−2/5
i )

= di(1 + d
−1/2
i )(1 + 10d

−2/5
i ) ≤ di + d

2/3
i /2.

Hence, with probability at least 1− 1
n2 , we have dG′(v,Ri∪Ti) ≤ di+d

2/3
i . Thus, by the union bound, with probability

at least 1− 2t
n , we have dG′(v,Ri) ≥ di−d

2/3
i and dG′(v,Ri∪Ti) ≤ di+d

2/3
i for all v ∈ V (G′) and i ∈ [t]. In this case,

di − d
2/3
i ≤ dG′(v, Si) ≤ di + d

2/3
i for all v ∈ V (G′) and i ∈ [t], verifying that (iv) of the lemma holds with probability

1− o(1). Thus (i)–(v) hold with high probability, so that the required sets Si, i ∈ [t], can be found.
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6 Proof of Theorem 2

In this section, we will prove Theorem 2. By Lemma 6, it suffices to prove the following.

Theorem 21. There exists some C such that for every k and sufficiently large n (in terms of k), the following holds.
If G is a bipartite n-vertex 18-almost-regular (ε, s)-expander with average degree d(G) ≥ (log n)C , where ε = 2−5 and
s ≥ d(G)/(log n)2, then G contains k edge-disjoint cycles with the same vertex set.

Therefore, in the rest of this section, we prove Theorem 21. Throughout the proof, we will assume C to be a sufficiently
large constant and n to be sufficiently large with respect to k to support our arguments. Let G be a bipartite n-
vertex 18-almost-regular (ε, s)-expander with average degree d ≥ (log n)C , where ε = 2−5 and s ≥ d/(log n)2. Fix a
bipartition A ∪ B for the bipartite graph G. Recall that a set S ⊂ V (G) is called balanced if |S ∩ A| = |S ∩ B|. The
following observation will be used a few times.

(O) For every u ∈ A and v ∈ B, the internal vertex set of every u− v path in G is balanced,

for every u ∈ A and v ∈ A, every u− v path in G has one more internal vertex in B than in A, and

for every u ∈ B and v ∈ B, every u− v path in G has one more internal vertex in A than in B.

Throughout the following proof we will note in the left margin the correspondence with the steps (a)–(l) in Section 2.3,
where there are some small differences to the slightly simplified outline. Note that in passing to Theorem 21 we have
already carried out (a).

6.1 Finding connecting sets with good degree control

(b),(c) Let m1 := 2n/d1/100, m2 := 5n/d1/100, m3 := 1000n/d1/100, m4 := n/d1/1000 and m5 := n/d1/10000. We now use
Lemma 20 with these values of m1, . . . ,m5 to find a subgraph G′ of G and pairwise disjoint vertex sets R1, R2, X, U1, U2 ⊆
V (G′) (corresponding to the sets S1, . . . , S5 in Lemma 20) such that the following properties are satisfied. Let
D := d1−1/10(log n)10, D1 := d1−1/100(log n)10, and D2 := d1−1/1000(log n)10.

(A1) R1, R2, X, U1, and U2 are balanced (with respect to the bipartition of G).

(A2) |R1| = 2m1, |R2| = 2m2, |X| = 2m3, |U1| = 2m4, and |U2| = 2m5.

(A3) R1 is m9
1d

n9(logn)76 -connecting and thus also D-connecting since D ≤ m9
1d

n9(logn)76 ,

U1 is m9
4d

n9(logn)76 -connecting and thus also D1-connecting since D1 ≤ m9
4d

n9(logn)76 , and

U2 is m9
5d

n9(logn)76 -connecting and thus also D2-connecting since D2 ≤ m9
5d

n9(logn)76 .

(A4) G′[U1 ∪ U2] is
(
d′ ± 2(d′)2/3

)
-nearly-regular for some d′ ≥ d1−1/10000

C .

(To see this, note that (iv) of Lemma 20 implies the existence of di for i ∈ [2] such that every v ∈ V (G′) satisfies
di − d

2/3
i ≤ dG′(v, Ui) ≤ di + d

2/3
i , where d2 ≥ dm5

Cn = d1−1/10000

C , and we use d
2/3
1 + d

2/3
2 ≤ 2(d1 + d2)

2/3.)

(A5) For every v ∈ V (G), we have dG(v,R1) ≤ 2Cd1−1/100, dG(v,R2) ≤ 5Cd1−1/100, dG(v,X) ≤ 1000Cd1−1/100, and
dG(v, U1) ≤ Cd1−1/1000.

6.2 Constructing absorbers

(d) We now use Lemma 13 with m = n/d1/100 to find a set K ⊆ ((R1 ∪R2) ∩A)× ((R1 ∪R2) ∩B) consisting of an odd
number of pairs such that no vertex in R1 ∪R2 appears in more than 102 pairs of K, and the following holds.

(B) For every balanced set R′
1 ⊆ R1 with |R′

1| ≤ m1 = |R1|/2, there is a set K ′ ⊆ K of pairs such that K ′ is a perfect
matching in K[(R1∪R2)\R′

1]. (In other words, every vertex in (R1∪R2)\R′
1 appears in exactly one of the pairs

in K ′, and the pairs in K ′ contain no other vertices.)
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Our goal now is to construct k absorbers for every pair in K (in the sense of Definition 9). As we will see near the
end of the proof, (B) allows us to show that for any balanced set R′

1 ⊆ R1 of size at most |R1|/2, the vertices in
(R1 ∪R2) \R′

1 can be paired up to be ‘absorbed’ by our absorbers (where this pairing is given by K ′).

To that end, let K := {p1, . . . , ps} where s is an odd number. Note that s ≤ 102 · |(R1 ∪R2) ∩A| = 102(m1 +m2) <

2m3 = |X|. Recall that X is balanced. By removing vertices from X if necessary, we may assume that |X| = s + 1

and that X is a balanced set. Then, by (A5), we still have dG(v,X) ≤ 1000Cd1−1/100 for every v ∈ V (G). Enumerate
the vertices in X by x1, . . . , xs+1 so that, for every odd j ∈ [s], we have xj ∈ A and xj+1 ∈ B.

(e) Let R = R1 ∪ R2. Now (A5) implies that, for every v ∈ U1, dG(v,R) ≤ dG(v,R1) + dG(v,R2) ≤ 7Cd1−1/100 ≤
D1

200k(logn)6 , and, for every v ∈ U2, dG(v, U1 ∪X) ≤ Cd1−1/1000 +1000Cd1−1/100 ≤ D2

2k . Hence, by (A3), the conditions
of Lemma 11 are satisfied, and we obtain the following statement guaranteeing the desired absorbers.

(C) For all i ∈ [k] and j ∈ [s] there is an absorber Absij in G for the pair pj with endpoints xj and xj+1 such that,
writing Si

j for the interior of Absij , the sets Si
j (for all i ∈ [k] and j ∈ [s]) are pairwise disjoint subsets of U1 ∪ U2

of size at most (log n)12.

Let Uabs be the set of vertices of U1 ∪ U2 used in the absorbers, i.e., Uabs = ∪i∈[k],j∈[s]S
i
j . For every j ∈ [s], since the

vertices xj and xj+1 are from opposite sides of the partition A ∪ B, by (O), the set Si
j is balanced for every i ∈ [k].

Thus, the set Uabs is balanced. Let Uunused = U1 ∪ U2 \ Uabs. Since U1, U2, and Uabs are all balanced, the set Uunused

is also balanced.

(g) Let W be a random balanced subset of Uunused of size (1− 1
k )|Uunused|, which is the union of a uniformly random subset

of Uunused ∩ A of size (1− 1
k )|Uunused ∩ A| and a uniformly random subset of Uunused ∩B of size (1− 1

k )|Uunused ∩B|
(here, we assume that 2k divides |Uunused| to avoid unnecessary technicalities). At this stage, we point out that the
vertex set of our desired k (edge-disjoint) cycles will be W ∪ Uabs ∪X ∪R1 ∪R2.

(f) By (C), for every pair pj ∈ K, there are k absorbers with endpoints xj and xj+1, namely Absij , i ∈ [k]. Independently
for every j ∈ [s], generate a permutation σj : [k] → [k] uniformly at random. Now, for each pair pj ∈ K, we will
assign the absorber Abs

σj(i)
j to the i-th cycle. Let U i

abs = ∪j∈[s]S
σj(i)
j i.e., U i

abs is the subset of Uabs consisting of those
vertices which are used in the absorbers assigned to the i-th cycle. Then, observe that for any i ∈ [k], the union of
the absorbers assigned to the i-th cycle (i.e., Abs

σj(i)
j for j ∈ [s]) contains an x1-xs+1 path with vertex set U i

abs ∪X

such that any pair in K can be ‘absorbed’ into this path (this is made precise at the end of the proof). Moreover,
note that, for each i ∈ [k], U i

abs is balanced.

6.3 Constructing k edge-disjoint linear forests

(h) For each i ∈ [k], let V i = W ∪ (Uabs \ U i
abs). Note that V i ⊆ U1 ∪ U2 (and recall that G′[U1 ∪ U2] is

(
d′ ± 2(d′)2/3

)
-

nearly-regular by (A4)). Let d′′ = (1− 1
k )d

′. We will next show that the following holds with probability 1− o(1).

(D) For every i ∈ [k], the graph G′[V i] is
(
d′′ ± 3(d′′)2/3

)
-nearly-regular.

In order to prove this, fix i ∈ [k] and consider a vertex v ∈ U1 ∪ U2. Without loss of generality, assume that
v ∈ (U1∪U2)∩A (the other case is identical). Since (A4) and (C) hold, and (log n)12 ≤ (d′)1/8, we can apply Lemma 19
for the vertex v with G = G′[U1∪U2], V = (U1∪U2)∩B, V ′ = Uunused∩B, V ι

j = Sι
j ∩B for ι ∈ [k] and j ∈ [s], d = d′,

2(d′)2/3 playing the role of d′, t = k, τ = k−1, U = W ∩B, Sj = [k]\{σj(i)}, and Z = (W ∪(Uabs\U i
abs))∩B = V i∩B.

Then, with probability 1 − n−ω(1), we have dG′(v, V i) = dG′(v, V i ∩ B) = dG′(v, Z) = d′′ ± 3(d′′)2/3. Thus, a simple
union bound over all i ∈ [k] and v ∈ U1 ∪ U2 yields (D).

For each i ∈ [k], since each of W , Uabs, and U i
abs is balanced, the set V i is also balanced. Let t = d1/5 and let

V i
1 , . . . , V

i
t be a uniformly random partition of V i into t balanced sets of equal size. (Here, we assume that 2t divides

|V i| to avoid unnecessary technicalities.) Note that V i
1 ∩A, . . . , V i

t ∩A is a uniformly random partition of V i ∩A into
t sets of equal size, and similarly V i

1 ∩B, . . . , V i
t ∩B is a uniformly random partition of V i ∩B into sets of equal size.

Thus, since (D) holds, by a simple application of Lemma 18 and a union bound, the following holds with probability
1 − o(1). For each i ∈ [k] and each j ∈ [t − 1], the bipartite graph G′[V i

j , V
i
j+1] is

(
d′′/t± 4(d′′)2/3

)
-nearly-regular.

This, together with the inequality 6k ≤ (d′′)2/3, implies that the following property holds with probability 1− o(1).
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(E) Every graph G′′ obtained from G′ by deleting at most 6k edges incident to every vertex has that G′′[V i
j , V

i
j+1] is(

d′′/t± 5(d′′)2/3
)
-nearly-regular for each i ∈ [k] and j ∈ [t− 1].

We will next show that the following statement holds with probability 1− o(1).

(F) For each i ∈ [k], j ∈ [t], and v ∈ V (G), we have dG(v, V
i
j ) ≤ 25d4/5.

To that end, fix i ∈ [k], j ∈ [t], and consider a vertex v ∈ A. (Vertices in B can be dealt with in a similar fashion.) We
will apply Lemma 18(a) with V = V i ∩B, U = V i

j ∩B, and with 18d, 0 playing the roles of d, d′ respectively. By this
application, since dG(v) ≤ 18d and t = d1/5, with probability 1− n−ω(1) we have dG(v, V

i
j ) = dG(v, V

i
j ∩B) ≤ 25d4/5.

Thus, a union bound over all i ∈ [k], j ∈ [t] and v ∈ V (G) yields (F) with probability 1− o(1), as desired.

Since the events (E) and (F) hold with probability 1− o(1), from now on we assume that they occur simultaneously.

(i) Our next goal is to show that we can find, for each i ∈ [k] and j ∈ [t − 1], a matching M i
j in G′[V i

j , V
i
j+1] such that

the following two properties hold. (Observe that for every i ∈ [k], the union of the matchings M i
j for j ∈ [t − 1] is a

linear forest.)

(G1) For i ∈ [k] and j ∈ [t − 1], the matchings M i
j are pairwise edge-disjoint and also edge-disjoint from all the

absorbers given by (C).

(G2) For every i ∈ [k], if we let Y i be the set containing all vertices y ∈ V i
1 ∪V i

t that are not used in M i
1 or M i

t−1 and
all vertices y ∈ V i

j with 2 ≤ j ≤ t− 1 which are not used in both M i
j−1 and M i

j , then |Y i| ≤ 10|V i|d−1/10 log n

and, for every v ∈ V (G), |Y i ∩NG(v)| ≤ 250d9/10 log n.

We will prove the existence of such matchings by induction on i. Assume the existence of such matchings M ι
j for

all ι < i. To construct the matchings M i
1, . . . ,M

i
t−1, consider the graph G′′ that is obtained from G′ by deleting

all the edges in
⋃

ι∈[i−1],j∈[t−1] M
ι
j and all the edges in G′[U1 ∪ U2] that belong to one of the absorbers given by

(C). Then, note that the graph G′′ is obtained from G′ by deleting at most 6k edges incident to every vertex.
(Indeed, at most 2k edges incident to every vertex belong to the matchings

⋃
ι∈[i−1],j∈[t−1] M

ι
j , and at most 4 edges

incident to every vertex in U1 ∪ U2 belong to the absorbers.) Now we aim to apply Lemma 17 with G replaced by
G′′, Vj replaced by V i

j for j ∈ [t], and {NG(v) : v ∈ V (G)} playing the role of {T1, . . . , Tn}. To that end, note
that since (E) holds, we can apply the lemma with δ = d′′/t − 5(d′′)2/3 and ∆ = d′′/t + 5(d′′)2/3, so that we have
1−δ/∆ ≤ 10(d′′)2/3/(d′′/t) = 10t/(d′′)1/3 ≤ d−1/9, where in the last inequality we used that d′′ = (1− 1

k )d
′ ≥ d1−1/1000

holds by (A4) and t = d1/5. Hence, the condition 1− δ/∆ ≤ t−1/2 log n required by the lemma is satisfied. Therefore,
since (F) holds, we can apply Lemma 17 with r = 25d4/5 to obtain matchings M i

j in G′′[V i
j , V

i
j+1] for j ∈ [t− 1] such

that (G2) holds for i. By the construction of G′′, the matchings M i
1, . . . ,M

i
t−1 are edge-disjoint from

⋃
ι∈[i−1],j∈[t−1] M

ι
j

and all the absorbers given by (C). This finishes the proof of the existence of the matchings M i
j for i ∈ [k] and j ∈ [t−1]

satisfying (G1) and (G2).

6.4 Extending the linear forests to k edge-disjoint cycles on the same vertex set

(j) For i ∈ [k] and j ∈ [t− 1], we let
−→
Y i

j denote the vertices in V i
j that are not matched in M i

j , and let
←−
Y i

j+1 denote the
vertices in V i

j+1 that are not matched in M i
j . Since for every i ∈ [k], the sets V i

j for j ∈ [t − 1] are balanced sets of
equal size, we have |

−→
Y i

j ∩A| = |
←−
Y i

j+1 ∩B| and |
−→
Y i

j ∩B| = |
←−
Y i

j+1 ∩A|. We can thus arbitrarily match the vertices in
−→
Y i

j ∩A with the vertices in
←−
Y i

j+1 ∩B, and the vertices in
−→
Y i

j ∩B with the vertices in
←−
Y i

j+1 ∩A to obtain a collection
of pairs Ki

j ⊆
−→
Y i

j ×
←−
Y i

j+1 for every i ∈ [k] and j ∈ [t − 1]. For every i ∈ [k], let Ki = ∪j∈[t−1]Ki
j . Consider the

auxiliary graph Hi on the vertex set V i whose edges are the pairs in Ki. Then, the graph that is the union of Hi and
∪j∈[t−1]M

i
j is a linear forest F i on V i where every path has one of its endpoints in V i

1 and the other endpoint in V i
t .

For i ∈ [k], enumerate the vertices in V i
1 as ui

1, . . . , u
i
ℓ and the vertices in V i

t as vi1, . . . , v
i
ℓ such that for every j ∈ [ℓ],

there is a path in F i with endpoints ui
j and vij . Let Ki

∗ = {(ui
1, x1), (v

i
ℓ, xs+1)} ∪ {(ui

j+1, v
i
j) : j ∈ [ℓ− 1]}.

Next, we will show the following.
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(H1) For every i ∈ [k] and every pair (u, v) in Ki ∪ Ki
∗, there is a path Qi

uv in G of length at most (log n)6 with
internal vertices in R1 and with endpoints u and v. Moreover, the paths Qi

uv (for i ∈ [k] and (u, v) ∈ Ki ∪ Ki
∗)

are pairwise internally vertex-disjoint, and each of these paths is edge-disjoint from all the absorbers given by
(C). (See Figure 1 for an illustration.)

(k) Notice that, for each i ∈ [k], the paths Qi
uv for (u, v) ∈ Ki ∪ Ki

∗ together with the edges in the matchings
M i

1, . . . ,M
i
t−1 give us a path, P i say, with endpoints x1 and xs+1. Moreover, the paths P i for i ∈ [k] are

pairwise edge-disjoint and the set of internal vertices of each path P i is V i ∪Ri
1, where Ri

1 ⊆ R1 consists of the
set of internal vertices in the paths Qi

uv for (u, v) ∈ Ki ∪ Ki
∗.

(H2) For every i ∈ [k], Ri
1 is a balanced set containing at most m1 vertices.

With a slight abuse of notation, let ∪i∈[k](Ki ∪ Ki
∗) denote the multiset obtained by taking the union of the sets

Ki ∪ Ki
∗ for i ∈ [k]. To prove (H1), we first use (from (A3)) that R1 is D-connecting to construct 5 paths of length

at most (log n)6 between each pair of the multiset ∪i∈[k](Ki ∪ Ki
∗), with internal vertices in R1 such that all these

paths are pairwise internally vertex-disjoint. To achieve this, consider the multiset S obtained by replacing each pair in
∪i∈[k](Ki∪Ki

∗) with 5 copies of it. Note that any vertex of G appears at most 2·k·5 = 10k times in this multiset S. Also,
observe that the pairs in ∪i∈[k](Ki∪Ki

∗) do not contain any vertex outside of {x1, xs+1}∪
(
∪i∈[k](V

i
1 ∪ V i

t ∪ Y i)
)
. Thus,

by using (F) and (G2), every vertex in G has at most 10k · (k ·250d9/10 log n+k ·2 ·25d4/5+2) ≤ 10k2 ·251d9/10 log n ≤
d1−1/10(log n)10 = D neighbours in S. So, by Definition 7, we have 5 paths of length at most (log n)6 between each pair
(u, v) ∈ ∪i∈[k](Ki∪Ki

∗) with internal vertices in R1 such that all these paths are pairwise internally vertex-disjoint. On
the other hand, for every pair (u, v) ∈ ∪i∈[k](Ki∪Ki

∗), among these 5 pairwise internally vertex-disjoint paths between
the pair (u, v), at most 4 paths are not edge-disjoint from the absorbers given by (C). Indeed, all these paths have
internal vertices in R1, so the only edges of the absorbers that can appear in these paths are between Uabs and R1,
but each vertex in Uabs is incident to at most 2 edges (with the other endpoint in R1) that are used in the absorbers.
This shows that the desired path Qi

uv exists between every pair (u, v) ∈ Ki ∪ Ki
∗ for every i ∈ [k], verifying (H1).

To prove (H2), we fix i ∈ [k]. Since (G2) holds, the number of pairs in Ki ∪ Ki
∗ is at most |Y i| + |V i

1 | + |V i
t | ≤

10nd−1/10 log n + 2nd−1/5 ≤ 11nd−1/10 log n. Therefore, since each of the paths Qi
uv given by (H1) (between the

pairs (u, v) ∈ Ki ∪ Ki
∗ for i ∈ [k]) have length at most (log n)6, we have |Ri

1| ≤ 11nd−1/10 log n · (log n)6 ≤ m1.
By construction, every pair (u, v) ∈ Ki contains one vertex from A and the other from B. This ensures that the
internal vertex sets of the paths Qi

uv given by (H1) between these pairs are balanced sets. Moreover, note that the set
{x1, xs+1} ∪ V i

1 ∪ V i
t is balanced (recall that x1 ∈ A and xs+1 ∈ B), and every vertex in this set appears in exactly

one pair of Ki
∗. Thus, by (O), the union of the internal vertex sets of the paths between the pairs in Ki

∗ is a balanced
set. Thus, it follows that Ri

1 is a balanced set. This finishes the verification of (H2).

(l) Finally, for every i ∈ [k], our aim is to extend the path P i given by (H1) to a cycle Ci with the vertex set W ∪Uabs ∪
X ∪R1 ∪R2 such that the cycles Ci (for i ∈ [k]) are pairwise edge-disjoint. To that end, by (H1), for every i ∈ [k], it
suffices to find a path P i

∗ with endpoints x1 and xs+1 and with V (P i
∗) = U i

abs ∪X ∪ (R1 \Ri
1)∪R2 such that the paths

P i
∗ (for i ∈ [k]) are pairwise edge-disjoint and do not contain any edge outside of the absorbers given by (C). (Indeed,

then for every i ∈ [k], by concatenating P i and P i
∗ we obtain a cycle Ci with the vertex set W ∪Uabs∪X∪R1∪R2 such

that the cycles Ci for i ∈ [k] are pairwise edge-disjoint, as required.) To find the paths P i
∗, for every i ∈ [k], let Ki ⊆ K

be the set of pairs of vertices obtained by applying (B) with Ri
1 playing the role of R′

1 (this application is possible
since (H2) holds). Then, every vertex of (R1 \Ri

1) ∪R2 appears in exactly one of the pairs in Ki and the pairs in Ki

contain no other vertices. We now fix an arbitrary i ∈ [k]. Consider the set J i ⊆ [s] such that Ki = {pj : j ∈ J i}.
For every j ∈ J i, consider the path Lj with endpoints xj and xj+1 and with internal vertex set S

σj(i)
j ∪ pj which is

contained in the absorber Abs
σj(i)
j . For every j ∈ [s] \ J i, consider the path Lj with endpoints xj and xj+1 and with

internal vertex set Sσj(i)
j which is contained in the absorber Abs

σj(i)
j . Now, by concatenating the paths L1, . . . , Ls, we

obtain the desired path P i
∗ with endpoints x1 and xs+1 and with V (P i

∗) = U i
abs ∪X ∪ (R1 \Ri

1)∪R2. Moreover, since
the sets Si

j for i ∈ [k] and j ∈ [s] are pairwise disjoint and every edge in Absij is incident to a vertex in Si
j , the paths

P i
∗ are pairwise edge-disjoint, as required. This shows the existence of k edge-disjoint cycles on the common vertex

set W ∪ Uabs ∪X ∪R1 ∪R2, completing the proof of Theorem 21.
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7 Connecting pairs of vertices by vertex-disjoint paths through a random
vertex set

In this section we prove Lemma 8. As mentioned in the introduction, we will use an adaption of arguments by Bucić
and Montgomery [11] (which uses, in part, some ideas from Tomon [43]). Before we turn to the details of the proof, it
is worth highlighting how our result and argument differ from those in [11]. The result in [11] closest to our Lemma 8
is [11, Theorem 16], which roughly states the following: if G is a good robust (sublinear) expander, and V is a 1/3-
random subset of V (G), then, given any collection of pairs in V (G) in which each vertex appears only a small number
of times, we can connect all the pairs using short edge-disjoint paths through V . Note that our Lemma 8 differs from
this result in a number of ways. First, crucially, we are looking to find vertex-disjoint, rather than edge-disjoint paths
which connect the pairs. This requires us to impose a stronger condition on the pairs that we seek to connect, since
it is not possible to connect more than |V | pairs through V using internally vertex-disjoint paths. More precisely, in
[11] the condition on the pairs is that each vertex should appear only a small number of times in the pairs, while we
require that each vertex in the random set V has few neighbours among the vertices we seek to connect. Finally, we
also need a generalisation from 1/3-random sets to p-random sets. The argument in [11] did not crucially rely on the
set being 1/3-random, so it is straightforward to adapt their argument to the more general p-random setting. On the
other hand, in order to find vertex-disjoint, rather than edge-disjoint paths, we need to modify the argument in [11]
nontrivially.

A crucial result in the proof of Theorem 16 in [11] states that, for an expander G, if we take a large random subset
V in V (G), then with high probability it is true that for every U ⊂ V (G) and not too large F ⊂ E(G), more than
half of the vertices in V can be reached from U using short paths inside V , avoiding all edges in F . We will need a
similar, but quantitatively stronger result here (see Lemma 23 below). In order to prove such a strengthening, the
main new ingredient is Lemma 30, which states that any (ε, s)-expander G can be edge-decomposed into almost s

weaker expanders. This strengthens the corresponding result in [11] (Lemma 15) where it was shown that one can
decompose the edges of G into almost

√
s weaker expanders. A more substantially new result that we will need and

which has no analogue in [11] is Lemma 26. A detailed explanation of why we need this tweak compared to the
argument in [11] is provided before the statement of Lemma 26. In general, where possible we use similar constants
to [11] for ease of comparison.

7.1 Proof of Lemma 8

Given U, V ⊆ V (G), the ball of radius i around U within V , denoted by Bi
G(U, V ), is the set of vertices in V which

can be reached by a path of length at most i starting from a vertex in U which has all of its internal vertices in V .
The starting vertex in U is not required to be in V itself. We do, however, only consider reachable vertices within V ,
so that Bi

G(U, V ) ⊆ V .

It is convenient to use the following definition.

Definition 22 (λ-reachable set). Let G be an n-vertex graph. We say that a set V ⊂ V (G) is λ-reachable if, for
every U ⊂ V (G) and every F ⊂ E(G) with |F | ≤ λ|U |,

|B(logn)4

G−F (U, V )| > |V |
2

.

Most of the work in this section will go into proving the following lemma.

Lemma 23. Let 0 < p < 1. Suppose that G is an n-vertex (ε, s)-expander with 2−90 < ε < 1 and s ≥ p−4(log n)30.
Let V be a p-random subset of V (G). Then, with probability 1− o(1), V is λ-reachable for λ = p8s

(logn)60 .

In the rest of this subsection, we will complete the proof of Lemma 8 assuming Lemma 23. Subsections 7.2–7.6 are
then devoted to proving Lemma 23.

We will need the following, which is [11, Proposition 8].

21



Proposition 24. Let 1 ≤ ℓ, t ≤ n. Let G be an n-vertex graph and let V ⊂ V (G) with |V | ≥ 4t− 2 be such that, for
every U ⊂ V (G) with size |U | = t, we have |Bℓ

G(U, V )| > |V |
2 . Let z1, . . . , z2t−1, w1, . . . , w2t−1 be distinct vertices of G.

Then, for some j ∈ [2t− 1], there is a zj − wj path in G with internal vertices in V and with length at most 4ℓ log n.

We will also use the following form of the Aharoni-Haxell hypergraph matching theorem (see Corollary 1.2 in [1]).

Theorem 25. Let r ∈ N, and let H1, . . . ,Hr be a collection of hypergraphs with at most ℓ vertices in each edge.
Suppose that, for each I ⊆ [r], there is a matching in

⋃
i∈I Hi containing more than ℓ(|I| − 1) edges. Then, there is

an injective function f : [r] →
⋃

i∈[r] E(Hi) such that f(i) ∈ E(Hi) for each i ∈ [r] and {f(i) : i ∈ [r]} is a matching
of r edges.

Let us now informally discuss how we will complete the proof of Lemma 8, and how the argument differs from the
one in [11]. Let V be a p-random subset of V (G) and let (x1, y1), . . . , (xr, yr) be the set of pairs that we seek to
connect using short internally vertex-disjoint paths through V . Similarly to [11], the existence of such paths will be
proven by applying Theorem 25, with Hi defined to be the hypergraph whose edges correspond to the short paths
through V connecting xi and yi. (Since here we are looking for vertex-disjoint paths, the edges of Hi are the vertex
sets, rather than the edge sets, of the paths connecting xi and yi.) To verify that the assumptions in Theorem 25 are
satisfied, we need to prove that for each I ⊆ [r] there are many vertex-disjoint short paths through V that connect
xj to yj for some j ∈ I. If we were looking for edge-disjoint paths, we could apply Proposition 24 repeatedly: even
after finding a large collection P1, P2, . . . , Pq of paths connecting some pair (xj , yj) (with j ∈ I), we can find a new
one that is edge-disjoint from all the previous ones by applying Proposition 24 with {z1, . . . , z2t−1} = {xj : j ∈ I},
{w1, . . . , w2t−1} = {yj : j ∈ I} and G−F in place of G, where F is the set of edges used by the paths P1, . . . , Pq. It is
crucial here that if q is not already large, then F is quite small, so (using Lemma 23) the condition |Bℓ

G−F (U, V )| > |V |
2

in Proposition 24 is indeed satisfied for every set U of size roughly |I|. Unfortunately, this approach (which is the one
used in [11]) does not extend to the case where we are looking for vertex-disjoint paths, because in order to guarantee
that the obtained paths are vertex-disjoint, we need to let F contain every edge in G that is adjacent to a vertex in
one of the paths P1, . . . , Pq. This makes F too large for the condition |Bℓ

G−F (U, V )| > |V |
2 to hold for every set U of

size roughly |I|.

To deal with this issue, we use the following lemma, which allows us to construct the connecting paths in two stages:
first, using the bounds on the degrees of vertices from V to the set of pairs that we seek to connect, we prove that the
set of pairs ‘expand’ via a large star matching into a random subset W ⊂ V of size roughly |V |/3. This allows us to
use the argument sketched above if we instead apply Proposition 24 to a larger set of pairs chosen from the leaves of
these stars.

Lemma 26. Let n be sufficiently large and let G be a graph with maximum degree ∆ and let V ⊂ V (G) be a
λ-reachable subset. Let x1, . . . , xr, y1, . . . , yr be a sequence of (not necessarily distinct) vertices outside of V . Let
W ⊂ V (G) \ (V ∪ {x1, . . . , xr, y1, . . . , yr}) be such that |W | ≤ |V | and assume that there exists some δ0 such that
each xi and yi sends at least δ0 edges to W and each vertex in W has at most λδ0

2∆(logn)12 neighbours in the multiset
{x1, . . . , xr, y1, . . . , yr}.

Then, there is a collection of internally vertex-disjoint xi − yi paths (one for each i ∈ [r]) of length at most (log n)6

with internal vertices in W ∪ V .

Proof. We first prove the following claim using the degree conditions.

Claim. There exist pairwise disjoint sets X1, . . . , Xr, Y1, . . . , Yr ⊂ W of size at least λ−12∆(log n)12 such that Xi ⊂
NG(xi) and Yi ⊂ NG(yi) for all i ∈ [r].

Proof of Claim. Let q = λ−12∆(log n)12. Note that, as V is λ-reachable, we have λ ≤ ∆, so q ≥ 2(log n)12. Let us
assume for simplicity that q is an integer. Define a bipartite graph H with parts A := {xj

i : i ∈ [r], j ∈ [q]} ∪ {yji :

i ∈ [r], j ∈ [q]} and W , where the vertices xj
i and yji are all distinct, and in which there is an edge between xj

i and
some w ∈ W if and only if xiw ∈ E(G), and similarly there is an edge between yji and some w ∈ W if and only if
yiw ∈ E(G). By the assumption on the degrees in G, each u ∈ A has degree at least δ0 in H, and each w ∈ W has
degree at most q · λδ0

2∆(logn)12 = δ0 in H. Hence, by Hall’s theorem, there exists an injective map f : A → W such
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that, for each u ∈ A, there is an edge in H between u and f(u). For each i ∈ [r], let Xi = f({xj
i : j ∈ [q]}) and

Yi = f({yji : j ∈ [q]}). It is straightforward to verify that these sets satisfy the conditions in the claim.

For each i ∈ [r], let Hi be the hypergraph on vertex set V in which a hyperedge corresponds to the set of internal
vertices of a path of length at most (log n)6 between Xi and Yi with all internal vertices in V . Note that in order to
prove the lemma, it suffices to find a matching of r edges in which the i-th edge belongs to Hi for each i ∈ [r].

Using Theorem 25, it suffices to verify that, for each I ⊆ [r], there is a matching in ∪i∈IHi containing more than
(|I| − 1)(log n)6 edges. For this, let I ⊆ [r] and let MI be a maximal matching in ∪i∈IHi. We need to show that
|MI | > (|I| − 1)(log n)6. Assume for a contradiction that |MI | ≤ (|I| − 1)(log n)6. Let S be the set of vertices in
G used by the edges in MI . Note that |S| ≤ |MI |(log n)6 ≤ |I|(log n)12. Let F be the set of edges in G which are
incident to at least one vertex in S. Then |F | ≤ |S|∆ ≤ |I|∆(log n)12. Let t = λ−1|I|∆(log n)12. Now, if U ⊂ V (G)

and |U | = t, then |F | ≤ λ|U |, so as V is λ-reachable, we have

|B(logn)4

G−F (U, V )| > |V |
2

.

Note also that, by the claim above, we have |V | ≥ |W | ≥ 2r ·λ−12∆(log n)12 ≥ 4t. Hence, we can apply Proposition 24
with G − F in place of G and with ℓ = (log n)4 to conclude that if z1, . . . , z2t−1, w1, . . . , w2t−1 are distinct vertices
in G, then for some j ∈ [2t − 1] there is a zj-wj path in G − F with internal vertices in V and with length at most
4(log n)5 ≤ (log n)6. However, since |Xi|, |Yi| ≥ λ−12∆(log n)12, we have | ∪i∈I Xi| ≥ |I|λ−12∆(log n)12 = 2t and
| ∪i∈I Yi| ≥ 2t, so there is a path in G−F with internal vertices in V and with length at most (log n)6 which connects
some element of Xi to some element of Yi, for some i ∈ I. Since this path does not use the edges in F , it does not
have any internal vertex which is in S. Hence, the internal vertices of this path are disjoint from the vertices used by
MI , contradicting the maximality of MI .

We are now ready to prove Lemma 8 (assuming Lemma 23, which will be proved in the rest of this section).

Proof of Lemma 8. Let W be a random subset of V obtained by including each vertex of V independently at
random with probability 1/3. Let V ′ = V \W . Note that V ′ is a (2p/3)-random subset of V (G), so by Lemma 23,
V ′ is λ-reachable with probability 1 − o(1), where λ = (2p/3)8s

(logn)60 . Let v be an arbitrary vertex in G. Since W is a
(p/3)-random subset of V (G), the expected number of neighbours of v in W is at least δp/3. Hence, by the lower
bound on p and by the Chernoff bound, the probability that v has fewer than δp/6 neighbours in W is o(1/n). Hence,
with probability 1− o(1), every vertex in G has at least δp/6 neighbours in W . Also, the probability that |V ′| ≥ |W |
is 1− o(1).

We now show that, if V ′ is λ-reachable, each v ∈ V (G) has at least δp/6 neighbours in W and |V ′| ≥ |W |, then V is
D-connecting for D = p9sδ

∆(logn)73 .

Let x1, . . . , xr, y1, . . . , yr be a sequence of vertices outside of V and suppose that every v ∈ V has at most D neighbours
in the multiset {x1, . . . , xr, y1, . . . , yr}. Let δ0 = δp/6. Now note that each xi and yi sends at least δ0 edges to W and
each vertex in W has at most D ≤ λδ0

2∆(logn)12 neighbours in the multiset {x1, . . . , xr, y1, . . . , yr}. Hence, by Lemma 26
(applied with V ′ in place of V ), there is a set of internally vertex-disjoint xi − yi paths (one for each i ∈ [r]) of length
at most (log n)6 with internal vertices in W ∪ V ′ = V . Thus, V is indeed D-connecting, completing the proof.

It remains to prove Lemma 23.

7.2 Properties of the expander

For a graph G, it will be convenient to define the ‘robust neighbourhood’ of a set U ⊆ V (G) for any parameter d as
NG,d(U) := {v ∈ V (G) \U : |NG(v)∩U | ≥ d}, i.e., the set of vertices in G, outside of the set U , which have degree at
least d in U . We will use Proposition 12 from [11].
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Proposition 27. Let G be an n-vertex (ε, s)-expander, U ⊆ V (G), |U | ≤ 2
3n and F a set of at most s|U |/2 edges.

Then, for any 0 < d ≤ s, either

a) |NG−F (U)| ≥ s|U |
2d

, or b) |NG−F,d(U)| ≥ ε|U |
(log n)2

.

The following lemma is a generalisation of Proposition 13 from [11] which shows that more structure can be found in
both outcomes of the above proposition. The proof is essentially the same.

Lemma 28. There is an n0 such that the following holds whenever n ≥ n0, 0 < ε < 1, r ≥ (log n)2, t ≥ (log n)2

and s ≥ 20rt. Let G be an n-vertex (ε, s)-expander, let U ⊂ V (G) have size |U | ≤ 2n/3 and let F be a set of at most
s|U |/4 edges. Then, in G− F we can find either

a) |U |
10r vertex-disjoint stars, each with t leaves, centre in U and all leaves in V (G) \ U , or

b) a bipartite subgraph H with vertex classes U and X ⊂ V (G) \ U such that

• |X| ≥ ε|U |
2(logn)2 and

• every vertex in X has degree at least r in H and every vertex in U has degree at most 2t in H.

Proof. Take a maximal collection of vertex-disjoint stars in G−F with t leaves, centre in U and leaves outside of U .
Let C ⊆ U be the set of centres of these stars and L ⊆ V (G) \ U be the set consisting of all their leaves. Assuming
that a) does not hold, we have |C| ≤ |U |

10r and |L| ≤ |C| · t ≤ |U |
10r · t, and, by the maximality, there is no vertex in U \C

with at least t neighbours in G− F in V (G) \ (U ∪ L). Thus,

|NG−F (U \ C)| ≤ |C|+ |L|+ |U \ C| · t ≤ |U |
10r

+ |C| · t+ |U \ C| · t < 2|U | · t. (2)

We now construct the set X ⊆ V (G) \ U and the bipartite subgraph H through the following process, starting with
X0 = ∅ and setting H0 to be the graph with vertex set U ∪ X0 and no edges. Let k = |V (G) \ U | and label the
vertices of V (G) \ U arbitrarily as v1, . . . , vk. For each i ≥ 1, if possible, pick a star Si in G − F with centre vi and
r leaves in U such that these leaves in U have degree at most 2t in the graph Hi−1 ∪ Si, and let Hi = Hi−1 ∪ Si and
Xi = Xi−1 ∪ {vi}; otherwise set Hi = Hi−1 and Xi = Xi−1. Finally, let H = Hk and X = Xk = V (Hk) \ U . We will
show that b) holds for this choice of H with bipartition (U,X).

Firstly, observe that every vertex in U has degree at most 2t in Hi for each i ∈ [k] by construction, and that every
vertex vi in X has degree exactly r in H, so the second condition in b) holds. Thus, we only need to show that
|X| ≥ ε|U |

2(logn)2 holds, which will follow as no vertex in U \ C has t neighbours in G− F in X \ L.

Indeed, let U ′ be the set of vertices in U \ C with degree exactly 2t in H. As each vertex in U \ C has fewer than t

neighbours in G − F in X \ L, the vertices in U ′ must have at least t neighbours in H in X ∩ L. As each vertex in
X ∩ L has r neighbours in H, we have

|U ′| ≤ r|X ∩ L|
t

≤ r

t
· |L| ≤ r

t
· |U | · t

10r
=
|U |
10

.

Let B = C ∪ U ′, so that

|B| ≤ |U |
10r

+
|U |
10
≤ |U |

2
,

and, thus, |U \B| ≥ |U |
2 .

Then, by Proposition 27 applied to U \ B and F with d = r, using that |F | ≤ s|U |/4 ≤ s|U \ B|/2, we have either
|NG−F (U \B)| ≥ s|U\B|

2r or |NG−F,r(U \B)| ≥ ε|U\B|
(logn)2 . As |U \ C| ≤ |U | and

s|U \B|
2r

≥ s|U |
4r
≥ 5t|U |,
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|NG−F (U \ B)| ≥ s|U\B|
2r would contradict (2), and therefore we must have that |NG−F,r(U \ B)| ≥ ε|U\B|

(logn)2 . Every
vertex v in NG−F,r(U \ B) has at least r neighbours in G− F in U \ B which must all have degree strictly less than
2t in H (as they are not in B = U ′ ∪ C, and using the definition of U ′). This implies v ∈ X, since we could add it
together with some r of these neighbours to the graph H. Hence, we must have NG−F,r(U \B) ⊆ X, and

|X| ≥ |NG−F,r(U \B)| ≥ ε|U \B|
(log n)2

≥ ε|U |
2(log n)2

,

as required.

The next lemma is a straightforward variant of Proposition 18 from [11].

Lemma 29. Let n ≥ 2, 0 < ε < 1 and s ≥ λ ≥ 1. Let G be an n-vertex (ε, s)-expander and let U ⊂ V (G) have size
|U | ≤ 2n/3. Then, there is a set U ′ ⊂ U with |NG(U

′)| ≥ |U ′|λ and |U ′| ≥ ε|U |
3λ(logn)2 .

Proof. Let U ′ ⊆ U be maximal subject to |NG(U
′)| ≥ |U ′|λ, noting that such U ′ exists as U ′ = ∅ satisfies these

conditions. Suppose that U ̸= U ′, for otherwise U satisfies the conditions itself. Then |NG(U
′)| < (|U ′| + 1)λ or we

could add an arbitrary vertex to U ′ and contradict the maximality of U ′. Similarly we know that, for every vertex
v ∈ U \ U ′, v has at most λ neighbours outside of U ′ ∪NG(U

′), for otherwise U ′ ∪ {v} contradicts the maximality of
U ′. Let F be the set of edges between U \ U ′ and V (G) \ (U ′ ∪ NG(U

′)), so that |F | ≤ |U \ U ′|λ ≤ s|U |. Thus, we
have by the definition of expansion that

ε|U |
(log n)2

≤ |NG−F (U)| ≤ |NG(U
′)| ≤ (|U ′|+ 1)λ,

so that |U ′| ≥ ε|U |
3λ(logn)2 , as required.

7.3 Edge decomposition of an expander into weaker expanders

In this subsection, we prove the following lemma which states that every expander can be edge-partitioned into many
weaker expanders. Such a result was proved in [11] (see their Lemma 15), but for our application it is crucial to have
a quantitatively stronger statement.

Lemma 30. Let n and s be sufficiently large, k ∈ N and 0 < ε < 1. Suppose that G is an n-vertex (ε, s)-expander
and εs

k ≥ 105(log n)3. Then, there are edge-disjoint graphs G1, . . . , Gk such that E(G) =
⋃

i∈[k] E(Gi) and, for each

i ∈ [k], Gi is an
(

ε
4 ,

εs
104k(logn)2

)
-expander with vertex set V (G).

In order to obtain this stronger statement, we will use the following simple proposition instead of using Proposition 27
as is done in [11].

Proposition 31. Let n and s be sufficiently large and let 0 < ε < 1. Let G be an n-vertex (ε, s)-expander, and let
U ⊆ V (G) with |U | ≤ 2

3n. Then, there is some 0 ≤ i ≤ log s such that

|NG,2i(U)| ≥ εs|U |
2i(log n)2

. (3)

Proof. Suppose for a contradiction that (3) does not hold for any 0 ≤ i ≤ log s. Let U ′ be the set of vertices in
V (G) \ U with at most s neighbours in U . Let F be the set of edges between U and U ′ in G, and note that

|F | ≤
log s∑
i=0

|{u ∈ U ′ : 2i ≤ dG(u, U) ≤ 2i+1}| · 2i+1 ≤
log s∑
i=0

|NG,2i(U)| · 2i+1 ≤
log s∑
i=0

2i+1 · εs|U |
2i(log n)2

≤ s|U |,

where we have used that s ≤ n follows from the definition of expansion. Then, since G is an (ε, s)-expander, we have
|NG,s(U)| ≥ |NG−F (U)| ≥ ε|U |/(log n)2, so (3) holds for i = log s, which is a contradiction.
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The following result states that if we randomly sample the edges of an expander, then with high probability we get a
(weaker) expander. We will use it to prove Lemma 30.

Lemma 32. Let n and s be sufficiently large and 0 < p, ε < 1. Suppose that G is an n-vertex (ε, s)-expander and
εps ≥ 105(log n)3. Let H be a random subgraph of G with vertex set V (G), which contains every edge independently
with probability p. Let s′ = εps

104(logn)2 . Then, the probability that H is not an ( ε4 , s
′)-expander is less than 2/n.

Proof. Let U ⊆ V (G) and u = |U | ≤ 2n
3 . We will show that the probability that U does not satisfy the (ε/4, s′)-

expansion condition is at most e−2u logn. Applying Proposition 31, there is some 0 ≤ i ≤ log s such that, letting
d = 2i, |NG,d(U)| ≥ εsu

d·(logn)2 .

First consider the case a) where pd ≤ 100. Then, for each v ∈ NG,d(U), the probability that v ∈ NH(U) is at least
1−(1−p)d ≥ pd

103 . Note that, therefore, |NH(U)| is dominated by Bin(|NG,d(U)|, pd
103 ). Hence E[|NH(U)|] ≥ εpsu

103(logn)2 ≥
100u log n. Thus, by the Chernoff bound, with probability at least 1−e−2u logn, we have |NH(U)| ≥ εpsu

2·103(logn)2 ≥ 2s′u,
which implies that for any set F ⊂ E(H) with |F | ≤ s′u, we have |NH−F (U)| ≥ s′u ≥ 10u log n ≥ εu

4(logn)2 .

Next, consider the case b) where pd > 100. Then, for each v ∈ NG,d(U), the probability that v /∈ NH,pd/2(U) is at
most q := P(Bin(d, p) < pd

2 ). By the Chernoff bound, q ≤ e−pd/12. Writing t = εsu
2d(logn)2 , as |NG,d(U)| ≥ εsu

d(logn)2 = 2t,
we have

P
(
|NH,pd/2(U)| < t

)
≤
(
⌈2t⌉

⌈2t⌉ − ⌊t⌋

)
· q⌈2t⌉−⌊t⌋ ≤ 2⌈2t⌉ · q⌈2t⌉−⌊t⌋ ≤ (4q)t ≤ e

−pdt
24 = e

− εpsu

48(log n)2

≤ e−2u logn. (4)

Note that, if |NH,pd/2(U)| ≥ εsu
2d(logn)2 , then, for any F ⊂ E(H) with |F | ≤ s′u, we have

|NH−F (U)| ≥ |NH,pd/2(U)| − |F |
pd/2

≥ εsu

2d(log n)2
− 2s′u

pd
≥ εsu

4d(log n)2
≥ εu

4(log n)2
.

Therefore, whichever of a) or b) holds, the probability that U does not satisfy the (ε/4, s′)-expansion condition is at
most e−2u logn. Hence, the probability that H is not an (ε/4, s′)-expander is at most

2n/3∑
u=1

(
n

u

)
e−2u logn ≤

2n/3∑
u=1

nu · n−2u ≤ n−1 +

2n/3∑
u=2

n−2 <
2

n
,

as required.

Proof of Lemma 30. Assign every edge of G to one of the graphs G1, . . . , Gk uniformly and independently at
random, so that every Gi is a random subgraph of G containing each edge of G with probability 1/k. For any given
i ∈ [k], by Lemma 32, the probability that Gi is not an

(
ε
4 ,

εs
104k(logn)2

)
-expander is strictly less than 1/k (since

n ≥ s ≥ 2k). Thus, by a union bound, the probability that Gi is an
(

ε
4 ,

εs
104k(logn)2

)
-expander for every i ∈ [k] is

positive, so some decomposition as required by the lemma must exist.

7.4 Expansion of well-expanding sets into a random vertex set

In order to prove Lemma 23, we need to show that, for an expander G, if we take a large random subset V in V (G),
then with high probability it is true that, for every U ⊂ V (G) and not too large F ⊂ E(G), more than half of the
vertices in V can be reached from U by short paths inside V which avoid all the edges in F . We prove this in three
steps: in this subsection we deal only with ‘well-expanding’ sets U and very small F , in the next subsection we extend
this to arbitrary U but still only very small F , and finally, in Subsection 7.6, we deal with all U and much larger F ,
completing the proof of Lemma 23. Similar results were proved in [11], but we need quantitatively stronger versions
here.
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Lemma 33. Let n be sufficiently large, let 0 < p < 1, and suppose that G is an n-vertex (ε, s)-expander with
2−100 < ε < 1 and s ≥ 20p−3(log n)13. Let U ⊂ V (G) satisfy |NG(U)| ≥ |U |p−4(log n)24 and let F ⊂ E(G) satisfy
|F | ≤ |U |. Let V be a p-random subset of V (G). Then, with probability 1− e−Ω(|U |(logn)2),

|B(logn)4

G−F (U, V )| > |V |
2

.

Proof. Let ℓ = (log n)4 and let q ∈ (0, 1) be such that 1− (1− q)ℓ−1(1− 4p
5 ) = p, i.e., that (1− q)ℓ−1 = 1−p

1− 4p
5

, so that

q ≥ p

6(log n)4
. (5)

Independently, for each i ∈ [ℓ], let Vi be a q-random subset of V (G) if i ≤ ℓ− 1 and a (4p/5)-random subset of V (G)

if i = ℓ. Set V = V1 ∪ . . . ∪ Vℓ, and note that V is a p-random subset of V (G). Thus, we wish to show that, with
probability at least 1− e−Ω(|U |(logn)2) we have |Bℓ

G−F (U, V )| > |V |
2 .

For each 0 ≤ i ≤ ℓ, let Bi be the set of vertices of G which can be reached via a path in G − F which starts in U

and has length at most i and whose internal vertices (if there are any) are in V1 ∪ · · · ∪ Vi−1. In particular, we have
B0 = U and B1 = U ∪ NG−F (U). Observe also that B0 ⊆ B1 ⊆ . . . ⊆ Bℓ. We emphasise that the vertices of Bi do
not themselves have to be inside V1 ∪ . . . ∪ Vi−1, only the internal vertices of some path from U to the vertex in Bi

are required to be inside V1 ∪ . . . ∪ Vi−1. An important property of Bi is that it is completely determined by the sets
U, V1, . . . , Vi−1, and therefore is independent of Vi. Note also that any vertex in NG−F (Bi) with a neighbour in Bi

that gets sampled into Vi belongs to Bi+1. These two observations will be the key behind why the sets Bi+1 will grow
in size until they occupy most of the set V (G). The lemma will then follow from

Bℓ ∩ Vℓ ⊆ Bℓ
G−F (U, V ). (6)

We now show that indeed, for each 1 ≤ i ≤ ℓ− 1, unless Bi is already very large, Bi+1 is likely to be somewhat larger
than Bi.

Claim. For each 1 ≤ i ≤ ℓ− 1, with probability 1− e−Ω(|U |(logn)2), either |Bi| ≥ 2
3n, or

|Bi+1 \Bi| ≥
ε|Bi|

25(log n)2
.

Proof. For each v ∈ NG−F (Bi), v is in Bi+1 if at least one of its neighbours in G − F in Bi gets sampled into Vi.
That is,

{v ∈ NG−F (Bi) : (NG−F (v) ∩Bi) ∩ Vi ̸= ∅} ⊆ Bi+1 \Bi. (7)

We will show that, for any set W ⊆ V (G) with |W | ≤ 2
3n and B1 ⊆W

P
(
|{v ∈ NG−F (W ) : (NG−F (v) ∩W ) ∩ Vi ̸= ∅}| ≥

ε|W |
25(log n)2

)
≥ 1− e−Ω(p4|B1|/(logn)22). (8)

Given (8), we will have that for all 1 ≤ i ≤ ℓ− 1,

P
(
|Bi| ≥

2

3
n or |Bi+1 \Bi| ≥

ε|Bi|
25(log n)2

)
(7)
≥ P

(
|Bi+1 \Bi| ≥

ε|Bi|
25(log n)2

∣∣∣ |Bi| ≤
2

3
n

)
(7)
≥ P

(
|{v ∈ NG−F (Bi) : (NG−F (v) ∩Bi) ∩ Vi ̸= ∅}| ≥

ε|Bi|
25(log n)2

∣∣∣ |Bi| ≤
2

3
n

)
(8)
≥ 1− e−Ω(p4|B1|/(logn)22) ≥ 1− e−Ω(|U |(logn)2),

where in the last inequality we used that |B1| ≥ |NG−F (U)| ≥ |U |p−4(log n)24 − |F | ≥ 1
2 |U |p

−4(log n)24.

Let then W ⊆ V (G) satisfy |W | ≤ 2
3n and B1 ⊆ W . As |W | ≤ 2

3n and |F | ≤ |U | ≤ |B1| ≤ |W | ≤ s|W |/4, we
can apply Lemma 28 with W in place of U , r = p−1(log n)4 and t = p−2(log n)9 (note that the lemma applies since
s ≥ 20p−3(log n)13 = 20rt). Hence, one of the two cases a) or b) from Lemma 28 holds; we will show that (8) holds
in either case.
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a) Suppose that G − F contains |W |
10p−1(logn)4 vertex-disjoint stars, each with p−2(log n)9 leaves, centre in W and all

leaves in NG−F (W ). Let C ⊆W be the set of centres of such a collection of stars, and note that

|{v ∈ NG−F (W ) : (NG−F (v) ∩W ) ∩ Vi ̸= ∅}| ≥ |C ∩ Vi| · p−2(log n)9. (9)

By the Chernoff bound and (5), and as p2/(log n)14 ≤ 1 and |W | ≥ |B1|, with probability at least 1 − e−q|C|/12 =

1− e−Ω(|W |p2/(logn)8) ≥ 1− e−Ω(p4|B1|/(logn)22), we have |C ∩Vi| ≥ q|C|
2 ≥ |W |p2

120(logn)8 . This, combined with (9), implies
(8).

b) Suppose instead that there is a bipartite subgraph H ⊆ G−F with vertex classes W and X ⊆ V (G) \W such that

• |X| ≥ ε|W |
2(logn)2 and

• every vertex in X has degree at least r = p−1(log n)4 in H and every vertex in W has degree at most ∆ := 2t =

2p−2(log n)9 in H.

For each v ∈ X, the probability that v has no neighbours in H in Vi is at most

(1− q)r = (1− q)p
−1(logn)4 ≤ e−qp−1(logn)4

(5)
≤ e−1/6 ≤ 7

8
.

Let Y be the random variable counting the number of vertices in X having a neighbour in Vi in H, so that E[Y ] ≥ |X|
8 .

Observe also that Y is ∆-Lipschitz since for each v ∈ W the event {v ∈ Vi} affects Y by at most dH(v) ≤ ∆. Hence,
by Lemma 15 with k = ∆, t = |X|

16 and N = |W |, we have

P
(
Y <

|X|
16

)
≤ P

(
Y < E[Y ]− |X|

16

)
≤ 2 exp

(
−2−9|X|2

∆2|W |

)
= e−Ω(|W |p4/(logn)22).

Each vertex in X with a neighbour in Vi in H belongs to {v ∈ NG−F (W ) : (NG−F (v) ∩W ) ∩ Vi ̸= ∅}. Hence, with
probability at least 1−e−Ω(|W |p4/(logn)22), we have |{v ∈ NG−F (W ) : (NG−F (v)∩W )∩Vi ̸= ∅}| ≥ Y ≥ |X|

16 ≥
ε|W |

25(logn)2 .
This means that (8) holds in case b) as well, completing the proof of the claim.

As Bℓ and Vℓ are independent, by the Chernoff bound, we have that

P
(
|Bℓ ∩ Vℓ| ≤

31p

60
n
∣∣ |Bℓ| ≥

2

3
n

)
≤ P

(
Bin

(
2

3
n,

4p

5

)
≤ 31p

60
n

)
≤ e−Θ(np),

and, similarly, we have P
(
|V | ≥ 61p

60 n
)
≤ e−Θ(np).

Thus, by the claim, altogether we have that

i) for each i ∈ [ℓ− 1], |Bi| ≥ 2
3n or |Bi+1 \Bi| ≥ ε|Bi|

25(logn)2 ,

ii) |Bℓ| < 2
3n or |Bℓ ∩ Vℓ| > 31p

60 n, and

iii) |V | ≤ 61p
60 n

with probability at least

1− (log n)4 · e−Ω(|U |(logn)2) − e−Θ(np) ≥ 1− e−Ω(|U |(logn)2),

where we used that |U | ≤ np4

(logn)24 as |NG(U)| ≥ |U |p−4(log n)24.

However, if i)–iii) all hold, then, for each i ∈ [ℓ], we have

|Bi| ≥ min

{
2

3
n,

(
1 +

ε

25(log n)2

)i

|U |

}
≥ min

{
2

3
n, exp

(
εi

26(log n)2

)}
,

so that, setting i = ℓ = (log n)4, we obtain that |Bℓ| ≥ 2
3n, and hence, by ii) and iii), that |Bℓ ∩ Vℓ| > |V |

2 .

Thus, by (6), we have that |Bℓ
G−F (U, V )| > |V |

2 with probability at least 1− e−Ω(|U |(logn)2).
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7.5 Expansion of all sets into a random vertex set with poor robustness

We now use Lemma 29 and Lemma 33 to prove the following result.

Lemma 34. Let 0 < p < 1. Suppose that G is an n-vertex (ε, s)-expander with 2−100 < ε < 1 and s ≥ 20p−4(log n)24.
Let V be a p-random subset of V (G). Then, with probability 1 − o(1/n), for every U ⊂ V (G) and every F ⊂ E(G)

with |F | ≤ p4|U |
(logn)27 ,

|B(logn)4

G−F (U, V )| > |V |
2

. (10)

Proof. Say that a set U ′ ⊆ V (G) is well-expanding in G if |NG(U
′)| ≥ |U ′|p−4(log n)24. Since s ≥ 20p−3(log n)13,

given a non-empty well-expanding set U ′ ⊆ V (G) and a set of edges F of size at most |U ′|, Lemma 33 applied to U ′

implies that

|B(logn)4

G−F (U ′, V )| > |V |
2

(11)

fails with probability at most e−Ω(|U ′|(logn)2).

Now, a union bound over all pairs (U ′, F ) such that U ′ is a well-expanding set in G and F is a set of at most |U ′|
edges tells us that some such pair (U ′, F ) fails (11) with probability at most

∑
(U ′,F )

e−Ω(|U ′|(logn)2) ≤
n∑

u=1

u∑
f=1

(
n

u

)(
n2

f

)
· e−Ω(u(logn)2)

≤
n∑

u=1

u · n3u · e−Ω(u(logn)2) ≤
n∑

u=1

e−Ω(u(logn)2) = o(1/n).

Thus, with probability 1− o(1/n), we can assume that (11) holds for every well-expanding set U ′ and set F ⊆ E(G)

with |F | ≤ |U ′|. We will now show that this implies that (10) holds for all U ⊆ V (G) and F ⊆ E(G) with |F | ≤ p4|U |
(logn)27 ,

completing the proof.

Let U ⊆ V (G) with |U | ≤ 2
3n and let F ⊆ E(G) satisfy the (slightly weaker) condition |F | ≤ 2p4|U |

(logn)27 . Then, applying

Lemma 29 (with λ = p−4(log n)24 ≤ s), there is a set U ′ ⊆ U which is well-expanding for which |U ′| ≥ εp4|U |
3(logn)26 .

Noting that |F | ≤ |U ′| (as we may assume that n is large), we therefore have that

|B(logn)4

G−F (U, V )| ≥ |B(logn)4

G−F (U ′, V )| > |V |
2

.

Finally, consider U ⊆ V (G) with |U | > 2
3n and let F ⊆ E(G) satisfy |F | ≤ p4|U |

(logn)27 . Let Ū ⊆ U be an arbitrary subset

with n
2 ≤ |Ū | ≤

2
3n, so that we have |F | ≤ 2p4|Ū |

(logn)27 , and hence, from what we have just shown,

|B(logn)4

G−F (U, V )| ≥ |B(logn)4

G−F (Ū , V )| > |V |
2

,

as required.

7.6 Expansion of all sets into a random vertex set with improved robustness

We are now ready to prove Lemma 23 in the following (equivalent) form which incorporates Definition 22.

Lemma 35. Let 0 < p < 1. Suppose that G is an n-vertex (ε, s)-expander with 2−90 < ε < 1 and s ≥ p−4(log n)30.
Let V be a p-random subset of V (G). Then, with probability 1− o(1), for every U ⊂ V (G) and every F ⊂ E(G) with
|F | ≤ p8|U |s

(logn)60 ,

|B(logn)4

G−F (U, V )| > |V |
2

.
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Proof. Let k = ⌊p4s/(log n)30⌋. Then by the assumption on s, we have k ≥ 1. Also, as our lemma concerns the
asymptotic probability as n→∞, we may assume that n is sufficiently large and therefore εs/k ≥ 105(log n)3. Hence,
using Lemma 30, we can obtain edge-disjoint graphs G1, . . . , Gk such that E(G) = ∪i∈[k]E(Gi) and, for each i ∈ [k],
Gi is an ( ε4 , s

′)-expander with vertex set V (G), where s′ = εs
104k(logn)2 . By the choice of k, we have s′ ≥ 20p−4(log n)24,

so by Lemma 34 and a union bound over the k graphs Gi, with probability 1− o(1) we have that, for each i ∈ [k] and
every U ⊂ V (Gi) and F ⊂ E(Gi) with |F | ≤ p4|U |

(logn)27 ,

|B(logn)4

Gi−F (U, V )| > |V |
2

.

Now let U ⊂ V (G) and F ⊂ E(G) with |F | ≤ p8|U |s
(logn)60 . As the graphs Gi, i ∈ [k], are edge-disjoint, there exists some

i ∈ [k] such that |F ∩ E(Gi)| ≤ p8|U |s
k(logn)60 ≤

p4|U |
(logn)27 , and therefore

|B(logn)4

G−F (U, V )| ≥ |B(logn)4

Gi−(F∩E(Gi))
(U, V )| > |V |

2
.

This proves the lemma.

8 Concluding remarks

Note that our regularisation lemma (Lemma 3) is vacuous when the average degree d is less than about log n. However,
using the same approach, one can also obtain meaningful analogues of Lemma 3 when d is very small. Indeed, one can
replace the use of the union bound by an application of the Lovász local lemma in the proof of Lemma 16, and obtain
the following results. (Note that a downside is that, due to the use of the local lemma, the results no longer have the
useful property that, for example, with high probability the nearly-regular subgraph contains a large random subset
of V (G).)

Lemma 36. There exists some C > 0 such that for each 1/d≪ γ ≤ 1/100 the following holds. Let G be a graph with
degrees between d and (1+γ)d. Then, for some d′ ≥ (1−40γ)d, G contains a subgraph G′ with |V (G′)| ≥ (1−40γ)|V (G)|
and degrees between d′ and d′ + C log d′.

Lemma 37. There exists some t ≥ 1 such that the following holds for all C ≥ 1 and C ′ ≥ Ct. For any d, if a
graph has degrees between d and Cd, then it contains a subgraph with degrees between d′ and d′ + C ′ log d′ for some
d′ ≥ d/C ′.

We remark that Lemma 36 and Lemma 37 will be used by Montgomery, Müyesser, Pokrovskiy and Sudakov in their
upcoming work [35]. Moreover, in our upcoming paper [12], using further ideas, we prove that every graph with
degrees between d and Cd contains an r-regular subgraph, where r ≥ d/C ′ for some C ′ which is a polynomial in C.
This shows that the conclusion of Lemma 37 can be strengthened to find a fully regular subgraph. Furthermore, this
can be used to make significant progress on an old problem of Rödl and Wysocka [40] (see [12]).

Acknowledgements. We are grateful to Noga Alon and Benny Sudakov for helpful comments and suggestions.
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A Finding an 18-almost-regular expander

In this appendix we prove Lemma 6. For convenience, we repeat the lemma along with the definition of our expander.

Definition 5. An n-vertex graph G is an (ε, s)-expander if, for every U ⊆ V (G) and F ⊆ E(G) with 1 ≤ |U | ≤ 2
3n

and |F | ≤ s|U |, we have

|NG−F (U)| ≥ ε|U |
(log n)2

. (1)

Lemma 6. Let n be a sufficiently large integer and let 0 < ε < 2−3. Let G be an n-vertex graph with d(G) ≥ (log n)4.
Then, G contains an 18-almost-regular bipartite subgraph G′ with d(G′) ≥ d(G)

400 logn which is an (ε, s)-expander for some

s ≥ d(G′)
(log |V (G′)|)2 .

We will use the following lemma, which finds a robust expander in any graph G whose average degree is very close to
that of G, while also ensuring that the minimum degree of the expander is large.

Lemma 38. Let n be a sufficiently large integer and 0 < ε < 2−3. Let G be an n-vertex graph with d(G) ≥ (log n)2.
Then, G contains a subgraph G′ satisfying the following properties.

• G′ is an (ε, s)-expander for some s ≥ d(G′)
(log |V (G′)|)2 .

• d(G′) ≥ d(G)
(
1− 50

log logn

)
.
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• δ(G′) ≥ d(G)
3 .

Proof. We will define a procedure that finds the desired subgraph G′ in G. At every step, we consider a subgraph H

and show that either H satisfies the desired properties (in which case we end the procedure and set G′ := H) or we
can find a certain subgraph H ′ ⊆ H and continue the procedure with H ′. Before describing the procedure, we prove
the following claim.

Claim 1. Let H be a subgraph of G which is not an (ε, s)-expander with s = d(H)
(log |V (H)|)2 , and let λ = 3

(log |V (H)|)2 .
Then there is a set Y ⊆ V (H) with |Y | < 3

4 |V (H)| such that d(H[Y ]) ≥ (1− λ)d(H) or there is a set X ⊆ V (H) with
X ̸= V (H) such that d(H[X]) ≥ d(H).

Proof of Claim 1. As H is not an (ε, s)-expander, there are sets U ⊆ V (H) and F ⊆ E(H) with 1 ≤ |U | ≤ 2
3 |V (H)|

and |F | ≤ s|U | such that |NH−F (U)| < ε|U |
(log |V (H)|)2 . Let Y = U ∪NH−F (U) and X = V (H) \ U . Note that

d(H)(|U |+ |X|) = 2e(H) ≤ 2e(H[Y ]) + 2e(H[X]) + 2|F | ≤ 2e(H[Y ]) + 2e(H[X]) + 2s|U |. (12)

We claim that either d(H[Y ]) ≥ (1− λ)d(H) or d(H[X]) ≥ d(H). Indeed, otherwise, by (12), we have

d(H)(|U |+ |X|) ≤ (1− λ)d(H)|Y |+ d(H)|X|+ 2s|U | ≤ (1− λ)d(H)(|U |+ |NH−F (U)|) + d(H)|X|+ 2s|U |.

Hence, we have

d(H)(|U |+ |X|) ≤ (1− λ)d(H)

(
|U |+ ε|U |

(log |V (H)|)2

)
+ d(H)|X|+ 2s|U |.

Rearranging, and dividing by |U |, we obtain

d(H)

(
λ− (1− λ)ε

(log |V (H)|)2

)
≤ 2s. (13)

However, by the choice of λ, the left-hand side of (13) is more than d(H)
(
λ− ε

(log |V (H)|)2

)
= d(H)

(
3−ε

(log |V (H)|)2

)
> 2s,

a contradiction. Therefore, we have either d(H[Y ]) ≥ (1 − λ)d(H) or d(H[X]) ≥ d(H). Moreover, since ε < 2−3, in
the former case, |Y | = |U ∪ NH−F (U)| <

(
1 + ε

(log |V (H)|)2
)
|U | ≤

(
1 + ε

(log |V (H)|)2
)
· 23 |V (H)| < 3

4 |V (H)|, as desired.
This proves the claim.

Now, we describe our procedure. Let d1 = d(G). Starting with G1 := G, iteratively, for every i ≥ 1, we do the
following as long as |V (Gi)| ≥ d1/2 holds, where we use λ = 3

(log |V (H)|)2 .

• If Gi has a vertex v with degree less than d(Gi)/2, we define Gi+1 := Gi \v and proceed to the next step with Gi+1.
(Note that, in this case, d(Gi+1) ≥ d(Gi).) Otherwise, we proceed to the next bullet point.

• If Gi is an (ε, s)-expander with s = d(Gi)
(log |V (Gi)|)2 , then define G′ = Gi and stop this procedure. Otherwise, we apply

Claim 1 with H = Gi to get a set X or Y as in the claim. In the former case, we have d(H[X]) ≥ d(H), and so
define Gi+1 := H[X] and proceed to the next step with Gi+1. For the latter case, we have d(H[Y ]) ≥ (1− λ)d(H),
and so define Gi+1 := H[Y ] and proceed to the next step with Gi+1, noting that |V (Gi+1)| = |Y | < 3

4 |V (Gi)|.

Suppose that the above procedure terminates with the graph Gt. For every i ∈ [t], define ni := |V (Gi)| and di := d(Gi).
By the stopping condition, note that nt−1 ≥ d1/2. Our goal now is to show that the graph Gt is our desired subgraph
G′. Note that, in the above procedure, we have di+1 < di only if ni+1 < 3

4ni. Moreover, by Claim 1, in this
case, di+1 ≥ (1 − 3

(logni)2
)di. We now wish to obtain a lower bound on dt. Let I be the set of i ∈ [t − 1] for

which di+1 < di, noting that, as ni+1 < 3
4ni for each i ∈ I, for each j there is at most one value of i ∈ I with

(d1/2) · (4/3)j ≤ ni < (d1/2) · (4/3)j+1. Then, we have

dt ≥ d1 ·
∏
i∈I

(
1− 3

(log ni)2

)
≥ d1 ·

∏
i≥0

(
1− 3

(log (d1/2 · (4/3)i))2

)
≥ d1 ·

(
1−

∑
i≥0

3

(log (d1/2 · (4/3)i))2

)
. (14)
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Let k be an integer such that (4/3)k ≤ d1/2 ≤ (4/3)k+1. Then, since n is large enough,∑
i≥0

3

(log (d1/2 · (4/3)i))2
≤
∑
i≥0

3

(log ((4/3)k+i))2
=
∑
i≥k

3

i2(log(4/3))2
≤
∑
i≥k

20

i2
≤ 40

k
≤ 100

log d1
.

Thus, by (14), we have

dt ≥ d1

(
1− 100

log d1

)
≥ d(G)

(
1− 50

log log n

)
.

Since dt ≥ d1/2, we have nt ≥ d1/2. Therefore, the procedure could have only stopped because G′ := Gt is an (ε, s)-
expander with s = d(Gt)

(log |V (Gt)|)2 . Moreover, it has average degree d(Gt) = dt ≥ d(G)
(
1− 50

log logn

)
, and minimum

degree at least d(Gt)/2 ≥ d(G)/3. Thus, G′ = Gt is the desired subgraph. This completes the proof of the lemma.

We combine the above lemma with the following result, which can be proved using an approach of Pyber [36], as is
done by Alon, Cohen, Dey, Griffiths, Musslick, Ozcimder, Reichman, Shinkar and Wagner in [3] and by Bucić, Kwan,
Pokrovskiy, Sudakov, Tran and Wagner in [10].

Lemma 39. Every n-vertex graph with average degree d contains a 6-almost-regular subgraph with average degree at
least d

100 logn .

We are now ready to prove Lemma 6.

Proof of Lemma 6. First, using a common folklore result, let G0 be a bipartite subgraph G with average degree
at least d(G)/2. Then, we apply Lemma 39 to G0 in order to find a (bipartite) 6-almost-regular subgraph G1 ⊆ G0

with d1 := d(G1) ≥ d(G)
200 logn . Now we apply Lemma 38 (with G1 playing the role of G) to obtain a subgraph G2 ⊆ G1

which is an (ε, s)-expander for some s ≥ d(G2)
(log |V (G2)|)2 , satisfying d(G2) ≥ d1(1 − 50

log log |V (G1)| ) and δ(G2) ≥ d1

3 .

Lemma 38 indeed applies since d(G1) ≥ d(G)
200 logn ≥ (log n)2. Moreover, since |V (G1)| ≥ d(G1) ≥ (log n)2, we have

d(G2) ≥ d1(1− 50
log log |V (G1)| ) ≥

d1

2 ≥
d(G)

400 logn .

Note that since G1 is 6-almost-regular, it has maximum degree at most 6d1. Since G2 is a subgraph of G1, it also has
maximum degree at most 6d1, while, as noted above, its minimum degree is at least d1

3 , so G2 is 18-almost-regular.
Thus, G′ := G2 ⊆ G is the desired 18-almost-regular (ε, s)-expander. This completes the proof of the lemma.
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