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Abstract

The famous tree packing conjecture of Gyárfás from 1976 says that any sequence of trees T1, . . . , Tn

such that |Ti| = i for each i ∈ [n] packs into the complete n-vertex graph Kn. Packing even just the
largest trees in such a sequence has proven difficult, with Bollobás drawing attention to this in 1995
by conjecturing that, for each k, if n is sufficiently large then the largest k trees in any such sequence
can be packed into Kn. This has only been shown for k ≤ 5, by Żak, despite many partial results and
much related work on the full tree packing conjecture. We prove Bollobás’s conjecture, by showing
that, moreover, a linear number of the largest trees can be packed in the tree packing conjecture.

1 Introduction

We say a collection of graphs F1, . . . , Fr packs into a graph G if G contains edge-disjoint copies of
F1, . . . , Fr. Where such subgraphs contain every edge of G, we say this is a perfect packing, also known as
a decomposition. A lot of work in graph packing has centred on two major conjectures on packing trees
into complete graphs. The first of these, from 1967, is Ringel’s conjecture that every (n + 1)-vertex tree
can be packed 2n+1 times into the (2n+1)-vertex complete graph K2n+1, which was recently proved for
large n by the second author, Pokrovskiy and Sudakov [15], with an alternative proof given by Keevash
and Staden [13]. The second major conjecture, and the subject of this paper, is the following conjecture
of Gyárfás (see [9]) from 1976, known as the tree packing conjecture (TPC).

Conjecture 1.1 (The tree packing conjecture (TPC)). Any sequence of trees T1, . . . , Tn such that |Ti| = i
for each i ∈ [n] packs into the complete n-vertex graph Kn.

Note that if the packing in Conjecture 1.1 exists then it will be a perfect packing. Early results on
the tree packing conjecture showed that this packing is possible if the trees all belong to some limited
subclass. Indeed, Gyárfás and Lehel [9] showed that the TPC holds if all but at most 2 of the trees are
stars, or if all the trees are stars or paths. Zaks and Liu [19] gave an alternative proof that the TPC holds
if all the trees are stars or paths, while Hobbs (see [5]) proved that the TPC holds if all the trees are stars
or double stars. Extending a result of Straight [16], Fishburn [8] showed that the TPC holds for all n ≤ 9,
and also extended the result of Hobbs to cover some more very specialised classes of trees.

In 1983, Bollobás [3] showed that the smallest ⌊n/
√
2⌋ trees in the TPC can be packed into Kn,

by simply packing them greedily in descending order of size, and observed that, moreover, the smallest
⌊
√
3n/2⌋ trees can be packed if the Erdős-Sós conjecture holds. However, packing the largest trees in the

TPC is surprising difficult. In 1987, Hobbs, Bourgeois and Kasiraj [11] showed that the largest 3 trees
can always be packed in the TPC, while, in recent years, Żak [18] has shown that the largest 5 trees can
be packed when n is large. Thus, the following conjecture of Bollobás [5] from 1995, is not as innocuous
as it might seem: that, for each k, there is some nk such that, for each n ≥ nk, the largest k trees in the
TPC can be packed into Kn. This conjecture does, however, become significantly easier with only a small
alteration. That is to say, Balogh and Palmer [2] were able to show that if the largest tree is skipped, then
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the next 1
10n

1/4 largest trees can be packed in the TPC (for large n), or, if none of the trees are stars,

then the 1
10n

1/4 largest trees can be packed in the TPC (again, for large n).
Within the last decade, a substantial amount of work has approached the tree packing conjecture by

imposing an additional maximum degree condition on the trees. We will only mention the results most
directly applicable towards the TPC, but many of these results hold for a wider class of subgraphs than
trees or for a suitably quasirandom host graph (for more details on this and other related results see
[1]). When quoting these results, by an approximate version of the TPC we mean a result showing that
T1, . . . , T(1−o(1))n can be packed into Kn in Conjecture 1.1. The first such version was shown by Böttcher,
Hladký, Piguet and Taraz [6] in 2016, who, for each ∆ ∈ N, gave an approximate version of the TPC
when the trees all have maximum degree at most ∆. Joos, Kim, Kühn and Osthus [12] then showed that,
for each ∆ and sufficiently large n, the TPC holds when the trees all have maximum degree at most ∆.
Ferber and Samotij [7] extended the approximate results in 2019, by showing there is some c > 0 for which
an approximate version of the TPC holds when all the trees have maximum degree at most cn/ log n.
Finally, Allen, Böttcher, Clemens, Hladký, Piguet and Taraz [1] used very substantial methods to prove
there is some c > 0 for which the TPC holds when all the trees have maximum degree at most cn/ log n.

Here, we concentrate on packing the largest trees for the tree packing conjecture, with no additional
imposition on the trees packed, and show that the Ω(n) largest trees will pack into Kn, as follows.

Theorem 1.2. There exists a constant ε > 0 such that the following holds with r = εn for all n. If
Tn−r+1, . . . , Tn are trees with |Ti| = i for each n− r < i ≤ n, then Tn−r+1, . . . , Tn pack into Kn.

In particular, then, Bollobás’s weak version of the tree packing conjecture is true. We have not
attempted to optimise the value of ε in Theorem 1.2, and in several places there is the potential for
improvement, particularly by randomising some embeddings which we do greedily. However, if (1−o(1))n
trees in the TPC are to be packed then it is more approachable to do this starting with the smallest trees,
that is, to give an approximate version of the TPC without the degree bound in the versions quoted above
(or, perhaps, as a next step, using a degree bound linear in n). Due to this, we present our methods
without complicating them with any such optimisations. In the next section, we sketch our methods
before outlining the rest of this paper.

2 Proof sketch

Suppose, for some 1/n≪ ε≪ 1 and r = εn, we have trees T1, . . . , Tr with |Ti| = n− i+ 1 for each i ∈ [r]
(relabelling from Theorem 1.2 to start with the largest trees) and we try to embed them into the complete
graph Kn in order starting with T1. For each i ∈ [r−1], after embedding i trees, in order to continue there
must be some vertex with ∆(Ti+1) neighbouring edges that we have not yet used. If Ti+1 is a star, then
the vertex used for the centre of the star in Kn, vi+1 say, must have at most i neighbouring edges used
when embedding T1, . . . , Ti. That is, on average, vi+1 must be a leaf of the copy of each Tj , j ≤ i. This
average is hardest to maintain when these trees are paths with only two leaves that could be embedded
to vi+1. We naturally then have two extreme cases for each tree in the sequence: if a tree is a star then
we cannot use too many neighbouring edges around where we want to embed its centre, whereas if a tree
is a path it has to be embedded using two neighbouring edges for most of the vertices in Kn. For our
embeddings, we divide the trees into ‘star-like’ trees (trees with many leaves) and ‘path-like’ trees (trees
with few leaves) and embed them very differently according to this.

Before we go further with our sketch, let us simplify things by noting that, indeed, stars are the most
difficult ‘star-like’ trees to appear in the sequence (as is suggested by the result of Balogh and Palmer [2]
packing the 1

10n
1/4 largest trees for large n if none are stars). Essentially, given a sequence of trees to

embed for Theorem 1.2, we replace the ‘star-like’ tree Ti in the sequence with a star of the same size, and
embed the new sequence instead into Kn (with some mild additional degree conditions on the embedded
edges). The embedded stars reserve edges to possibly embed a particularly high degree vertex in the
corresponding ‘star-like’ tree, and, removing the embedded stars, we can then embed the corresponding
trees. To embed the ‘star-like’ trees here takes a little care, but essentially is done using a method inspired
by Havet, Reed, Stein, and Wood [10], and we postpone any discussion of this to Section 5. There, we
prove Theorem 1.2 from the following result, which is essentially a version of Theorem 1.2 where all the
star-like trees are stars.
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Theorem 2.1. Let 1/n ≪ ε ≪ λ ≪ 1 and r = εn, and let v1, . . . , vn be an ordering of V (Kn). If
T1, . . . , Tr are trees with |Ti| = n − i + 1 for each i ∈ [r], such that each tree Ti is either a star or a tree
with at most λn leaves, then T1, . . . , Tr pack into Kn so that every vertex which is not the centre of an
embedded star has degree at most n/10 in the union of the embedded trees and, for each i ∈ [r], if Ti is a
star then it is embedded into Kn with its centre to the left (in the ordering v1, . . . , vn) of all of its leaves.

As our embedding of the ‘path-like’ trees is at times quite involved, we now spend a little time setting
up a visual way to think about these embeddings (see the figures on page 4 for two example embeddings).
For ease of notation, let us also extend our sequence of trees so that there are equally many stars and
‘path-like’ trees. That is, suppose we have r = εn stars S1, . . . , Sr, and ‘path-like’ trees P1, . . . , Pr which
each have at most λn leaves, for some ε≪ λ≪ 1, where both the stars and the path-like trees are listed
in decreasing order in size, and in some order these 2r trees form a sequence of trees decreasing stepwise
in size from n vertices to n− 2r + 1 vertices (we call this sequence the TPC sequence).

Order the vertices of Kn as v1, . . . , vn, where we aim to use vi as the centre of the ith star for each
i ∈ [r]. When embedding a path-like tree Pi we will only use the intended centre of any star occurring in
the TPC sequence after Pi. We need to cover these vertices very carefully, so we put them into the set

Wi = {vj : j ∈ [r] and |Sj | < |Pi|}

(these sets are depicted in a grid in Figure 1). The vertices not intended as the centre of any star we cover
with the embedding of each tree Pi, i ∈ [r], and put these vertices into the set X = {vr+1, . . . , vn}. In
summary, we will obey the following rule.

A1 For each i ∈ [r], Pi is embedded into Kn[Wi ∪X].

For each i ∈ [r], Wi ∪ X contains every vertex in V (Kn) except for one vertex for each star Sj that is
larger than Pi (which together form a leftmost interval in the ordering v1, . . . , vn), and therefore

|Wi ∪X| − |Pi| =
(
n− |{j ∈ [r] : |Sj | > |Pi|}|

)
−
(
n− |{j ∈ [r] : |Sj | > |Pi|}| − |{j ∈ [r] : |Pj | > |Pi|}|

)
= |{j ∈ [r] : |Pj | > |Pi|}| = i− 1, (1)

so we have the following principle for each i ∈ [r].

B If Pi is embedded into Kn[Wi ∪X] then there are exactly (i− 1) unused vertices in Wi ∪X.

As we will see (using a weaker condition, even), if P1, . . . , Pr are embedded so that each vertex in Wi

has at most 1 rightward neighbour (according to our ordering v1, . . . , vn) in the embedding of each Pi,
then each vj with j ∈ [r] will have enough remaining rightward neighbours to embed Sj with vj as its
centre and using edges going to the right from vj (so that these stars are then disjoint). It is easy to
embed P1 like this: starting by embedding an arbitrary vertex of P1 to vn, embed P1 vertex by vertex,
each time attaching a neighbour of an already embedded vertex of P1 using the right-most unoccupied
vertex in v1, . . . , vn. It is even fairly straightforward to embed P2 like this while avoiding the edges of
such an embedding of P1, but after this it becomes increasingly difficult to embed the trees. Therefore,
essentially (omitting only one initial step we introduce later in the sketch), after embedding P1 we embed
the trees in pairs Pi and Pi+1 (for increasing even i), allowing some vertices in the embeddings to have
two rightward neighbours in one embedding if they have no rightward neighbours in the other embedding
(as in Figure 4). In fact, if a vertex has two rightward neighbours in one embedding then we will use B
to omit it entirely from the other embedding. To summarise, we will embed the trees P1, . . . , Pr disjointly
into Kn under the following rule (as well as A1).

A2 For each i, j ∈ [r] with vj ∈Wi, the following hold.

• If i = 1, then vj has at most 1 rightward neighbour in the embedding of Pi.

• If i is even and vj /∈Wi+1, then v has at most 1 rightward neighbour in the embedding of Pi.

• If i is even and vj ∈Wi+1, then v has at most 2 rightward neighbours in total in the embeddings
of Pi and Pi+1.
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
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v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11
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Figure 1: Grids of vertices in Wi, i ∈ [7], corresponding to the sequences
P1, S1, S2, P2, S3, S4, P3, P4, S5, S6, P5, S7, P6, P7, S8, S9, S10, S11 (left) and

S1, P1, P2, P3, S2, S3, S4, P4, S5, S6, P5, S7, P6, S8, S9, P7, S10, S11 (right).
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Figure 2: The order of the vertices (mostly) covered by the embedding. Firstly, part of Pi is embedded
in Wi \Wi+1, for each even i (I). Then, P1 is embedded covering W1 (II). Then, for each even i, Pi and
Pi+1 are embedded together covering most of Wi \Wi+1 (III).
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Figure 3: Steps I and II of the embedding when all the path-like trees are paths. The arrows indicate the
embedded edge is connected to X = {vr+1, . . . , vn}.

Pi :

Pi+1 :

Wi,j

Pi :

Pi+1 :

Wi,i−1

Pi :

Pi+1 :

Wi,i

Pi :

Pi+1 :

Wi,i+1

Figure 4: Embedding part of Pi and Pi+1 together to cover Wi,j in the four cases j ≤ i − 2, j = i − 1,
j = i and j = i+ 1, while omitting only the vertices marked by a ×.
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If the trees P1, . . . , Pr are embedded obeying A1 and A2, then we can embed the stars S1, . . . , Sr as
each vertex vi, i ∈ [r], will have at least |Si| − 1 neighbouring rightward edges which have not been used
in the embeddings of P1, . . . , Pr. To see this, take i ∈ [r] and let j be the largest j ∈ [r] such that vi ∈Wj ,
or, equally, j is the number of path-like trees larger than Si in the TPC sequence. By A1 and A2, vi is in
at most j rightward edges in the embeddings of P1, . . . , Pr, and therefore has at least n− i− j rightward
neighbouring edges that have not been used. However, there are i+ j − 1 trees which appear in the TPC
sequence before Si, and therefore vi has at least |Si| − 1 unused rightward neighbouring edges.

Thus, it is sufficient to embed P1, . . . , Pr such that A1 and A2 hold. The rough form of our embedding
will be that, to embed say Pi and Pi+1 for some even i, we look at the embedding of P1, . . . , Pi−1, and
deduce from A2 that Wi can be partitioned into i + 1 sets as Wi,1 ∪ . . . ∪Wi,i+1 so that these sets are
independent sets in the graph Hi of the previously embedded edges. Then, for each j ∈ [i + 1], letting
Gi be the complement of Hi in Kn, we can embed part of the trees Pi and Pi+1 in Gi to cover (most of)
the vertices in Wi ∩Wi,j and Wi+1 ∩Wi,j , respectively, where it is very helpful for this embedding that
Gi[Wi,j ] is a complete graph. To discuss the parts of the trees we use for this, let us assume for now that
P1, . . . , Pr are all paths (the more general case is discussed at the end of the sketch). We will also focus
on embedding the parts to cover vertices in {v1, . . . , vr} and postpone to the end of the sketch discussing
how they can be embedded with the rest of the tree so that the parts are correctly connected up and that
all the vertices in X = {vr+1, . . . , vn} are used.

Assume then, that each Pi, i ∈ [r], is a path. Each Pi has two ‘ends’ (see Definition 6.1) – here,
subpaths which end in a leaf of Pi – which are easy to embed in a complete subgraph of Kn like Gi[Wi,j ]
so that every vertex has one rightward neighbour and the vertex which needs to be connected to the rest
of the embedding of Pi is in X. However, we have in general more sets Wi,j than ends in Pi, so we have
to use what we call ‘artificial ends’ (see Definition 6.1) – here, long subpaths of Pi – which have 2 vertices
that need to be embedded to X to be connected to the rest of the embedding of Pi. We can embed such
an artificial end into a complete subgraph of Kn like Gi[Wi,j ] as if it were an end, but so that one vertex
(the leftmost vertex) has a second rightward edge. We think of this vertex as the ‘turnaround vertex’,
and note that it poses no trouble to A2, as long as it is then omitted from the embedding of Pi+1 (see
Figure 4).

We now introduce the added initial step before embedding P1. Note that, with A2 in mind, for each
even i ∈ [r], the vertices inWi\Wi+1 must have just one (or zero) rightward neighbours in Pi; in particular,
we must avoid these vertices being one of our ‘turnaround’ vertices. Therefore, we start our embedding
by, for each even i ∈ [r], embedding part of Pi (one of its ends) to cover Wi \Wi+1, guaranteeing that each
of these vertices have exactly one rightward neighbour (note that these embeddings are vertex-disjoint).
Including this, the steps of the embedding are then the following (see Figures 2 and 3).

I For each even i ∈ [r], we embed part of Pi to cover Wi \Wi+1.

II We embed P1.

III For each even i ∈ [r] in turn, we embed the rest of Pi and Pi+1 together.

After I, let H0 be the union of the embedded parts of the trees, noting that H0[W1] is a forest (if
each Pi is a path then it is a path forest), and therefore has chromatic number at most 2. Thus, to help
us perform II, we can partition W1 = W1,1 ∪W1,2 so that H0[W1,1] and H0[W1,2] are independent sets.
To embed P1, using vertex set W1 ∪ X (as required by A1), such that each vertex in W1 has just one
rightward edge (as required by A2), we can use the two ends of P1 to cover W1,1 and W1,2 respectively
(see Figure 3).

Now, suppose i ∈ [r] is even and we have embedded Pj for each 2 ≤ j < i in addition to carrying out
steps I and II, obeying A1 and A2, and wish to embed Pi and Pi+1 (as in III). Let Hi be the set of edges
embedded so far. Note that every vertex in Wi+1 has at most i rightward edges in Hi — at most one in
the embedding of P1, at most two in the embedding of Pj and Pj+1 for each even j < i (for at most i− 2
in total), and at most one in H0. Therefore Hi[Wi+1] has chromatic number at most i+ 1, and thus can
be partitioned as Wi,1 ∪ . . . ∪Wi,i+1 so that each set of this partition is an independent set in Hi.

Then, for each j ∈ [i+1], we can take an artificial end in each of Pi and Pi+1 and embed these together
so that the turnaround vertex in one embedding is omitted from the other embedding, and vice versa, and
no other vertex in Wi,j is omitted, using the first pattern in Figure 4. However, we actually cannot do
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Pi :

Pi+1 :

Wi,j

Figure 5: Embedding part of Pi and Pi+1 together to cover Wi,j when j ≤ i − 2, while omitting only
the vertices marked by a ×, when the ‘artificial end’ of Pi used is not a path but a more complicated
tree. Here the multiple arrows leading to the right make it more difficult to embed this artificial end, so
additional vertices in Wi,j may be omitted, to be later covered by other leaves of the tree.

this for all j ∈ [i + 1] as it will omit slightly too many vertices from the embedding for B, and therefore
we only do this for each j ≤ i− 2. For each j with i− 1 ≤ j ≤ i+ 1, we use that we have one end of Pi
and two ends of Pi+1 that we have yet not embedded (only one end of Pi is embedded so far, in I). As
depicted in Figure 4, we can embed an end of Pi+1 into Wi,i−1 to cover all but the leftmost vertex which
we can then use as the turnaround vertex to embed an artificial end of Pi to cover all of the vertices in
Wi,i−1. Similarly, we take the remaining end of Pi+1 and do likewise for Wi,i, omitting again the leftmost
vertex of Wi,i in the embedding. Finally, for Wi,i+1, we do the same with i and i+ 1 swapped, using the
remaining end of Pi and omitting the leftmost vertex from Wi,i+1 in the embedding. Over all j ∈ [i+ 1],
then, we will have omitted (i− 2)+1 = i− 1 vertices from Wi \Wi+1 in the embedding of parts of Pi and
(i− 2) + 2 = i vertices from Wi \Wi+1 in the embedding of parts of Pi+1. Thus, by B, there are enough
unused vertices in X to complete the embeddings of both Pi and Pi+1, if we can connect the embedded
parts together correctly and embed the remaining vertices, so that these embeddings are edge-disjoint
and use edges in Gi (which is actually rather straightforward in the special case when the trees Pi are all
paths).

Non-path path-like trees. To carry out (something like) the above embedding when, more generally,
the trees P1, . . . , Pr are only ‘path-like’ (with at most λn leaves), we take each tree Pi and decompose
it into pieces, finding many small pieces that are ‘ends’ or ‘artificial ends’. An end, effectively, is part
of the tree we can embed into a complete subgraph of Kn so that each vertex has only one rightward
neighbour, while, roughly, for an artificial end we can do so similarly, but must use one ‘turnaround vertex’,
which will be the leftmost vertex covered. Ends and artificial ends are defined precisely in Definition 6.1
and embedded in Section 6, but to keep things simpler here we only include Figure 5 as an example of
embedding a more complicated artificial end for Pi by embedding it from the right with a turnaround
vertex on the far left.

The remaining issue to discuss is how these parts of the tree Pi can be embedded along with rest of
the tree, so that they are all connected up and use all the vertices in X = {vr+1, . . . , vn}. We do not
embed any of the edges of the stars S1, . . . , Sr within Kn[X], and as the trees Pi have maximum degree
at most λn (due to the limited number of leaves) it is not hard to embed the remaining part of the tree
in Kn[X] once the ends and artificial ends are embedded and connected together. The challenge then is
to embed the ends and artificial ends appropriately connected together, which in part we make easier by
reserving for each tree Pi a set Ai of 20 vertices in X and making sure that when we embed Pi we have
used no edges in Kn between {v1, . . . , vr} and Ai. The main solution to this, however, is to first observe
that when we embed an end (or artificial end) to cover most of Wi,j , the more edges that will lie across
the graph between Wi,j and {vr+1, . . . , vn}, the more challenging this will be (see Figure 5). However, the
more such cross edges we need, the more leaves that end will have. We relax our embedding then, to allow
an end (or artificial end) to miss some vertices inWi,j relative to the number of leaves in the artificial end,
before later embedding another part of the tree so that the embedded leaves cover these missed vertices.

That is, we effectively start by splitting each path-like tree Pi into five trees Ei,1, Ei,2, Fi,1, Fi,2 and Fi,3
(which pairwise intersect on at most one vertex), so that Ei,1 and Ei,2 are ends, Fi,2 has more leaves than
Fi,1, and Fi,1, Fi,2, Fi,3 are all large trees. We then take Fi,1 and split it into pieces including i+1 artificial
ends. Broadly, then, we carry out the embedding as described above, while embedding Ei,1 ∪ Ei,2 ∪ Fi,1
for each i ∈ [r], additionally omitting some vertices in the sets Wi,j , j ≤ i + 1, as long as the number
of vertices omitted is altogether at most a small proportion of the leaves of Fi,1. We then embed Fi,2, if
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necessary using vertices omitted in the sets Wi,j as some leaves of the embedding of Fi,2 (so that A2 is
obeyed). This embedding of Fi,2 is done similarly to how we embed star-like trees which are not stars, so
we similarly postpone any further discussion of this, noting only that it is carried out in Section 6.3. In the
last part of the embedding, we embed Fi,3, using this to make sure we use exactly the unused vertices in
X. We additionally do this embedding so that a vertex with degree at most 2 is embedded to any vertex
that has had many more neighbouring edges used than average so far in the embeddings. This allows our
embeddings to be done iteratively, without using too many edges around any one vertex.

Paper outline. In Section 3, we cover some preliminaries including the main tree decomposition we use.
In Section 4, we cover our main embedding scheme using steps I to III, proving Theorem 2.1 subject only
to two key lemmas. In Section 5, we show how to embed the star-like trees, thus proving Theorem 1.2
from Theorem 2.1. Finally, in Section 6, we prove the two key lemmas.

3 Preliminaries

3.1 Notation

Given a graphG, |G| = |V (G)| is the number of vertices inG and e(G) = |E(G)| is the number of edges. For
each A ⊂ V (G), N(A) = (∪v∈AN(v))\A, i.e., the set of vertices outside of A adjacent to at least one vertex
in A. Given v ∈ V (G) and A ⊂ V (G), N(v,A) = N(v) ∩ A and d(v,A) = |N(v,A)|. Given two disjoint
sets A,B ⊂ V (G), e(A,B) is the number of edges with one endvertex in each of A and B. The complement
of a graph G is the graph with vertex set V (G) and edge set {uv : u, v ∈ V (G), u ̸= v, uv /∈ E(G)}. Given
A ⊂ V (G), G[A] is the subgraph of G induced on the vertex set A, and G−A = G[V (G) \A].

When considering an embedding ϕ of some graph T in another graph G, we will sometimes use ϕ(T )
to denote the embedded graph and Im(ϕ) to denote the set of vertices in the image, thus, Im(ϕ) =
ϕ(V (T )) = V (ϕ(T )). When we extend an embedding ϕ and there is no risk of confusion, we will often
abuse notation and also use ϕ for the extended embedding. When writing x ≪ y, we mean that there is
some non-decreasing function f : (0, 1] → (0, 1] such that if x ≤ f(y) then the following statements hold.
Where there are more than two variables in a hierarchy, for example x ≪ y ≪ z, the implicit functions
are chosen from right to left.

3.2 Tree decomposition

We decompose our trees into edge-disjoint subtrees, calling this a tree decomposition, as follows.

Definition 3.1. Given any tree T , we say subgraphs T1, . . . , Tk of T form a tree decomposition of T if
they are edge-disjoint subtrees of T such that

⋃
i∈[k]E(Ti) = E(T ). The vertices appearing in more than

one subtree are the connectors of the tree decomposition.

Our first decomposition lemma simply says that every tree has a decomposition into two trees where
one subtree contains a fixed vertex and the other has roughly some desired size.

Lemma 3.2. Let T be a tree and let t ∈ V (T ). Let m ∈ R satisfy 1 ≤ m < |T |. Then, T has a tree
decomposition into T1 and T2 such that m < |T1| ≤ 2m and t ∈ V (T2).

Proof. Among all tree decompositions T1, T2 of T with |T1| > m and t ∈ V (T2), choose one minimising |T1|.
(Note that the set of such decompositions is non-empty, as we can simply pick T1 = T and T2 = T [{t}].)
We will show that |T1| ≤ 2m.

Let s be the unique vertex in V (T1) ∩ V (T2), and let N(s) ∩ V (T1) = {x1, . . . , xk}. Note that k ≥ 1
(since if k = 0 then V (T1) = {s}, contradicting 1 ≤ m < |T1|). If k = 1, then T1 − s and T2 + sx1
give a tree decomposition, so we must have |T1| − 1 ≤ m and hence |T1| ≤ m + 1 ≤ 2m. On the other
hand, if k ≥ 2 then, letting V1, . . . , Vk be the vertex sets of the connected components of T1 − s, we may
assume that |Vk| ≤ (|T1| − 1)/k. As T1 − Vk and T [V (T2) ∪ Vk] give a tree decomposition, we must have
|T1|− |Vk| ≤ m. As |Vk| ≤ (|T1|−1)/k, we get (1−1/k)|T1| ≤ m and hence |T1| ≤ m/(1−1/k) ≤ 2m.

For convenience, we record the following useful corollary of Lemma 3.2.
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Corollary 3.3. Let T be a tree, and let m1,m2 ≥ 1 satisfy |T | ≥ 2m1 +m2. Then T has a decompo-
sition into three subtrees T1, T2 and T3 such that T1 and T2 each contain exactly one connector of the
decomposition and mi < |Ti| ≤ 2mi for each i ∈ [2].

Proof. Picking t ∈ V (T ) arbitrarily, use Lemma 3.2 to take a tree decomposition of T into T1 and
S so that m1 < |T1| ≤ 2m1. Let s be the unique connector in this decomposition, and note that
|S| ≥ |T | − 2m1 + 1 > m2. Using Lemma 3.2, take a tree decomposition of S into T2 and T3 with
s ∈ V (T3) and m2 < |T2| ≤ 2m2. Let s′ be the unique connector in this decomposition of S. Note that
s′ /∈ V (T1) and s /∈ V (T2) unless s = s′, so that T1 and T2 each contain exactly one connector in the
decomposition of T into T1, T2 and T3.

The following lemma is used in the proof of both of the two key lemmas we use in our main embedding.
It finds a tree decomposition such that some of the subtrees have in total exactlym non-connector vertices,
one of these pieces has size at least m/2, and each of these pieces have only one connector.

Lemma 3.4. Let t be a vertex of a tree T and let m be a positive integer with 1 ≤ m < |T |. Then,
there exists for some k ≥ 2 a tree decomposition of T as T1, . . . , Tk such that t ∈ V (Tk), |Tk| = |T | −m,
|T1| − 1 ≥ m/2, and, for each 1 ≤ i ≤ k − 1, Ti contains exactly one connector.

Proof. We prove this by induction on m, for all trees T and vertices t ∈ V (T ). If m = 1, then, using
|T | > m, let T1 be a subtree of T having one edge and containing (at least) one leaf of T , s say, which is
not t. Then, T2 = T − s and T1 give the required decomposition of T with k = 2.

Assume then that m > 1 and that the result holds for all m′ < m. Let t be a vertex of a tree T
with |T | > m. Using Lemma 3.2 as 1 ≤ (m + 1)/2 < |T |, take a tree decomposition of T into S and
S′ so that t ∈ V (S) and (m + 1)/2 < |S′| ≤ m + 1, and let s be the connector in this decomposition.
Note that |S′| − 1 ≥ m/2. Let m′ = m − (|S′| − 1), so 0 ≤ m′ < m. If m′ = 0, then T1 = S′ and
T2 = S gives the required decomposition, so assume that m′ ≥ 1. Therefore, by induction, for some k′

there is a decomposition of S into subtrees T1, S1, . . . , Sk′ such that t ∈ V (T1), |T1| = |S| −m′ and, for
each i ∈ [k′], Si contains exactly one connector (note that this vertex must be in T1). By not taking
up the size condition on S1, we can assume without loss of generality that, if s is not in T1, then s is
in S1 (and hence s is in no other subtree in this decomposition of S). Now, we have that t ∈ V (T1)
and |T1| = |S| − m′ = |S| + |S′| − 1 − m = |T | − m. If s is in T1 then the sequence S′, S1, . . . , Sk′ , T1
gives the required decomposition with k = k′ + 2 as |S′| − 1 ≥ m/2. If s is not in T1, then the sequence
S′ ∪S1, S2, . . . , Sk′ , T1 gives the required decomposition with k = k′ +1 as |S′ ∪S1| − 1 ≥ |S′| − 1 ≥ m/2.
This completes the inductive step, and hence the proof of the lemma.

In what follows, in order to be precise, we use the following definition of a connector vertex of a subtree.

Definition 3.5. Given a subtree S of a tree T , a vertex v ∈ V (S) is a connector vertex of S in T if
dS(v) < dT (v).

Note that, for any tree decomposition T1, . . . , Tk of a tree T , for each i ∈ [k] any connector vertices
of Ti are connectors for the decomposition, but if some of the trees have only 1 vertex then v can be a
connector of the decomposition but not a connector vertex of Ti in T , for some i ∈ [k]. However, although
in this section we use some single vertex trees in our decompositions for convenience, in the applications
later no trees in the decomposition will have only one vertex, so that the definitions will coincide.

Using Definition 3.5, we turn to our main tree decomposition, Lemma 3.8, which is needed for the
proof of the second key lemma, Lemma 4.2, which is in turn used to carry out step III of the embedding in
the proof sketch. For integers m1, . . . ,mk, and any tree T with many times more than

∑
i∈[k]mi vertices,

it gives a tree decomposition of T into subtrees T1, . . . , Tℓ with ℓ ≥ k which each have at most 2 connector
vertices and for which, for each i ∈ [k], Ti has of the order of mi vertices. We build up to this by showing
first that a version of this is is true for k = 1 (Lemma 3.6) and k ≤ 3 (Lemma 3.7), before proving the full
lemma, Lemma 3.8.

Lemma 3.6. Let T be a tree, and let S be a subtree of T containing at most 2 connector vertices in T .
Let m ≥ 1 with |S| ≥ m. Then, S has a decomposition into at most 4 trees, each of which contains at
most 2 connector vertices in T , and one of which has at least m and at most 6m vertices.
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Proof. Note that there is nothing to prove if |S| ≤ 6m, so assume |S| > 6m. Using Lemma 3.2, take a
tree decomposition of S into subtrees S1 and S2 such that 3m ≤ |S1| ≤ 6m.

First, assume that S1 contains at most 2 connector vertices in T . We will show that we can decompose
S2 into at most 3 trees, each of which contain at most 2 connector vertices in T . Note that S2 has at most
3 connector vertices in T , so we may assume that S2 has exactly 3 such connector vertices s1, s2, s3, for
otherwise we are done. Consider the (unique) path P between s1 and s2 in S2, and let v ∈ V (P ) be the
vertex of P closest to s3. Let U1, . . . , Uℓ be the vertex sets of the connected components of S1 − v, and
write U ′

i = Ui ∪ {v} for each i ∈ [ℓ]. First assume that v ̸∈ {s1, s2, s3}. Note that, if i, j ∈ [3] are distinct,
then si, sj cannot belong to the same component Ui, and hence we may assume that si ∈ Ui for all i ∈ [3].

Letting T1 = S2[U
′
1], T2 = S2[U

′
2] and T3 = S2[

⋃ℓ
i=3 U

′
i ], we see T1, T2, T3 is a tree decomposition of S2

in which the connector vertices of each Ti come from the set {s1, s2, s3, v}. Thus, each Ti has at most
2 connector vertices in T , as desired. Next, assume that v = sj for some j ∈ [3], where we may assume

j ̸= 1 and s1 ∈ U1. Let T1 = S2[U
′
1] and T2 = S2[

⋃ℓ
i=1 U

′
i ]. It is again easy to check that T1, T2 provide

a tree decomposition of S2 into two trees containing at most 2 connector vertices each, finishing the case
when S1 has at most 2 connector vertices.

Assume then that S1 contains more than 2 connector vertices in T . Thus, S1 has exactly 3 connector
vertices and S2 has at most 1 connector vertex in T . As above, we can decompose S1 into at most 3 trees,
each of which contains at most 2 connector vertices, and one of which will have at least m and at most
6m vertices as 3m ≤ |S1| ≤ 6m.

Using Lemma 3.6, we now show a similar lemma where the size of up to 3 of the subtrees have been
roughly specified.

Lemma 3.7. Let T be a tree, and let S be a subtree of T containing at most 2 connector vertices in
T . Let k ∈ [3] and let m1 ≥ m2 ≥ . . . ≥ mk be positive integers. If |S| ≥ (8k − 7)m1, then S has a
tree decomposition into T1, . . . , Tℓ (for some positive integer ℓ ≥ k) which each have at most 2 connector
vertices in T , and such that, for each i ∈ [k], mi ≤ |Ti| ≤ 6mi.

Proof. We prove this by induction on k, where it is true for k = 1 by Lemma 3.6. For k > 1, by Lemma 3.6,
take a tree decomposition of S into subtrees S1, S2, S3, S4, which each have at most 2 connector vertices
in T , such that m1 ≤ |S4| ≤ 6m1. (Note that, in applications of Lemma 3.6, we may assume that the
number of trees we get is exactly 4, otherwise we can simply add some single vertex trees.)

First assume k = 2. If |Si| ≥ m2 for some i ∈ [3], say i = 1, then by induction (or Lemma 3.6) we can
further decompose S1 into some subtrees S1,1, . . . , S1,a such that m2 ≤ |S1,1| ≤ 6m2, and each S1,i has at
most 2 connector vertices in T . Then these trees, together with S2, S3 and S4, satisfy the conditions. So
we may assume that |Si| < m2 for all i ∈ [3]. But then |S1| + |S2| + |S3| + |S4| < 3m2 + 6m1 ≤ 9m1, a
contradiction to |S| ≥ (8k − 7)m1.

If k = 3, then a similar argument shows that we may assume |Si| < 9m2 for each i ∈ [3] (otherwise we
are done by induction). We are similarly done if at least two of S1, S2, S3 have size at least m2. Indeed,
if say |S1|, |S2| ≥ m2, then we can decompose S1 into some subtrees with at most 2 connector vertices
each such that one such tree has between m2 and 6m2 vertices, and similarly decompose S2 into some
subtrees with at most 2 connector vertices each such that one such tree has between m3 and 6m3 vertices,
giving the claim. But if each Si (i ∈ [3]) has size at most 9m2, and at most one of them has size at least
m2, then |S1| + |S2| + |S3| < 2m2 + 9m2 and thus |S1| + |S2| + |S3| + |S4| < 17m1, a contradiction to
|S| ≥ (8k − 7)m1.

Finally, using Lemmas 3.6 and 3.7, we prove our full tree decomposition, Lemma 3.8.

Lemma 3.8. Let T be a tree, and let S be a subtree of T containing at most 2 connector vertices in T .
Let k be a non-negative integer, and let m1 ≥ m2 ≥ . . . ≥ mk be positive integers. If |S| ≥ 150

∑
i∈[k]mi,

then S has a tree decomposition into T1, . . . , Tℓ (for some positive integer ℓ ≥ k) which each have at most
2 connector vertices in T , such that, for each i ∈ [k], mi ≤ |Ti| ≤ 6mi.

Proof. We prove this by induction on k. The case k = 0 is trivial, and k = 1 is immediate from Lemma 3.6,
so from now on we may that assume k ≥ 2 and the statement holds for sequences of length less than k. By
Lemma 3.6, we can take a tree decomposition of S into subtrees S1, S2, S3, S4, which each have at most 2
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connector vertices in T and such that 25m1 ≤ |S4| ≤ 150m1. Let I1, I2, I3, I4 ⊂ [k] \ {1} be a partition
which maximises |I1 ∪ I2 ∪ I3| subject to 150

∑
i∈Ij mi ≤ |Sj | for each j ∈ [3].

Now, as |S4| ≤ 150m1,

∑
j∈[3]

|Sj | − 150
∑
i∈Ij

mi

 ≥ |S| − 150
∑

i∈[k]\(I4∪{1})

mi − |S4| ≥ 150
∑
i∈I4

mj .

Thus, |I4| ≤ 2 (otherwise, writing t for the largest element of I4, we have
∑
j∈[3]

(
|Sj | − 150

∑
i∈Ij mi

)
≥

3 · 150mt and hence |Sj | − 150
∑
i∈Ij mi ≥ 150mt for some j ∈ [3], contradicting the definition of our

partition). Therefore, as |S4| ≥ 25m1, by Lemma 3.7, we can decompose S4 into subtrees with at most 2
connector vertices each such that, for each i ∈ I4 ∪ {1}, we get a different subtree with at least mi and at
most 6mi vertices in the decomposition. Moreover, by induction, we can decompose each Sj (j ∈ [3]) into
subtrees with at most 2 connector vertices each such that, for each i ∈ Ij , we get a different subtree with
at least mi and at most 6mi vertices. Putting together these decompositions for each Sj (j ∈ [4]), we get
a decomposition satisfying the conditions.

3.3 Results for embedding trees

In our embeddings, we will sometimes use the following common generalised form of Hall’s matching
criterion to attach leaves to trees.

Lemma 3.9 (see, for example, [4]). Let H be a bipartite graph with vertex classes A and B, and let da ≥ 0
be an integer for each a ∈ A. Suppose that, for each U ⊂ A, |N(U)| ≥

∑
a∈U da. Then, there are disjoint

sets Ba, a ∈ A, of B such that, for each a ∈ A, Ba ⊂ N(a) and |Ba| = da.

To analyse a random tree embedding, we will use Azuma’s inequality for submartingales, as follows,
where a sequence of random variables (Xi)i≥0 is a submartingale if E(Xi+1 | X0, . . . , Xi) ≥ Xi for each
i ≥ 0.

Lemma 3.10 (see, for example, [17]). Let (Xi)i≥0 be a submartingale and let ci > 0 for each i ≥ 1. If
|Xi −Xi−1| ≤ ci for each i ≥ 1, then, for each n ≥ 1,

P(Xn ≤ X0 − t) ≤ exp

(
− t2

2
∑n
i=1 c

2
i

)
.

4 Proof of Theorem 2.1 using the key lemmas

In this section we show that Theorem 2.1 can be deduced from two key lemmas. These lemmas are a little
technical, so we will first set up the situation for the proof of Theorem 2.1 and introduce some notation
in Section 4.1. We then give the key lemmas in Section 4.2, relating them to the proof sketch. As these
lemmas are proved in later sections, they are self-contained (i.e. the set-up is restated). We then continue
our proof of Theorem 2.1 using these key lemmas, starting with splitting the trees to be embedded into
subtrees in Section 4.3 and carrying out step I in Section 4.4. We then set up a definition of a good
sequence of embeddings in Section 4.5 and also show that if we find a sufficiently long good sequence of
embeddings then we will have embedded all the trees required. In Section 4.6 we find our initial good
sequence by carrying out step II, before showing in Section 4.7 that we can inductively extend until we get
a good sequence of the required length by carrying out step III. This completes the proof of Theorem 2.1
subject to the proof of the two key lemmas, Lemma 4.1 and Lemma 4.2.

4.1 Initial setup

Let 1/n ≪ ε ≪ λ ≪ 1 and r = εn. For convenience of notation, to prove Theorem 2.1, take an arbitrary
sequence of 2r trees T1, . . . , T2r, such that |Ti| = n− i+ 1 for each i ∈ [2r], and r of these trees are stars
while the other r ‘path-like’ trees have at most λn leaves (extending the original sequence appropriately).
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We may also assume that r is odd. Let the stars be S1, . . . , Sr and let the path-like trees be P1, . . . , Pr
(both listed in descending order of size).

Label the vertices of Kn as v1, . . . , vn, and use this to assign an ordering of the vertices from left to
right. Thus, for example, given a vertex vi and a tree (or any subgraph of Kn) containing vi, by rightward
neighbours we mean all vertices vj adjacent to vi with j > i. For each i ∈ [r], we will use vi as the centre for
the embedding of Si, and we set W = {v1, . . . , vr} to be the set of these vertices. Let X = {vr+1, . . . , vn}
be the set of vertices not used as the centre of these stars, and, for each i ∈ [r], let

Wi = {vj : j ∈ [r], |Sj | < |Pi|}. (2)

For each i ∈ [r], we will embed Pi into Wi ∪X. Note that, as in (1), we have

|Wi ∪X| = |Pi|+ i− 1, (3)

giving us a version of B.
To help with certain steps in the proof (such as connecting up the ends/artificial ends described in

Section 2), take disjoint sets A1, . . . , Ar, each of 20 vertices, in X. For each i ∈ [r] we will only use edges
between {v1, . . . , vr} and Ai when embedding Pi, as we might need this set Ai to embed vertices of Pi
which need particularly many neighbours embedded in Wi. Let

A = A1 ∪ . . . ∪Ar,

and, for convenience, assume this is the set of the 20r rightmost vertices of Kn. We will use H and G (with
appropriate subscripts) to denote the graphs of the embedded edges and the remaining edges, respectively,
at various points in our embedding process.

4.2 The key lemmas

Our first key lemma will be used in step III of the embedding (as per the proof sketch) to embed the
ends of the path-like trees (only one end of Pi will be embedded this way if i is even, as the other end is
embedded in step I by a simpler method). In the statement of Lemma 4.1 below, the tree T will correspond
to one of these ends in each application, and T will have a special vertex t where the end connects to the
rest of the path-like tree. Within the set up in Section 4.1, the end T is to be embedded within W− ∪X
for some specified subset W− of W . Furthermore, T will be embedded with the connector t embedded
to some specified vertex a ∈ A−, where in the application A− will be the unused vertices in Ai, the set
put aside in X to help make connections for Pi. Finally, while embedding T , in the applications we want
to avoid overlapping with vertices used to embed other parts of the tree Pi, as well as any vertices in X
which have already had many neighbouring edges used in the embeddings so far. In Lemma 4.1, these
‘forbidden’ vertices are represented by the set X forb.

Lemma 4.1. Let 1/n ≪ ε ≪ 1 and r = εn. Let v1, . . . , vn be an ordering of the vertices of Kn and let
W = {v1, . . . , vr} and X = {vr+1, . . . , vn}. Let H ⊂ Kn have ∆(H) ≤ n/50 and e(H) ≤ εn2, and let G
be the complement of H.

Let W− ⊂ W and A− ⊂ X be such that |A−| ≥ 2 and there are no edges inside the set W− ∪ A− in
H. Let X forb ⊂ X \A− satisfy |X forb| ≤ n/100. Let T be a tree with |W−| < |T | ≤ 4εn and let t ∈ V (T ).

Then, for every a ∈ A−, there exists an embedding ϕ of T in G with ϕ(t) = a such that W− ⊆ Im(ϕ) ⊂
W− ∪ (X \ X forb) and every vertex in W− has at most 1 rightward neighbour in ϕ(T ) in the ordering
v1, . . . , vn.

The second, and more difficult, key lemma (Lemma 4.2) is also used in step III of our embedding. For
each even i ∈ [r], after the ends of Pi or Pi+1 are embedded, this lemma will embed the rest of Pi or Pi+1

appropriately. In Lemma 4.2, T represents this remaining portion of Pi or Pi+1 to be embedded. The
slightly more complicated case, which requires the full strength of Lemma 4.2, is the embedding of Pi+1.
To relate this further to the proof sketch, this final part of the embedding of Pi+1 is to use vertices in the
disjoint sets Wi,j , j ∈ [i], covering each of these sets except for the leftmost vertices – these appear in the
lemma as sets W−

j , j ∈ [k] (which is then applied with k = i). As in the proof sketch (and in particular
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in Figure 4), the graph H of edges embedded at this stage has the property that H[Wi,j ] is 2-colourable
(with only edges of Pi embedded within Wi,j), and the leftmost vertex of W−

j (i.e., the leftmost vertex
of Wi,j that we want to cover) has no neighbouring edges within Wi,j used in the embedding (as it is
not in the image of Pi). This property is represented in the lemma as C2. Some vertices in X will have
been used for the ends of Pi+1, so for embedding the remaining portion T , we will only use some subset
X− ⊂ X avoiding these vertices. The embedding of T in the application must agree with the embedding
of the ends of Pi+1 where they overlap, i.e., at the connector vertices. As discussed before the statement of
Lemma 4.1, these connector vertices will be embedded into the reserved set Ai+1. We will also need some
other vertices from Ai+1 to assist in the embedding of T – together these vertices will be the set A− in the
lemma. Condition C1 reflects the property of these assisting vertices: no edges have been used between
them and the set W− we are trying to cover with the embedding of T . The final condition C3 will come
from the fact that each vertex of W will have at most λn rightward edges used in previous embeddings.

Given, then, the embedding of up to 2 connector vertices (the set U in the conclusion of Lemma 4.2,
coming from the two ends) in A−, T is embedded extending this to cover exactly W− ∪ X−, so that
every vertex in W− (except for the turnaround vertices) has at most 1 rightward neighbour in the em-
bedding (D1), so that furthermore the maximum degree of the total embedded edges has not increased
too much (D2) and so that there have not been any edges used in the embedding of T between W and
the vertices set aside for assisting making connections in other embeddings (D3).

Lemma 4.2. Let 1/n ≪ ε ≪ λ ≪ 1 and r = εn. Let v1, . . . , vn be an ordering of the vertices of Kn and
let W = {v1, . . . , vr} and X = {vr+1, . . . , vn}. Let G ⊂ Kn have δ(G) ≥ 49n

50 , and let H be the complement
of G in Kn. Suppose that e(H) ≤ εn2.

Let k ∈ [r]. Let T be a tree with at most λn leaves and with 99
100n ≤ |T | ≤ n. Let W− ⊂ W and

X− ⊂ X such that |W− ∪X−| = |T |. Let A− ⊂ X− satisfy |A−| = 16 and let A ⊂ X satisfy |A| ≤ 20r.
Let W−

1 ∪ . . . ∪W−
k be a partition of W−. Suppose the following hold.

C1 There are no edges between W− and A−, nor inside the set A−, in H.

C2 For each j ∈ [k], H[W−
j ] is 2-colourable and the leftmost vertex of W−

j is an isolated vertex in this

subgraph (or W−
j ̸= ∅).

C3 Each vertex in W− has at most 2λn neighbouring edges in H.

Then, for any U ⊂ V (T ) with |U | ≤ 2, any embedding of T [U ] in G[A−] extends to an embedding of T
in G[W− ∪X−], so that, if S is the embedded copy of T , then the following conditions are satisfied.

D1 Each vertex of S in W− has at most 1 rightward neighbour in S unless it is the leftmost vertex in a
set in the partition W−

1 , . . . ,W
−
k , in which case it has at most 2 rightward neighbours in S.

D2 Every vertex in V (G) \ A− with more than n
200 neighbours in X in H, as well as every vertex in

A \A−, has at most 2 neighbours in X in S.

D3 S has no edges between W− and A \A−, nor inside A \A−.

4.3 Splitting the path-like trees

Using Lemma 3.2, take a tree decomposition of P1 into E1,1 and E1,2 so that n
3 ≤ |E1,1| ≤ 2n

3 , and note
that n

4 ≤ |E1,2| ≤ 3n
4 . In step II, we will embed P1 as the union of these two ends. Let t1,1 be the

connector vertex between E1,1 and E1,2.
For each even i ∈ [r] let Wi,0 = Wi \Wi+1 (recall that the sets Wj are defined in (2), and that these

sets Wi,0 will be covered in step I). Note that the sets Wi,0, for even i ∈ [r], are disjoint and in W , so that∑
even i∈[r]

|Wi,0| ≤ |W | = r. (4)

Using Corollary 3.3, for each even i ∈ [r], decompose Pi into trees Ei,1, Ei,2, and Fi, where

|Wi,0|+ 1 < |Ei,1| ≤ 2|Wi,0|+ 2 and 2εn < |Ei,2| ≤ 4εn, (5)
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and Ei,1 and Ei,2 both contain at most one connector. We think of the sets Ei,1, Ei,2 as the two ends, the
first of which is used to cover Wi,0 in step I, and the second of which is used in step III.

Using Corollary 3.3 again, for each odd i ∈ [r] with i ≥ 3 decompose Pi into trees Ei,1, Ei,2, and Fi,
where

2εn < |Ei,1|, |Ei,2| ≤ 4εn (6)

and Ei,1 and Ei,2 both contain at most one connector vertex. Again, we think of Ei,1, Ei,2 as the two
ends, but for odd i ≥ 3 both of these ends will be used in step III only.

For each 2 ≤ i ≤ r, let ti,1 be the connector vertex in Ei,1 and let ti,2 be the connector vertex in Ei,2
(noting that we may have ti,1 = ti,2).

4.4 Step I: Embedding an end of Pi for each even i ∈ [r].

For each even i ∈ [r], we will embed Ei,1 into Kn[Wi,0 ∪X] with an embedding ψi, while covering Wi,0,
as follows. For each even i ∈ [r], pick ai,1 ∈ Ai arbitrarily. Now, noting that

|X \A| = n− 21r ≥ 4r
(4)

≥ 2
∑

even i∈[r]

|Wi,0|+ 2r
(5)

≥
∑

even i∈[r]

|Ei,1|,

take disjoint sets Ui, for even i ∈ [r], in X \A, such that

|Ui| = |Ei,1| − |Wi,0| − 1
(5)

≥ 0,

for each even i ∈ [r]. For each even i ∈ [r], using that Ei,1 is a tree, order the vertices of Ei,1 so that each
vertex has at most 1 rightward neighbour in Ei,1 and so that ti,1 is the rightmost vertex in this ordering.
Using this ordering of V (Ei,1) and the ordering of V (Kn), embed Ei,1 into Kn[Wi,0 ∪ Ui ∪ {ai,1}] in an
order-preserving way, calling the resulting embedding ψi : Ei,1 → Kn. Recall that the vertices of A were
the 20r rightmost vertices of V (Kn), and therefore we have set ψi(ti,1) = ai,1. We record the following
properties for convenience.

Embeddings ψi: For each even i ∈ [r], we have an embedding ψi : Ei,1 → Kn, such that these embeddings
are vertex-disjoint and, letting H0 be the union of ψi(Ei,1) across all even i ∈ [r], the following hold.

E1 Every vertex in W = {v1, . . . , vr} has at most one rightward neighbour in H0.

E2 For each even i ∈ [r], Wi,0 ⊂ Im(ψi) ⊂Wi,0 ∪X.

E3 For each even i ∈ [r], Im(ψi) has exactly one vertex in A, which is ai,1 = ψi(ti,1).

4.5 Good sequences of embeddings

As in the proof sketch, we will now embed P1 (step II), before embedding the rest of Pi and the whole
of Pi+1 together for each even i ∈ [r] (step III). We prove that the embedding can be done by induction,
for which the following definition recording the successful embedding of P1, . . . , Pℓ for some odd ℓ will be
useful. Note that the properties below essentially correspond to rules A1 and A2, with some additional
mild assumptions.

Definition 4.3. Let ℓ ∈ [r] be odd and let ϕ1, . . . , ϕℓ be embeddings of P1, . . . , Pℓ, respectively, in Kn.
We say that ϕ1, . . . , ϕℓ form a good sequence of length ℓ if the following properties are satisfied, where H is
the subgraph of Kn whose edges are the edges of the trees embedded by ϕ1, . . . , ϕℓ, ψℓ+1, ψℓ+3, . . . , ψr−1.

F1 The trees embedded by ϕ1, . . . , ϕℓ, ψℓ+1, ψℓ+3, . . . , ψr−1 are edge-disjoint.

F2 For each j ∈ [ℓ], ϕj embeds Pj into Wj ∪X.

F3 For all even j ≤ ℓ, ϕj extends ψj .

F4 Each vertex in W = {v1, . . . , vr} has at most 1 rightward neighbour in ϕ1(P1).
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F5 Each vertex in W = {v1, . . . , vr} has at most 2 rightward neighbours in ϕj(Pj)∪ϕj+1(Pj+1) for each
even j ∈ [ℓ].

F6 Every vertex has at most n
100 +2ℓ neighbours in H in X, and each vertex in

⋃
j∈[r]\[ℓ]Aj has at most

n
200 + 2ℓ neighbours in H in X.

F7 For each j ∈ [r] \ [ℓ], there is no edge between W and Aj , or within Aj , in
⋃
i∈[ℓ] ϕ(Pi).

If we are able to construct a good sequence of length r, then we will be able to easily embed the stars
S1, . . . , Sr disjointly from the paths P1, . . . , Pr. Indeed, suppose we have a good sequence ϕ1, . . . , ϕr of
length r and let G be the edges of Kn not in H :=

⋃
j∈[r] ϕj(Pj). Letting i ∈ [r], we now show that vi has

at least |Si| − 1 rightward neighbours in G.
If vi /∈ Wj for each j ∈ [r], then vi is in no embedding ϕj(Pj), j ∈ [r], by F2, and therefore vi has

n− i = |Si| − 1 rightward neighbours in G. Otherwise, let j ∈ [r] be the largest such j with vi ∈Wj . If j
is odd, then, by F4 and F5, vi has at least n − i − j rightward neighbours in G, while if j is even, then
by F4, F5, E1 and F3, vi also has at least n− i− j rightward neighbours in G. Then, as

n− i− j
(2)
= n− 1− |{i′ ∈ [r] : |Si′ | > |Si|}| − |{j′ ∈ [r] : |Pj′ | > |Si|}| = |Si| − 1,

vi has at least |Si|− 1 rightward neighbours in G. Thus, for every i ∈ [r], vi has at least |Si|− 1 rightward
neighbours in G, so that the stars S1, . . . , Sr can be embedded disjointly into G, which from the definition
of G, F1 and F2, shows that P1, . . . , Pr, S1, . . . , Sr can be embedded disjointly into Kn, where each star
is embedded with the centre to the left of all its leaves. To complete the proof of Theorem 2.1 (subject to
the proof of the two key lemmas), we note that every vertex which is not the centre of an embedded star
(i.e., every vertex in X) has, by F6, degree at most r + n

100 + 2r ≤ n
10 in the embedding, as required.

It is left then to show that a good sequence of length 1 exists, which we do in Section 4.6, and to
inductively extend this good sequence by completing the next two embeddings, which we do in Section 4.7.

4.6 Step II: Embedding P1

The following lemma shows that a good sequence of length 1 does exist.

Lemma 4.4. There is an embedding ϕ1 of P1 such that ϕ1 forms a good sequence of length 1.

Proof. Let H0 be the embedded edges in Kn so far, i.e., the union of the images of ψi over all even i ∈ [r].
Pick a1,1 ∈ A1, and note that, by E3, a1,1 has no neighbours in H0. Using that H0 is a forest with, by

(5) and (4), at most 2|W | + 2r = 4r vertices, and that |E1,1| + |E1,2| = |P1| + 1
(3)
= |W1 ∪ X| + 1 with

n/4 ≤ |E1,1|, |E1,2| ≤ 3n/4, note that we can partition (W1 ∪X) \ {a1,1} as U1,1 ∪ U1,2 so that H0[U1,1]
and H0[U1,2] are empty, and |U1,i| = |E1,i| − 1 for each i ∈ [2]. Then, we have that H0[U1,1 ∪ {a1,1}] and
H0[U1,2 ∪ {a1,1}] are both empty graphs.

Arrange the vertices of both E1,1 and E1,2 from left to right so that each vertex has at most 1 rightward
neighbour in E1,1 and E1,2, respectively, and t1,1 is the rightmost vertex in each ordering. For each j ∈ [2],
let Y1,j be the |W1 ∩ U1,j | leftmost vertices of E1,j in this ordering. For each j ∈ [2], using that E1,j is
bipartite and |E1,j | ≥ n/4, take a set Z1,j ⊂ V (E1,j) \ (Y1,j ∪ {t1,1}) of |A ∩ U1,j | − 1 vertices which form
an independent set in E1,j and does not contain any neighbour of t1,1 (using that ∆(E1,j) ≤ λn) or any
neighbour of Y1,j (using that each vertex has in Y1,j has at most one rightward neighbour in E1,j).

For each j ∈ [2], using the orderings of the vertices in Y1,j in E1,j and in W1 ∩U1,j in Kn, embed E1,j

to Kn[U1,j ∪{a1,1}] so that Y1,j is embedded to W1∩U1,j in an order-preserving way, Z1,j is embedded to
(A∩U1,j)\{a1,1}, and t1,1 is embedded to a1,1. Letting ϕ1 be the embedding of P1, we check that ϕ1 gives
a good sequence of length 1. Properties F1, F2 and F4 hold simply by construction, and Properties F3
and F5 are vacuous for ℓ = 1. As H0 is a forest, each of whose components are trees with at most λn
leaves, ∆(H0) ≤ λn, and therefore, as ∆(T1) ≤ λn and 2λn ≤ n/200, we have that F6 holds. For each
j ∈ [2], as Y1,j is embedded to W1 ∩ U1,j and Zi,j is embedded to (A ∩ U1,j) \ {a1,1}, there are no edges
of ϕ1(E1,j) between W1 ∩ U1,j and (A ∩ U1,j) \ {a1,1}, or inside (A ∩ U1,j) \ {a1,1}. Therefore, there are
no edges of ϕ1(P1) between W1 and A \ {a1,1}, or inside A \ {a1,1}, and thus F7 holds.
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4.7 Step III: Embedding Pi and Pi+1

In order to complete the proof of Theorem 2.1, subject only to the proof of the key lemmas, it is left to
show that we can extend a good sequence. That is, we show the following lemma.

Lemma 4.5. Let i be even with 2 ≤ i ≤ r − 1. Then any good sequence ϕ1, . . . , ϕi−1 of i− 1 embeddings
extends to a good sequence ϕ1, . . . , ϕi+1 of i+ 1 embeddings.

Proof. LetH be the subgraph ofKn whose edges are used in the images of ϕ1, . . . , ϕi−1, ψi, ψi+2, . . . , ψr−1,
and let G be the complement of H. Recall that ψi is an embedding of Ei,1, and that the properties E1–E3
hold. By E1, F4 and F5, each vertex in Wi+1 has at most 1 + 1 + 2(i − 2)/2 = i rightward neighbours
in H, and hence H[Wi+1] is i-degenerate and thus can be partitioned as Wi,1 ∪ . . . ∪Wi,i+1 so that these
sets are all independent sets in H. For each j ∈ [i + 1], let wi,j,1 and wi,j,2 be the leftmost two vertices
in that order in Wi,j (with the convention that if no such vertex or vertices exist then, for example, we
interpret {wi,j,1} as an empty set).

Embedding the ends of Pi+1. We start by embedding the two ends of Pi+1 to cover Wi,i−1 \ {wi,i−1,1}
and Wi,i \ {wi,i,1} (cf. Figure 4). We will do so while avoiding high-degree vertices in H, so for this let
Xhigh ⊂ X be the set of vertices in X with at least n

100 −2λn neighbours in X in H. As e(H) ≤ r ·n = εn2,

|Xhigh| ≤ 2εn2

n/200
= 400εn, (7)

and, by F6, we have Xhigh ∩ (Ai ∪ Ai+1) = ∅. Let Ai+1,1 ⊆ Ai+1 be an arbitrary subset of size 2 and
pick ai+1,1 ∈ Ai+1,1, let X

forb
1 = Xhigh ∪ (A \ Ai+1,1), and let W−

i+1,i−1 := Wi,i−1 \ {wi,i−1,1}. Note that

|X forb
1 | ≤ n/100, and there are no edges in H inside W−

i+1,i−1 ∪Ai+1,1 by F7 and the definition of our sets
Wi,j . As

|W−
i+1,i−1| ≤ |W | = r = εn

(6)
< |Ei+1,1|

(6)

≤ 4εn,

then, we can apply Lemma 4.1 to W−
i+1,i−1, Ai+1,1, X

forb
1 , Ei,1 and ti+1,1 ∈ V (Ei+1,1). That is, we can

take an embedding ψi+1 of Ei+1,1 in G[W
−
i+1,i−1∪Ai+1,1∪(X\(Xhigh∪A))] such that ψi+1(ti+1,1) = ai+1,1,

W−
i+1,i−1 = Wi,i−1 \ {wi,i−1,1} ⊆ ψi+1(V (Ei+1,1)), and each vertex in W−

i+1,i−1 has at most 1 rightward
neighbour in ψi+1(Ei+1,1).

Next, if ti+1,2 = ti+1,1, let Ai+1,2 ⊆ Ai+1 be a subset of size 2 with Ai+1,1 ∩Ai+1,2 = {ai+1,1} and let
ai+1,2 = ai+1,1. If ti+1,2 ̸= ti+1,1, let Ai+1,2 ⊆ Ai+1 \ Ai+1,1 be a subset of size 2 and pick some ai+1,2 ∈
Ai+1,2. If ti+1,2 ̸= ti+1,1, extend ψi+1 to embed Ei+1,1 ∪ Ei+1,2[{ti+1,2}] by setting ψi+1(ti+1,2) = ai+1,2.
(If ti+1,1ti+1,2 is an edge of Pi+1, then we will embed this later, in an application of Lemma 4.2, using
that, then, by F7, ψi+1(ti+1,1)ψi+1(ti+1,2) = ai+1,1ai+1,2 is an edge of G.) Let X forb

2 = (Xhigh ∪ A ∪
ψi+1(V (Ei+1,1))) \Ai+1,2, so that

|X forb
2 | ≤ |Xhigh|+ |A|+ |Ei+1,1|

(7),(6)

≤ 400εn+ 20εn+ 4εn ≤ n

100
,

and let W−
i+1,i :=Wi,i \ {wi,i,1} (again, cf. Figure 4).

Then, by Lemma 4.1 again, applied to W−
i+1,i, Ai+1,2, X

forb
2 , Ei+1,2 and ti+1,2 ∈ V (Ei+1,2), we can

extend ψi+1 to an embedding ψ′
i+1 of Ei+1,1 ∪ Ei+1,2 in G such that, recapping in part our properties

from embedding Ei+1,1, we have the following.

G1 Im(ψ′
i+1) ⊆ (Wi,i−1 \ {wi,i−1,1}) ∪ (Wi,i \ {wi,i,1}) ∪Ai+1,1 ∪Ai+1,2 ∪ (X \ (Xhigh ∪A)).

G2 The connectors ti+1,1 and ti+1,2 map to elements of A−
i+1.

G3 We have (Wi,i−1 ∪Wi,i) \ {wi,i−1,1, wi,i,1} ⊆ Im(ψ′
i+1).

G4 Each vertex in (Wi,i−1 ∪Wi,i) \ {wi,i−1,1, wi,i,1} has at most 1 rightward neighbour in ψ′
i+1(Ei+1,1 ∪

Ei+1,2).
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Embedding the unembedded end of Pi. Next, we embed the unembedded end Ei,2 of Pi to cover
W−
i,i+1 := Wi,i+1,1 \ {wi,i+1}. If ti,2 ̸= ti,1, then select ai,2 ∈ Ai \ {ai,1} and let Ai,1 ⊆ Ai \ {ai,1} be a

subset of size 2 containing ai,2. Otherwise (if ti,2 = ti,1), then let ai,2 = ai,1 and let Ai,1 ⊆ Ai be a subset
of size two with ai,1 ∈ Ai,1. If ti,2 ̸= ti,1, extend ψi to embed Ei,1 ∪ Ei,2[{ti,2}] by setting ψi(ti,2) = ai,2.
(Again, if ti,1ti,2 is an edge of Pi, we do not yet embed it, but will do so later during an application of
Lemma 4.2, using that, then, by F7, ψi(ti,1)ψi(ti,2) = ai,1ai,2 is an edge of G.)

Let X forb
3 = (Xhigh ∪ A ∪ ψi(V (Ei,1))) \ Ai,1, so that, similarly to with X forb

2 , we have |X forb
3 | ≤ n

100 .

Let W−
i,i+1 := Wi,i+1 \ {wi,i+1,1}. Then, by Lemma 4.1 again, applied to W−

i,i+1, Ai,1, X
forb
3 , Ei,2 and

ti,2 ∈ V (Ei,2), we can extend ψi to an embedding ψ′
i of Ei,1 ∪ Ei,2 in G such that, recapping in part our

properties from embedding Ei,1 (E1–E3), we have the following.

H1 Im(ψ′
i) ⊆Wi,0 ∪ (Wi,i+1 \ {wi,i+1,1}) ∪ {ai,1} ∪Ai,1 ∪ (X \ (Xhigh ∪A)) ∪ (Xhigh ∩ ψi(V (Ei,1))).

H2 The connectors ti,1 and ti,2 map to elements of Ai,1 ∪ {ai,1}.

H3 We have Wi,0 ∪ (Wi,i+1 \ {wi,i+1,1}) ⊆ Im(ψ′
i).

H4 Each vertex in Wi,0 ∪ (Wi,i+1 \ {wi,i+1,1}) has at most 1 rightward neighbour in ψ′
i(Ei+1,1 ∪Ei+1,2).

Embedding the rest of Pi. We will now embed the rest of Pi, which is the tree Fi, using Lemma 4.2.
Let G′ be G with any edges used in the embeddings ψ′

i+1 and ψ′
i removed, and let H ′ be the complement

of G′ in Kn. Now, by F6, we have

δ(G′) ≥ n− |W | −
(

max
v∈V (G)

dH(v,X)

)
−∆(Pi)−∆(Pi+1) ≥ n− r − n

100
− 2r − 2λn ≥ 49n

50
. (8)

Furthermore, by (4) and (5), we have |Fi| ≥ n − |Ei,1| − |Ei,2| ≥ n − 8εn ≥ 99
100n and, like Pi, Fi has at

most λn leaves. For each j ∈ [i − 2], let W−
i,j = Wi,j \ {wi,j,2} (cf. Figure 4). Let W−

i,i−1 = Wi,i−1 and

W−
i,i =Wi,i. Let W

−
i =

⋃
j∈[i]W

−
i,j . Let X

−
i,0 = (X \ Im(ψ′

i))∪ {ai,1, ai,2} and let A−
i ⊂ Ai \ (Ai,1 \ {ai,2})

have size 16 with ai,1, ai,2 ∈ A−
i . Recalling that, by our convention, if |Wi,j | < 2 then {wi,j,2} = ∅, and

similarly, if |Wi,j | < 1 then {wi,j,1} = ∅, let bi = (i− 1)− |{wi,1,2, . . . , wi,i−2,2} ∪ {wi,i+1,1}| ≥ 0. Now,

|W−
i ∪X−

i,0| = |Wi ∪X| − |{wi,1,2, . . . , wi,i−2,2}| − |Wi,0| − |Wi,i+1| − |X ∩ Im(ψ′
i)|+ |{ai,1, ai,2}|

H1,H3
= |Wi ∪X| − |{wi,1,2, . . . , wi,i−2,2}| − |Im(ψ′

i)| − |{wi,i+1,1}|+ |{ai,1, ai,2}|
= |Wi ∪X| − (i− 1− bi)− |Im(ψ′

i)|+ |{ai,1, ai,2}|
(3)
= |Pi|+ (i− 1)− (i− 1)− |Im(ψ′

i)| − |{ai,1, ai,2}|+ bi

= |Pi| − |V (Ei,1) ∪ V (Ei,2)|+ |{ai,1, ai,2}|+ bi

= |Fi|+ bi.

Let X−
i be obtained from X−

i,0 by removing bi arbitrary elements not belonging to A, so we have

|W−
i ∪X−

i | = |Fi|.

Note that H ′ is the graph formed from H by adding any edges from the image of ψ′
i+1 and ψ′

i which are

not already in H. Then, for each j ∈ [i− 2], W−
i,j is an independent set in H, so, by G1 and H1, W−

i,j is

an independent set in H ′. Furthermore, by H1, for each j ∈ {i−1, i}, the only edges in H ′[W−
i,j ] are from

the image of ψ′
i+1, so as this image is 2-colourable, H ′[W−

i,j ] is 2-colourable, and, in combination with G1,

wi,j,1 is an isolated vertex in H ′[W−
i,j ]. Thus, we will have that C2 holds for an application of Lemma 4.2.

Furthermore, there are no edges between W−
i and A−

i or inside A−
i in H ′ by F7 (and G1 and H4), so

that C1 holds for an application of Lemma 4.2. Finally, each vertex in W−
i has at most |W | = r = εn

leftward neighbours in H ′ and at most r = εn rightward neighbours in H ′ by F4, F5, G1, G4, H1 and
H4. Thus, each vertex in W−

i has at most 2εn ≤ 2λn neighbouring edges in H ′, so that C3 holds for an
application of Lemma 4.2.

Therefore, we have checked all the conditions to apply Lemma 4.2, and thus ψ′
i extends to an embedding

ϕi of Pi in G
′ ∪ ψ′

i(Ei,1 ∪ Ei,2) such that the following properties hold (using also H1 and H4).
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I1 Im(ϕi) ⊆ (Wi ∪X) \ ({wi,j,2 : j ∈ [i− 2]} ∪ {wi,i+1,1}).

I2 Each vertex in Im(ϕi) ∩Wi has at most 1 rightward neighbour in ϕi(Pi), except for wi,j,1, j ∈ [i],
which have at most 2 rightward neighbours.

I3 Every vertex in V (G) \ (A−
i ∪ Im(ψ′

i)) with more than n
200 neighbours in X in H ′, as well as every

vertex in A \Ai, has at most 2 neighbours in X in ϕi(Pi).

I4 ϕi(Pi) has no edges between Wi and A \Ai, or inside A \Ai.

Embedding the rest of Pi+1. Finally, we will embed the rest of Pi+1, which is the tree Fi+1. Let G′′

be obtained from G′ by removing any edges in ϕi(Pi), and let H ′′ be the complement of G′′ in Kn. We
have, using (8), that δ(G′′) ≥ δ(G′)− λn ≥ 49

50n, and, similarly to Fi, that |Fi+1| ≥ 99
100n and Fi+1 has at

most λn leaves.
For each j ∈ [i − 2], let W−

i+1,j = Wi,j \ {wi,j,1} (cf. Figure 4). Let W−
i+1,i+1 = Wi,i+1. Let

W−
i+1 =

(⋃
j∈[i−2]W

−
i+1,j

)
∪ W−

i+1,i+1. Let X−
i+1,0 = (X \ Im(ψ′

i+1)) ∪ {ai+1,1, ai+1,2} and let A−
i+1 ⊂

(Ai+1 \ (Ai+1,1 ∪Ai+1,2))∪ {ai+1,1, ai+1,2} have size 16 with ai+1,1, ai+1,2 ∈ A−
i+1. Similarly to before, let

b′i+1 = i− |{wi,1,1, . . . , wi,i,1}| ≥ 0. Now,

|W−
i+1 ∪X

−
i+1,0|

= |Wi+1 ∪X| − |{wi,1,1, . . . , wi,i−2,1}| − |Wi,i−1| − |Wi,i| − |X ∩ Im(ψ′
i+1)|+ |{ai+1,1, ai+1,2}|

G1,G3
= |Wi+1 ∪X| − |{wi,1,1, . . . , wi,i−2,1}| − |Im(ψ′

i+1)| − |{wi,i−1,1, wi,i,1}|+ |{ai+1,1, ai+1,2}|
= |Wi+1 ∪X| − (i− b′i+1)− |Im(ψ′

i+1)|+ |{ai+1,1, ai+1,2}|
(3)
= |Pi+1|+ i− i− |Im(ψ′

i+1)|+ |{ai+1,1, ai+1,2}|+ b′i+1

= |Pi+1| − |Ei+1,1 ∪ Ei+1,2|+ |{ai+1,1, ai+1,2}|+ b′i+1

= |Fi+1|+ b′i+1.

Let X−
i+1 be obtained from X−

i+1,0 by removing b′i+1 arbitrary elements not belonging to A, so we have

|W−
i+1 ∪X

−
i+1| = |Fi+1|.

Furthermore, for each j ∈ [i−2]∪{i+1}, the only edges appearing in H ′[W−
i+1,j ] are those coming from

ϕi(Pi), thus, each such H ′[W−
i,j ] is 2-colourable. Moreover, for all j ∈ [i−2], wi,j,2 is not in the image of ϕi

by I1, and hence the first element of W−
i+1,j (namely wi,j,2) is an isolated vertex in H ′′[W−

i+1,j ]. Similarly,

again by I1, the first element of W−
i+1,i+1 (namely wi,i+1,1) is an isolated vertex in H ′′[W−

i+1,i+1]. Thus,

C2 holds for an application of Lemma 4.2. Furthermore, in H ′′, there are no edges between W−
i+1 and

A−
i+1, or inside A

−
i+1, by F7 and I4. Thus, we will have that C1 holds for an application of Lemma 4.2.

Moreover, similarly to before, each vertex in W−
i+1 has at most |W | = r leftward edges, and at most r

rightward edges by F4, F5, G1, G4, H1, H4 and I2 (as wi,j,1 /∈ W−
i+1 for each j ∈ [i]), for at most

2r ≤ λn neighbouring edges in total, so C3 holds as well for an application of Lemma 4.2.
Therefore, we have checked all the conditions to apply Lemma 4.2, and thus ψ′

i+1 extends to an
embedding ϕi+1 of Pi+1 in G′′ ∪ ψ′

i+1(Ei+1,1 ∪ Ei+1,2) such that the following properties hold (using G1
and G4 as well).

J1 Im(ϕi+1) ⊆ (Wi+1 ∪X) \ {wi,j,1 : j ∈ [i]}.

J2 Each vertex in Im(ϕi+1) ∩Wi+1 has at most 1 rightward neighbour in ϕi+1(Pi+1), except for wi,j,2,
j ∈ [i− 2], and wi,i+1,1, which have at most 2 rightward neighbours.

J3 Every vertex in V (G) \ (A−
i+1 ∪ Im(ψ′

i+1)) with more than n
200 neighbours in X in H ′′, as well as

every vertex in A \Ai+1, has at most 2 neighbours in X in ϕi+1(Pi+1).

J4 ϕi+1(Pi+1) has no edges between Wi+1 and A \Ai+1, or inside A \Ai+1.
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Checking F1–F7. We check that all the conditions are satisfied for the extension of our good se-
quence by ϕi and ϕi+1. Let Hi+1 be the subgraph of Kn whose edges are those edges in the image of
ϕ1, . . . , ϕi+1, ψi+2, ψi+4, . . . , ψr−1, and let Gi+1 be the complement of Hi+1 in Kn.

Properties F1, F2 and F3 hold for ϕi and ϕi+1 by our construction, while there is nothing additional
to show for Property F4. For Property F5, it is sufficient to check that each vertex in Wi+1 has at most 2
rightward neighbours in ϕi(Pi)∪ϕi+1(Pi+1) (where Figure 4 is a helpful reference). From our embeddings,
and in particular from I2 and J2, every vertex inWi+1\(

⋃
j∈[i−2]{wi,j,1, wi,j,2}∪{wi,i−1,1, wi,i,1, wi,i+1,1})

has at most 1 rightward neighbour in ϕi(Pi) and at most 1 rightward neighbour in ϕi+1(Pi+1). For each
j ∈ [i], by I2 and J1, wi,j,1 has at most 2 rightward neighbours in ϕi(Pi) and no rightward neighbours in
ϕi+1(Pi+1). For each j ∈ [i − 2], by J2 and I1, wi,j,2 has at most 2 rightward neighbours in ϕi+1(Pi+1)
and no rightward neighbours in ϕi(Pi), and this is also true for wi,i+1,1. Thus, in total, we have that
property F5 holds.

For Property F6, note that we have just checked that every vertex in W has at most 2 (rightward)
neighbours in X in ϕi(Pi) ∪ ϕi+1(Pi+1). Furthermore, by G1, H1, I3 and J3, every vertex in X \ (Ai ∪
Ai+1 ∪ (Xhigh ∩ ψi(V (Ei,1)))) with at least n

100 − 2λn neighbours in X in H has at most 2 neighbours in
X in each of ϕi(Pi) and ϕi+1(Pi+1), and hence at most n

100 + 2(i+ 1) neighbours in X in Hi+1, using F6
for the good sequence ϕ1, . . . , ϕi−1. Moreover, each vertex in (Xhigh ∩ ψi(V (Ei,1))) \ Ai has the same
neighbourhood in ϕi(Pi) as in ψi(Ei,1), and has at most 2 neighbours in X in ϕi+1(Pi+1) by G1 and J3,
showing that the number of neighbours in X in Hi+1 of such vertices is at most n

100 +2i, once again by F6
for the good sequence ϕ1, . . . , ϕi−1. Furthermore, each vertex with fewer than n

100 − 2λn neighbours in
X in H clearly has fewer than n

100 neighbours in X in Hi+1 – in particular, this holds for all vertices in
Ai ∪ Ai+1 by F6 for the good sequence ϕ1, . . . , ϕi−1. So we have proved that each vertex has at most
n

100 +2(i+1) neighbours in X in Hi+1. Finally, by G1, H1, I3 and J3, each vertex in
⋃
j∈[r]\[i+1]Aj has

at most 2 neighbours in X in each of ϕi(Pi) and ϕi+1(Pi+1), and hence, using F6 for the good sequence
ϕ1, . . . , ϕi−1, all such vertices have at most n

200 + 2(i+ 1) neighbours in X in Hi+1. Thus, altogether, we
have that Property F6 holds.

Finally, I1, J1, I4 and J4, together with F7 for the good sequence ϕ1, . . . , ϕi−1, show that Property F7
holds. Therefore, ϕ1, . . . , ϕi+1 is a good sequence, as required.

5 Replacing star-like trees with stars

In this section we prove Theorem 1.2 from Theorem 2.1 by packing the trees with the ‘star-like’ trees
replaced by stars, and then replacing the embedded stars iteratively with embeddings of our actual star-
like trees. To embed the star-like trees we use a method inspired by Havet, Reed, Stein and Wood [10].
This technique is very effective for embedding an n-vertex tree T with many leaves into an n-vertex dense∗

graph with one ‘universal’ vertex, v say, that is a neighbour of every other vertex. To do this (in a slightly
simplified form), let t ∈ V (T ) have maximally many neighbouring leaves in T , and let L be a linear set
of leaves containing the neighbouring leaves of t, where t has, say, d neighbours in L. Next, we map t to
the universal vertex v, randomly embed the rest of T − L vertex by vertex into G, and then attempt to
attach the unused vertices in G, those in the set B say, as leaves in G of the embedded tree in the correct
manner to get a copy of T . As v is a universal vertex, every vertex in B could be added in G as a leaf
next to the embedding of t (which is v), and we have d such leaves to add. We effectively add these leaves
last, after adding leaves next to the other vertices that need leaves added, where we thus have d spare
vertices in B while doing this. However, we can show that, with positive probability, in the embedding
of T − L, the correct form of Hall’s generalised matching criterion (see Lemma 3.9) holds for this to be
done. This essentially follows by the following principle. As the number of vertices needing leaves added
is at least |L|/d, the smaller d is, the more likely it is (or, more precisely, the better our bound on the
probability is) for each vertex in B to have many neighbours which need leaves attached, but the fewer
spare vertices we have in B. On the other hand, the larger d, the less likely each vertex in B has many
neighbours which need leaves attached, but the more spare vertices we will have. All we need is for the
balance between these competing forces to work in our favour in all cases, which we are able to show in
our set-up (as we later do for Claim 5.2).

∗For us, here, missing at most 2εn2 edges for some small ε > 0 (see Lemma 5.1).
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In order to use such an embedding result to iteratively replace our stars, we need to have a little
more control in order to embed some leaves onto the lower degree vertices, but this is not a substantial
complication. The result we need is the following lemma, after which we use this to prove Theorem 1.2
from Theorem 2.1.

Lemma 5.1. Let 1/n ≪ ε ≪ λ ≤ 1. Let T be a tree with n vertices and at least λn leaves. Let G be an
n-vertex graph with δ(G) ≥ n/10 and at least

(
n
2

)
− 2εn2 edges. Let v ∈ V (G) have degree n− 1 in G.

Then, there is an embedding ψ : T → G for which the following hold.

K1 Every vertex with degree at most 99n/100 in G is a leaf of ψ(T ).

K2 If ∆(T ) ≥ 2n/3, then the vertex of T with maximum degree is mapped to v.

Proof. Let µ satisfy ε ≪ µ ≪ λ. Let t be a vertex of T which has the maximal number of neighbours
which are leaves in T , and let this number of neighbouring leaves be d. Note that if ∆(T ) ≥ 2n/3, then t
is the (unique) vertex in T with maximal degree. If d ≥ µn then let L be the set of neighbouring leaves
of t in T , and otherwise let L be a set of λn leaves of T which includes all of the neighbouring leaves of t.

Let T ′ = T − L and m = |T ′|. Label the vertices of T ′ as t1, . . . , tm so that t1 = t and each vertex
(apart from t1) has exactly 1 leftward neighbour in T ′ in this ordering. For each i ∈ [m], let di be the
number of neighbours of ti in L in T .

Let U low be the set of vertices in G with degree less than n−µn/10 in G, so that |U low| ·µn/10 ≤ 4εn2,
and, hence, |U low| ≤ 40εn/µ ≤ µn/10. Starting with ψ(t1) = v, for each 2 ≤ i ≤ m in turn, embed ti into
G (greedily) at random by letting si be the unique neighbour of ti in T [{t1, . . . , ti}] and selecting ψ(ti)
uniformly at random from NG(ψ(si)) \ (U low ∪ ψ({t1, . . . , ti−1})). Note that this is always possible, as
ψ(si) ∈ V (G) \ U low so that

|NG(ψ(si)) \ (U low ∪ ψ({t1, . . . , ti−1}))| ≥
(
n− µn

10

)
− µn

10
− |T ′| = |L| − µn

5
≥ 4µn

5
.

Now, if d ≥ µn, then we can complete the embedding of T by attaching all of the d vertices in
V (G) \ ψ(V (T ′)) as neighbours of v (which has degree n − 1 in G), and we have that both K1 and K2
hold. Therefore, we can assume that d < µn, and hence we have |L| = λn. We will show the following
claim.

Claim 5.2. With probability at least 1/2, there are at least n− d vertices u ∈ V (G) with∑
i∈[m]:ψ(ti)∈NG(u)

di ≥
λn

100
. (9)

Given this claim, we can complete the proof, as follows. First, there must by the claim be some
embedding ψ : T ′ → G such that (9) holds for all but at most d vertices in V (G). Let B = V (G) \ Im(ψ),
so that |B| = n−(|T |−|L|) = |L| = λn. Let J = {i ∈ [m] : di > 0}. We will show that we can apply Hall’s
generalised matching criterion (see Lemma 3.9) to match up the remaining vertices B. Thus, consider
some non-empty I ⊂ J . If

∑
i∈I di ≤

99λn
100 , then, picking some arbitrary j ∈ I, as ψ(tj) /∈ X low, we have∣∣∣∣ ⋃

i∈I
NG(ψ(ti), B)

∣∣∣∣ ≥ |NG(ψ(tj), B)| ≥ |B| − µn

10
≥ 99λn

100
≥

∑
i∈I

di.

If 99λn
100 <

∑
i∈I di ≤ λn − d, then, by the property from the claim, all but at most d vertices are in⋃

i∈I N(ψ(ti)), and, therefore,∣∣∣∣ ⋃
i∈I

NG(ψ(ti), B)

∣∣∣∣ ≥ |B| − d = λn− d ≥
∑
i∈I

di.

Finally, if
∑
i∈I di > λn− d, then as d1 = d we have 1 ∈ I so that, as ψ(t1) = v has degree n− 1 in G,∣∣∣∣ ⋃

i∈I
NG(ψ(ti), B)

∣∣∣∣ = |B| = λn ≥
∑
i∈I

di.
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Thus, by Hall’s generalised matching criterion (see Lemma 3.9), we can extend ψ to an embedding of T
in G. As U low ⊂ ψ(L), we have that K1 holds, and K2 is vacuous as d ≤ µn implies ∆(T ) < 2n/3. It is
left then only to prove Claim 5.2.

Proof of Claim 5.2. Let u ∈ V (G). We will show that (9) fails for u with probability at most d/2n, so
that the expected number of vertices for which (9) fails is at most d/2 and hence the claim follows by
Markov’s inequality. We may assume that u ̸= v, as (9) is immediate for u = v as v will always be a
neighbour of each ψ(ti), 2 ≤ i ≤ m, and d1 = d ≤ µn.

Thus, fix some u ∈ V (G) \ {v}, and, for each i ∈ [m], let

Xi =

{
di if ψ(ti) ∈ NG(u) or |NG(u) \ (U low ∪ ψ({t1, . . . , ti−1}))| ≤ n−i+1

25
0 otherwise.

(10)

As ψ(t1) = v ∈ NG(u), we always have X1 = d1 = d. Observe too that, for any 2 ≤ i ≤ m, as
n− i+ 1 ≥ |L| = λn and λ≫ µ,

P
(
Xi = di

∣∣∣ |NG(u) \ (U low ∪ ψ({t1, . . . , ti−1}))| ≥
n− i+ 1

25

)
≥

n−i+1
25 − µn/10

n− i+ 1
≥ 1

50

so that P(Xi = di | ψ(t1), . . . , ψ(ti−1)) ≥ 1
50 . Therefore, as

∑
i∈[m] di = |L| = λn, Azuma’s inequality

(Lemma 3.10) for the submartingale Zj =
∑
i∈[j](Xi − di

50 ) gives (using t = λn/100 and that Zm =∑
i∈[m]Xi − λn/50)

P
( ∑
i∈[m]

Xi ≤
λn

100

)
≤ exp

(
− (λn/100)2

2
∑
i∈[m] d

2
i

)
≤ exp

(
− (λn/100)2

2d ·
∑
i∈[m] di

)
= exp

(
− λn

20000d

)
≤ d

4n
, (11)

where this last inequality follows as d/n ≤ µ≪ λ.
Now, for each i ∈ [m], let

Yi = |NG(u) \ ψ({t1, . . . , ti−1})| −
n− i+ 1

10
. (12)

Note that, as δ(G) ≥ n/10, we have Y1 ≥ 0. Moreover, Yi+1 − Yi ∈ {− 9
10 ,

1
10} for all i ∈ [m − 1], so, in

particular, |Yi+1 − Yi| ≤ 1. We will now show that the probability that Yi ≤ −2µn for some i ∈ [m] is at
most 1

4n .
For all i, j ∈ [m] with i < j, let Bi,j be the event that Yi, Yi+1, . . . , Yj ≤ −µn, Yi ≥ −µn − 1 and

Yj ≤ −2µn. Note that if Yj ≤ −2µn, then Bi,j holds for some i ∈ [j − 1]. Thus, to prove that there is
some i ∈ [m] with Yi ≤ −2µn with probability at most 1

4n , it is enough to show that P(Bi,j) ≤ 1
4n3 for all

i, j. Observe that whenever i ∈ [m− 1] with Yi ≤ −µn, then (recalling that si is the unique neighbour of
ti in T [{t1, . . . , ti}]) the probability that ψ(ti) ∈ NG(u) is at most

|NG(u) \ ψ({t1, . . . , ti−1})|
n− (i− 1)− |U low| − |V (G) \NG(ψ(si))|

≤
n−i+1

10 − µn

n− (i− 1)− µn/5
≤ 1

10
.

Thus, we have
E(Yi+1 | ψ(t1), . . . , ψ(ti−1)) ≥ Yi if Yi ≤ −µn. (13)

For each i, k ∈ [m] with i ≤ k, define Ri,k by setting

Ri,k =

{
Yk if Yi, Yi+1, . . . , Yk ≤ −µn
max{Yi, . . . , Yk} otherwise.

Note that we have E(Ri,k+1 | ψ(t1), . . . , ψ(tk−1)) ≥ Ri,k (and hence E(Ri,k+1 | Ri,i, . . . , Ri,k) ≥ Ri,k) for
all i, k ∈ [m − 1] with i ≤ k. Indeed, if Ri,k > −µn then trivially Ri,k+1 ≥ Ri,k, whereas if Ri,k ≤ −µn
then

E(Ri,k+1 | ψ(t1), . . . , ψ(tk−1)) ≥ E(Yk+1 | ψ(t1), . . . , ψ(tk−1))
(13)

≥ Yk = Ri,k.
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By Azuma’s inequality (Lemma 3.10) for the submartingale (Ri,k)k≥i, since |Ri,k+1−Ri,k| ≤ 1 for all k, we
get that, for all j ∈ [m], with j > i, the probability that Ri,j−Ri,i ≤ −µn

2 is at most exp(−(µn2 )2/(2m)) ≤
1

4n3 as m ≤ n. But this immediately implies that P(Bi,j) ≤ 1
4n3 . This finishes the proof that Yi ≤ −2µn

for some i ∈ [m] with probability at most 1
4n .

Therefore, in combination with (11), with probability at least 1− d
2n , we have that |Yi| ≥ −2µn for each

i ∈ [m] and
∑
i∈[m]Xi ≥ λn

100 . For each i ∈ [m], then, by (12), we have |NG(u)\ψ({t1, . . . , ti−1})|− n−i+1
10 ≥

−2µn, so that

|NG(u) \ (U low ∪ ψ({t1, . . . , ti−1}))| ≥
n− i+ 1

10
− |U low| − 2µn >

n− i+ 1

25
,

as |U low| ≤ µn/10 and n− i+ 1 ≥ λn. Thus, by (10), if Xi = di, then ψ(ti) ∈ NG(u). Therefore,∑
i∈[m]:ψ(ti)∈NG(u)

di =
∑
i∈[m]

Xi ≥
λn

100
,

so (9) holds for u. Hence, the probability that (9) fails for u is at most d
2n , as required. ⊡ □

Using Lemma 5.1, we can now prove Theorem 1.2 from Theorem 2.1.

Proof of Theorem 1.2 from Theorem 2.1. Let 1/n≪ ε≪ λ≪ 1 and r = εn. Let T1, . . . , Tr be trees with
|Ti| = n− i+ 1 for each i ∈ [r]. Let s be the number of these trees with at least λn leaves, and let these
trees be S1, . . . , Ss (in any order). For each i ∈ [s], let S′

i be a star with |Si| vertices. Let T ′
1, . . . , T

′
r be

the sequence of trees T1, . . . , Tr with, for each i ∈ [s], Si replaced by S′
i. Then, by Theorem 2.1, for some

ordering v1, . . . , vn of V (Kn) the sequence T ′
1, . . . , T

′
r packs into Kn so that every vertex which is not the

centre of an embedded star has degree at most n/10 in the edges used in the embeddings, and the stars
are embedded so that the centre is to the left of all its leaves. Relabelling if necessary (using that we did
not label the stars in order of size), assume that, for each i ∈ [s], the centre of the embedding of Si is
vi. Picking such embeddings, let H be the edges used by the embeddings of all the trees with fewer than
λn leaves, and let G be the complement of H in Kn. As every vertex in G is either not the centre of an
embedded star, or has at least n−r neighbours in G from the embedding of a star, we have δ(G) ≥ 9n/10.

Then, to complete the proof it is sufficient to find disjointly in G a copy of Si for each i ∈ [s]. Therefore,
Theorem 1.2 follows directly from the following claim with ℓ = s.

Claim 5.3. For each 0 ≤ ℓ ≤ s, S1, . . . , Sℓ, S
′
ℓ+1, . . . , S

′
s can be embedded into G so that, letting Gℓ be G

with the edges of the embedded copies of S1, . . . , Sℓ removed,

L1 for each ℓ < i ≤ s, vi is the centre of the embedding of S′
i, which contains no edges vivj with

ℓ < j < i.

L2 for each ℓ < i ≤ s, any vertex in the embedding of S′
i has degree at least n/5− ℓ in Gℓ.

Proof of Claim 5.3. We prove this by induction on ℓ. When ℓ = 0, we have the embedding of the stars
required, so suppose that ℓ ∈ [s] and we have embeddings of S1, . . . , Sℓ−1, S

′
ℓ, . . . , S

′
s into G so that, letting

Gℓ−1 be G with the edges of the embedded copies of S1, . . . , Sℓ−1 removed, any vertex in the embedding
of S′

i has degree at least n/5− (ℓ− 1) in Gℓ−1 for each ℓ ≤ i ≤ s. Suppose furthermore that vℓ, . . . , vs are
the centres and Lℓ, . . . , Ls are the sets of leaves of the embedded copies of S′

ℓ, . . . , S
′
s respectively, and no

S′
i contains an edge of the form vivj with ℓ− 1 < j < i. We consider two cases according to the value of

∆(Sℓ).

Case 1: ∆(Sℓ) ≥ 3n/4. Let m = |Lℓ ∩ {vℓ+1, . . . , vs}| ≤ r and L−
ℓ = Lℓ \ {vℓ+1, . . . , vs}. Let tℓ be

the vertex of Sℓ with maximum degree, and let S−
ℓ be a copy of Sℓ with m leaves removed next to tℓ.

Note that |L−
ℓ ∪ {vℓ}| = |S−

ℓ | and that the embeddings of S′
ℓ+1, . . . , S

′
s are disjoint from Gℓ−1[L

−
ℓ ∪ {vℓ}].

Furthermore, as every vertex in Gℓ−1[L
−
ℓ ∪{vℓ}] is in the embedding of S′

ℓ, we have (by the version of L2)
that δ(Gℓ−1[L

−
ℓ ∪{vℓ}]) ≥ n/5−(ℓ−1)−(n−|Sℓ|)−r ≥ n/10, while, as the embedding of S′

ℓ is in Gℓ−1, we
have that vℓ is a neighbour of all of the other vertices in Gℓ−1[L

−
ℓ ∪ {vℓ}]. Moreover, Gℓ−1[L

−
ℓ ∪ {vℓ}] is a
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graph with n′ := |S−
ℓ | ≥ n− (n−|Sℓ|)−r ≥ n−2r > 99n/100 vertices and at least

(
n′

2

)
−rn ≥

(
n′

2

)
−2εn′2

edges.
By Lemma 5.1, then, there is an embedding of S−

ℓ in G[L−
ℓ ∪{vℓ}] in which tℓ is embedded to vℓ and in

which every vertex with degree at most 49n/50 in Gℓ−1[L
−
ℓ ∪{vℓ}] is a leaf of the embedded tree. Extend

this to an embedding of Sℓ by adding the m vertices in Lℓ ∩ {vℓ+1, . . . , vs} as leaves of tℓ. Let Gℓ be G
with the edges of the embedded copies of S1, . . . , Sℓ removed, so that it is Gℓ−1 with the edges of the
embedded copy of Sℓ removed.

Now, no embedded star S′
i with i > ℓ contains vℓ (as the embedded S′

i is centred at vi and contains no
edge of the form vivj with ℓ−1 < j < i), so for each i > ℓ, every vertex in the embedding of Sℓ which is in
the embedded S′

i has degree at most n−∆(Sℓ) ≤ n/4 in the embedding of Sℓ. As every vertex with degree
at most 49n/50 in Gℓ−1[L

−
ℓ ∪ {vℓ}] is a leaf of the embedding in Sℓ, we therefore have that, whenever v

is in the embedded Sℓ and also a non-centre vertex of S′
i for some i > ℓ, v has degree in Gℓ[L

−
ℓ ∪ {vℓ}] at

least min{dGℓ−1[L
−
ℓ ∪{vℓ}](v) − 1, 49n/50 − n/4}. Therefore, for all i > ℓ, every vertex of S′

i has degree in

Gℓ at least
min{dGℓ−1

(v)− 1, 24n/50} ≥ n/5− ℓ,

so that L2 holds. Moreover, L1 holds as the embeddings of S′
i, ℓ < i ≤ s, are unchanged.

Case 2: ∆(Sℓ) < 3n/4. Let G−
ℓ−1 be Gℓ−1 with n/10 rightward edges arbitrarily removed next to each

vi, ℓ < i ≤ s (to force a leaf onto each of these vertices in the application of Lemma 5.1 which will follow).
Writing L−

ℓ = Lℓ\{vℓ+1, . . . , vs}, for each vertex v ∈ L−
ℓ we have dG−

ℓ−1
(v, L−

ℓ ∪{vℓ}) ≥ n
5 −ℓ−(s−ℓ)−r ≥

n/10. Furthermore, for each ℓ < i ≤ s we have dG−
ℓ−1

(vi, L
−
ℓ ∪{vℓ}) ≥ |L−

ℓ ∩Li| −n/10 ≥ n− 3r−n/10 ≥
n/10. Finally, again we have that, as the embedding of S′

ℓ is in Gℓ−1, vℓ is a neighbour of every other
vertex in G−

ℓ−1[Lℓ ∪ {vℓ}], and that G−
ℓ−1[Lℓ ∪ {vℓ}] is a graph on n′ ≥ 99n/100 vertices with at least(

n′

2

)
− rn− rn/10 ≥

(
n′

2

)
− 2εn′2 edges.

Thus, by Lemma 5.1, there is an embedding of Sℓ in G
−
ℓ−1[Lℓ∪{vℓ}] in which every vertex with degree

at most 49n/50 in G−
ℓ−1[Lℓ ∪ {vℓ}] is a leaf of the embedded tree. Note that, as they have degree at most

9n/10 in G−
ℓ−1[Lℓ ∪ {vℓ}], whenever ℓ < i ≤ s and vi ∈ Lℓ, then vi is a leaf in the embedding of Sℓ, and

so vi appears in a unique edge fℓ,i of the embedded Sℓ. When this happens, and when we also have fℓ,i
appearing in our embedding of S′

i, take the embedding of S′
i and replace the edge fℓ,i by vℓvi (which is

in Gℓ−1 but is not present in the embedding of S′
i by our assumptions, so not equal to to fℓ,i, and hence

not in the embedding of Sℓ as fℓ,i is the unique such edge containing vi). In other cases (i.e., if ℓ < i ≤ s
and either vi ̸∈ Lℓ or fℓ,i does not appear in the embedding of S′

i), we leave S′
i unchanged. Thus, we get

disjoint embeddings of S1, . . . , Sℓ, S
′
ℓ+1, . . . , S

′
s. Furthermore, we have that L1 holds as we only added to

the embeddings of S′
ℓ+1, . . . , S

′
s some edges containing vℓ.

Let Gℓ be G with the edges of the embedded copies of S1, . . . , Sℓ removed, so that it is Gℓ−1 with the
edges of the embedded copy of Sℓ removed. Similarly to Case 1, for each ℓ < i ≤ s, any vertex in the
embedding of S′

i has degree at least n/5 − ℓ in Gℓ, except for (in this case only) possibly vℓ which may
now be in the embedding of S′

i. However, vℓ had at least |Sℓ| − 1 ≥ n− r − 1 neighbours in Sℓ−1, and so
it has at least n − r − 1 −∆(Sℓ) ≥ n/5 neighbours in Gℓ. Thus, L2 holds. This completes the proof of
the claim, and hence the lemma. ⊡ □

6 Embedding the path-like trees: proof of the key lemmas

In this section, we prove our two key lemmas, Lemma 4.1 and Lemma 4.2. We begin by formally defining
an ‘end’. For convenience, and in a slight change from the sketch, essentially an end of a tree T is a subtree
T ′ with at most 2 connector vertices in T (vertices v with dT ′(v) < dT (v)). Then, using the notation of
Sections 2 and 4, T ′ is moreover a ‘proper’ end if it can be embedded in Kn with connector vertices in X
so that plenty of its vertices are used to cover vertices in W without using a ‘turnaround’ vertex. Where
a turnaround vertex is needed (that is, when too many vertices of T ′ lie on the path between connector
vertices in T ′), T ′ is then an ‘artificial’ end. Within the definition we additionally record two parameters:
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k will be number of vertices we can easily cover in W while embedding T ′ in such a fashion, while ℓ is the
number of non-connector leaves of T ′. We now make these definitions precisely.

Definition 6.1. Let T be a tree, and let T ′ be a (proper) subtree of T with two not necessarily distinct
connector vertices u and v, and no other connector vertices other than u and v. If k ≥ 0 satisfies
|T ′| ≥ 20000k and ℓ is the number of leaves of T ′ distinct from both u and v, then T ′ is a (k, ℓ)-end
of T (with connector vertices u, v). Moreover, letting Pu,v be the unique path in T ′ between u and v, if
|Pu,v| ≤ 99

100 |T
′|, then T ′ is a proper (k, ℓ)-end, while otherwise it is an artificial (k, ℓ)-end. Note that if

|T ′| ≥ 2 and T ′ is an artificial end, then, necessarily, u ̸= v.

In Section 6.1, we will prove the first of the key lemmas (Lemma 4.1), before building to the proof
of the second key lemma (Lemma 4.2) through the rest of the section, using several intermediate results.
To do this, in Section 6.2, we give a result embedding a sufficiently large end to cover ‘most’ vertices in
one of the sets W−

i in the statement of Lemma 4.2, leaving only a few gaps and making sure that D1 is
satisfied for the vertices covered. Then, in Section 6.3, we show that we can embed a subtree while using
its leaves to cover the gaps left by the previous step. In Section 6.4, we give a result which we will use to
embed the final piece of our path-like tree, making sure that we cover a certain subset with well-separated
degree 2 vertices (so that D2 and D3 can be satisfied). Finally, we put this all together in Section 6.5 to
prove Lemma 4.2.

6.1 Proof of the first key lemma

In the proof of the first key lemma, and other results in this section, we often wish to embed part of a tree
greedily. It is convenient, then, to record when this can be done, which we do in the following result.

Lemma 6.2. Let G be a graph with complement H, and let T be a tree. Let U1 ⊂ U2 ⊂ V (T ), and let
κ be a positive integer such that T [U1] has at most κ connected components. Assume furthermore that
|U2|+ κ ·∆(H) ≤ |G|. Then, every embedding of T [U1] in G extends to an embedding of T [U2] in G.

Proof. List the vertices of V (T ) \ U1 as t1, . . . , tm in such a way that, for all i ∈ [m], we have ti ∈
NT (U1 ∪ {t1, . . . , ti−1}) (if U1 = ∅, then we only require this to hold for all i ∈ [m] \ {1}). Then, for all
i ∈ [m], T [U1 ∪ {t1, . . . , ti}] has at most κ connected components. Hence, for all i ∈ [m], ti has at most κ
neighbours in T in U1 ∪ {t1, . . . , ti−1}.

Thus, by taking a subsequence of t1, . . . , tm, we can list the vertices in U2 \ U1 as s1, . . . , sq such
that, for all i ∈ [q], si has at most κ neighbours in U1 ∪ {s1, . . . , si−1}. Then, we can greedily embed
the vertices of U2 \ U1 in this order. Indeed, if we have an embedding ϕ of T [U1 ∪ {s1, . . . , si−1}] in
G, then, writing Y = NT (si) ∩ (U1 ∪ {s1, . . . , si−1}), we can pick ϕ(si) to be any element of the set
V (G) \ (

⋃
y∈Y NH(y)∪ϕ(U1 ∪{s1, . . . , si−1})), which has size at least |G| − κ ·∆(H)− (|U2| − 1) > 0. □

We can now prove Lemma 4.1, which is used in our main proof to embed the ‘ends’ Ei,1, Ei,2 – which
are subtrees of Ti with only one connector vertex in Ti. First, we restate the lemma, for convenience.

Lemma 4.1. Let 1/n ≪ ε ≪ 1 and r = εn. Let v1, . . . , vn be an ordering of the vertices of Kn and let
W = {v1, . . . , vr} and X = {vr+1, . . . , vn}. Let H ⊂ Kn have ∆(H) ≤ n/50 and e(H) ≤ εn2, and let G
be the complement of H.

Let W− ⊂ W and A− ⊂ X be such that |A−| ≥ 2 and there are no edges inside the set W− ∪ A− in
H. Let X forb ⊂ X \A− satisfy |X forb| ≤ n/100. Let T be a tree with |W−| < |T | ≤ 4εn and let t ∈ V (T ).

Then, for every a ∈ A−, there exists an embedding ϕ of T in G with ϕ(t) = a such that W− ⊆ Im(ϕ) ⊂
W− ∪ (X \ X forb) and every vertex in W− has at most 1 rightward neighbour in ϕ(T ) in the ordering
v1, . . . , vn.

Proof. If W− = ∅, then a greedy algorithm (i.e., Lemma 6.2 with U1 = {t}, U2 = V (T ) and κ = 1, as
|X \X forb| ≥ n− r−n/100, ∆(H[X \X forb]) ≤ n/50 and |T | ≤ 4εn) shows that T embeds in G[X \X forb]
with t mapping to a. Thus, from now on, we may assume that W− ̸= ∅.

By Lemma 3.4, as |T | > |W−|, there is an integer k ≥ 2 and a tree decomposition T1, . . . , Tk of T
such that t ∈ V (Tk), |Tk| = |T | − |W−|, |T1| − 1 ≥ |W−|/2, and, for each i ∈ [k − 1], Ti contains exactly
one connector. By merging Ti and Tj for all i, j ∈ [k − 1] if they share a vertex, we may assume that
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T1, . . . , Tk−1 are vertex-disjoint, and note that we can assume each of these trees has at least one edge.
We will essentially show that if we replace each Ti (i ∈ [k− 1]) with a star of the same size, centred at its
connector vertex, then we can embed this new tree, T ′ say, in G such that W− is covered by the leaves
of these stars, and then use this observation to deduce the statement of the lemma by putting back the
trees Ti in place of the stars. Thus, for each i ∈ [k − 1], let si be the unique connector of Ti, and note
that si ∈ V (Tk). For each i ∈ [k − 1], let di = |Ti| − 1. Note that

∑
i∈[k−1] di = |W−| and d1 ≥ |W−|/2.

Let X0 = {v ∈ X \ X forb : dG(v,W
−) ≥ |W−|/2} = {v ∈ X \ X forb : dH(v,W−) ≤ |W−|/2}. Note

that eH(W−, X \X forb) ≤ |W−| · n/50 as ∆(H) ≤ n/50, so |(X \X forb) \X0| ≤ |W−|·n/50
|W−|/2 = n/25, and

hence |X0| ≥ |X| − |X forb| − n/25 ≥ 23n/25. Note that A− ⊂ X0. Take any embedding ϕ0 of Tk[{t, s1}]
in G[A−] with ϕ0(t) = a. We can extend this embedding greedily (by Lemma 6.2 with U1 = {t, s1} and
U2 = V (Tk), using that ∆(H[X0]) ≤ n/50, |X0| ≥ 23n/25 and |U2| ≤ 4εn) to get an embedding ϕ0 of Tk
in G[X0] such that ϕ0(t) = a and ϕ0(s1) ∈ A−.

We claim that we can find a partitionW− = ∪i∈[k−1]W
−
i such that, for all i ∈ [k−1],W−

i ⊆ NG(ϕ0(si))

and |W−
i | = di. We show this using Hall’s generalised matching criterion (see Lemma 3.9). For this,

take any non-empty I ⊆ [k − 1]. If
∑
i∈I di ≤ |W−|/2, then the definition of X0 immediately gives

that |NG({ϕ0(si) : i ∈ I},W−)| ≥ |W−|/2 ≥
∑
i∈I di. On the other hand, if

∑
i∈I di > |W−|/2,

then necessarily 1 ∈ I, and hence, using ϕ0(s1) ∈ A, we have NG({ϕ0(si) : i ∈ I},W−) = W−. So,
by Lemma 3.9, such a partition does indeed exist.

For each i ∈ [k − 1], order the vertices of Ti as ti,1, . . . , ti,di+1 such that ti,di+1 = si and each vertex
has at most 1 rightward neighbour. Using that W−

i ∪ {ϕ0(si)} induces a complete subgraph of G as
W−
i ⊂ NG(ϕ0(si)), we can extend ϕ0 to an embedding ϕ of T inG[W−∪X0] by mapping, for each i ∈ [k−1],

ti,1, . . . , ti,di to W−
i in an order-preserving way. This embedding ϕ then satisfies the conditions. □

6.2 Embedding ends

It remains to prove the other key lemma, Lemma 4.2. In this section, we will prove the following result,
which states that we can use a sufficiently large end to appropriately cover most of the vertices in one of
the sets W−

i in Lemma 4.2 (while, as required by D1, having at most one rightward edge at all points of
W−
i , except at the leftmost vertex). The number of gaps left by the embedding will be a small fraction of

the number of (non-connector) leaves of the end that we embed.

Lemma 6.3. Let 1/n ≪ ε ≪ λ ≪ 1 and r = εn. Let v1, . . . , vn be an ordering of the vertices of Kn

and let W = {v1, . . . , vr} and X = {vr+1, . . . , vn}. Let G ⊂ Kn have δ(G) ≥ 49n/50, and let H be the
complement of G in Kn. Suppose that e(H) ≤ εn2.

Let W− ⊂ W , and let X− ⊂ X contain at least 5n/6 vertices. Let T be a tree and let S be a
(36|W−|, ℓ)-end of T for some ℓ, with |S| ≤ n/50. Suppose that each vertex in W− has at most 2λn edges
in H, H[W−] is 2-colourable, and the leftmost vertex of W− is an isolated vertex in H[W−] (or W− ̸= ∅).

Then, if U ⊂ V (S) is a subset of the (at most two) connector vertices of S in T , then any embedding
of S[U ] in G[X−] extends to an embedding of S in G[W− ∪X−], such that, if S′ is the embedded copy of
S, then the following conditions are satisfied.

M1 Each vertex of S′ in W− has at most 1 rightward neighbour in S′, unless it is the leftmost vertex in
W−, when it has at most 2 rightward neighbours in S′.

M2 There are at most ℓ
100 vertices in W− which are not in S′.

As a first step, we will consider proper ends, and show in the following lemma that ifW− ⊂W induces
a complete subgraph of G, then a proper (|W−|, ℓ)-end can be used to cover W− with few (at most ℓ−1

100 )
gaps while having at most one rightward neighbour at each point of W−. This lemma will then be used to
deduce Lemma 6.3 for artificial ends (by viewing the artificial end as two proper ends glued together, see
Lemma 6.5), and finally for both end types (again, by using two proper sub-ends to cover the two colour
classes of W−).

Lemma 6.4. Let 1/n ≪ ε ≪ λ ≪ 1 and r = εn. Let v1, . . . , vn be an ordering of the vertices of Kn

and let W = {v1, . . . , vr} and X = {vr+1, . . . , vn}. Let G ⊂ Kn have δ(G) ≥ 49n/50, and let H be the
complement of G in Kn. Suppose that e(H) ≤ εn2.
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Let W− ⊂ W , and let X− ⊂ X contain at least 3n/4 vertices. Let T be a tree, and let S be a proper
(|W−|, ℓ)-end of T for some ℓ, with |S| ≤ n/2. Suppose that each vertex in W− has at most 2λn edges in
H, and H[W−] has no edges.

Then, if U ⊂ V (S) is a subset of the (at most two) connector vertices of S in T , then any embedding
of S[U ] in G[X−] extends to an embedding of S in G[W− ∪X−], so that, if S′ is the embedded copy of S,
then the following conditions are satisfied.

N1 Each vertex of S′ in W− has at most 1 rightward neighbour in S′.

N2 There are at most ℓ−1
100 vertices in W− which are not in V (S′).

Moreover, if W− ̸= ∅, and t is a leaf of S which is not a connector vertex, or adjacent to one, then such
an embedding exists in which t is embedded to the leftmost vertex of W−.

Proof. First, note that if |W−| − 1 ≤ ⌊(ℓ − 1)/100⌋, then it is sufficient to embed S into G[X− ∪ {w}],
where w is the leftmost vertex of W−, with t embedded to w if necessary, and N1 satisfied, as N2 will
then hold. Such an embedding is easy to construct greedily (by Lemma 6.2) if there is a leaf of S which
is not a connector vertex or adjacent to a connector vertex in S. On the other hand, suppose every leaf
of S is a connector vertex or adjacent to a connector vertex in S (and note, in particular, that therefore
no t exists to be embedded specifically to w). Then, as S is a proper end, it has at least |S|/100 vertices
not on the path between its connector vertices, and each of these vertices must then be a leaf adjacent to
a connector vertex in S. Thus, as S is a (|W−|, ℓ)-end, ℓ ≥ |S|/100 ≥ 200|W−|. Then (considering the
cases |W−| = 0 and |W−| > 0 separately) N2 is trivial, and we can embed S greedily (by Lemma 6.2)
into G[X−], whereupon N1 and N2 will hold.

Suppose, therefore, that |W−| > ⌊(ℓ − 1)/100⌋ + 1. Then, as S is a (proper) (|W−|, ℓ)-end, ℓ ≤ |S|
200 .

Let S− ⊂ S be the minimal subtree of S containing every connector vertex in S and their neighbours in
S. Note that, as S is a proper end, |S−| ≤ 99

100 |S| + ℓ ≤ 199
200 |S|. In particular, if no t has been specified,

we can choose t to be a leaf of S which is not in S−, where it is then not a connector vertex or adjacent
to one, and thus we must also have that ℓ ≥ 1. Furthermore, as ℓ ≤ 100|W−|, we have |W−| ≥ 1, so we
can let w be the leftmost vertex of W−.

Note that |S| − |S−| ≥ |S|/200 > |W ′| ≥ m := |W ′| − 1 − ⌊(ℓ − 1)/100⌋ ≥ 1. Thus, by applying
Lemma 3.4 to the tree S − t with S− contracted to a single vertex (applying the lemma with m and the
contracted vertex), we can find, for some k, a tree decomposition of S− t into S1, . . . , Sk so that S− ⊂ Sk,

|Sk| = |S − t| −m = |S − t| − |W−|+ 1 +

⌊
ℓ− 1

100

⌋
, (14)

and each Si (i ∈ [k − 1]) contains exactly one connector. Furthermore, we may assume that for all
i ∈ [k − 1] we have |Si| ≥ 2. Note that, then, as S− contains every connector vertex in S and their
neighbours in S, each Si (i ∈ [k − 1]) does not contain any connectors of S. For each i ∈ [k − 1], let mi

be the number of neighbours in Si of the connector of Si, and note that we have
∑
i∈[k−1]mi ≤ ℓ and∑

i∈[k−1]mi ≤ |S−t|−|Sk| = |W−|−1−⌊ ℓ−1
100 ⌋. Let ℓ0 =

∑
i∈[k−1]mi, so ℓ0 ≤ ℓ and |W−| ≥ ℓ0+⌊ ℓ−1

100 ⌋+1.

Let Z− denote the set of ℓ0+⌊ ℓ−1
100 ⌋ rightmost vertices ofW−, and let X−

0 be the set of vertices v ∈ X−

which are neighbours of w (the leftmost vertex of W−) in G and which have at least ℓ0 neighbours in Z−

in G. Then, as each vertex in W− has at most 2λn edges in H,

|X−
0 | ≥ |X−| − 2λn−

(ℓ0 + ⌊ ℓ−1
100 ⌋) · 2λn

⌊ ℓ−1
100 ⌋+ 1

≥ |X−| −
(
1 +

ℓ+ ⌊ ℓ−1
100 ⌋

⌊ ℓ−1
100 ⌋+ 1

)
· 2λn ≥ 2n/3,

using that |X−| ≥ 3n/4, ℓ ≥ 1 and λ≪ 1. Let ϕ : S[U ] → G[X−] be an embedding of a set U of connector
vertices of S. As before, we can (by Lemma 6.2) greedily extend this to an embedding of Sk in G[X−] with
all the vertices outside of U embedded to X−

0 . For each i ∈ [k − 1], let xi be the image of the connector
of Si, so that, as Si contains no connectors of S (and hence no vertices in U), we have xi ∈ X−

0 .
Using the definition of X−

0 , we can greedily find disjoint subsets Z−
1 , . . . , Z

−
k−1 of Z− such that, for all

i ∈ [k − 1], |Z−
i | = mi and Z

−
i ⊂ NG(xi). Moreover, since∑

i∈[k−1]

(|Si| −mi − 1) = |S − t| − |Sk| −
∑

i∈[k−1]

mi = |W−| − 1−
⌊
ℓ− 1

100

⌋
− ℓ0 = |W−| − 1− |Z−|,
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we can easily pick disjoint Y −
1 , . . . , Y

−
k−1 ⊂W−\({w}∪Z−) such that |Y −

i | = |Si|−mi−1 for all i ∈ [k−1].

Thus, by setting W−
i = Y −

i ∪ Z−
i for all i ∈ [k − 1], we can find W−

1 , . . . ,W
−
k−1 in W− \ {w} such that,

for each i ∈ [k − 1], |W−
i | = |Si| − 1, and the mi rightmost points of W−

i are neighbours of xi. For each
i ∈ [k − 1], we can embed Si in G[W−

i ∪ {xi}] so that the connector is mapped to xi and each vertex
in W−

i has at most 1 rightward neighbour in this embedding. Indeed, we can order the vertices of Si as
si,1, . . . , si,|Si| so that si,|Si| is the connector, si,|Si|−1, . . . , si,|Si|−mi

are its neighbours, and every vertex

has at most 1 rightward edge, and then we can simply map V (Si) into W
−
i ∪ {xi} in an order-preserving

way. Putting together these embeddings for each Si, i ∈ [k − 1], as well as our embedding ϕ, we get an
extension of ϕ to S − t. Finally, we can extend ϕ to S by embedding t to w, since ϕ maps the unique
neighbour of t to a point in (W− \ {w})∪X−

0 ⊂ NG(w). Then, we have ϕ(t) = w, and, writing S′ for the
embedded copy of S, each point in V (S′) ∩W has at most one rightward neighbour, and

|W− \ V (S′)| = |W−| −
∑

i∈[k−1]

(|Si| − 1)− 1 = |W−| − (|S − t| − |Sk|)− 1
(14)
=

⌊
ℓ− 1

100

⌋
,

as desired. □

Next, we use Lemma 6.4 to deduce the following form of Lemma 6.3 for artificial ends.

Lemma 6.5. Let 1/n ≪ ε ≪ λ ≪ 1 and r = εn. Let v1, . . . , vn be an ordering of the vertices of Kn

and let W = {v1, . . . , vr} and X = {vr+1, . . . , vn}. Let G ⊂ Kn have δ(G) ≥ 49n/50, and let H be the
complement of G in Kn. Suppose that e(H) ≤ εn2.

Let W− ⊂W , and let X− ⊂ X contain at least 4n/5 vertices. Let T be a tree and let S be an artificial
(4|W−|, ℓ)-end of T for some ℓ, with |S| ≤ n/50. Suppose that each vertex in W− has at most 2λn edges
in H, H[W−] is 2-colourable, and the leftmost vertex of W− is an isolated vertex in H[W−] (or W− ̸= ∅).

Then, if U ⊂ V (S) is a subset of the (two) connector vertices of S in T , then any embedding of S[U ]
in G[X−] extends to an embedding of S in G[W− ∪X−], such that, if S′ is the embedded copy of S, then
the following conditions are satisfied.

O1 Each vertex of S′ in W− has at most 1 rightward neighbour in S′, unless it is the leftmost vertex in
W−, when it has at most 2 rightward neighbours in S′.

O2 There are at most ℓ
100 vertices in W− which are not in S′.

Proof. If W− = ∅, then the result follows easily from a greedy algorithm (see Lemma 6.2), thus, we may
assume from now on that W− ̸= ∅. Let u and v be the (distinct, as S is an artificial end with |S| ≥ 1)
connector vertices of S in T and let P be the u, v-path in S. As S is an artificial end, |P | ≥ 99

100 |S|. Then,
at least 98

100 |S| vertices on P have no neighbours in S in V (S)\V (P ). Let t be a vertex of P in the middle
third of the path such that t does not have any neighbours in V (S) \ V (P ). The vertex t cuts S into two
subtrees intersecting in t, let us denote these by S1 and S2 (where we include t in both S1 and S2), and
label them so that u ∈ V (S1) and v ∈ V (S2). Similarly, t cuts T into two trees T1 and T2, intersecting
in t, such that Si ⊂ Ti for each i ∈ [2]. For each i ∈ [2], say Si contains ℓi leaves distinct from u and
v, so ℓ1 + ℓ2 = ℓ + 2, where we used that t is a leaf of both S1 and S2, but not T . Note that, for each
i ∈ [2], |Si| ≥ |P |/3 ≥ 99

300 |S|, hence, as S is a (4|W−|, ℓ)-end, we get that Si is a proper (|W−|, ℓi)-end of
Ti (with a single connector vertex, either u or v).

Let w be the leftmost vertex of W−. We know that H[W−] is 2-colourable and w is an isolated vertex,
so we can take W−

1 , W−
2 ⊂ W− such that W−

1 ∪W−
2 = W−, W−

1 ∩W−
2 = {w}, and H[W1], H[W2] are

empty. Let ϕ be the given embedding of S[U ] in G[X−]. We may assume that U = {u, v} by, otherwise,
extending ϕ arbitrarily to an injective function {u, v} → X−.

By our choice of t, we have that t is a leaf of S1 which is not a neighbour of u. Applying Lemma 6.4,
then, for the proper (|W−

1 |, ℓ1)-end S1 of T1, we deduce that there exists an embedding ψ1 of S1 in
G[W−

1 ∪ (X− \ {ϕ(v)})] such that ψ1(u) = ϕ(u), ψ1(t) = w, and, letting S′
1 be the embedded copy of S1,

each vertex in W−
1 ∩ V (S′

1) has at most 1 rightward edge in S′
1, and |W−

1 \ V (S′
1)| ≤ ℓ1−1

100 . Similarly,

applying Lemma 6.4 again, there is an embedding ψ2 of S2 inG[W
−
2 ∪(X−\V (S′

1))] such that ψ2(v) = ϕ(v),
ψ2(t) = w, and, letting S′

2 be the embedded copy, each vertex in W−
2 ∩ V (S′

2) has at most 1 rightward
edge in S′

2, and |W−
2 \ V (S′

2)| ≤ ℓ2−1
100 . Putting together the embeddings ψ1 and ψ2, we get an embedding
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of S in G[W− ∪X−], extending the embedding of ϕ. Let S′ = S′
1 ∪ S′

2 denote the embedded copy of S.
Then, each vertex of S′ in W− has at most one rightward neighbour in S′, except the vertex w, which has
2 rightward neighbours. Moreover, |W− \ V (S′)| = |W−

1 \ V (S′
1)|+ |W−

2 \ V (S′
2)| ≤ ℓ1−1

100 + ℓ2−1
100 = ℓ

100 , as
desired. □

Finally, we prove Lemma 6.3 for both types of ends. We have seen in Lemma 6.5 that we can embed an
artificial end to cover most of the vertices in a setW− ⊂W which induces a 2-colourable graph, embedding
so that each vertex covered has just one rightward edge, apart from the leftmost (‘turnaround’) vertex.
If we only have access to proper ends and no artificial ones, then the same can be achieved by using two
proper ends and applying Lemma 6.4 twice (in fact, this way we do not even need a turnaround vertex).
Moreover, any (sufficiently large) end contains either an artificial end or two proper ends, by Lemma 3.7.
Using these observations, we can now prove Lemma 6.3.

Proof of Lemma 6.3. If W− = ∅, then the result follows easily from a greedy algorithm (see Lemma 6.2).
Thus, from now on, we may assume that W− ̸= ∅. Since S is a (36|W−|, ℓ)-end of T , we have that
|S| ≥ 20000 · 36|W−|, and that S has at most two connector vertices in T . Using Lemma 3.7 (with
k = 2), we can find a tree decomposition S1, S2, . . . , Sm of S such that, for each i ∈ [2], 4 · 20000|W−| ≤
|Si| ≤ 24 · 20000|W−|, and each Si has at most 2 connector vertices in T . Thus, for each i ∈ [2], Si is a
(4|W−|, ℓi)-end of T for some ℓi, with ℓ1 + ℓ2 ≤ ℓ.

First suppose that at least one of S1 and S2 is an artificial end, and note that, without loss of generality,
we can assume that it is S1. Let U be a subset of the (at most two) connector vertices of S in T , and let ϕ
be a given embedding of S[U ] in G[X−]. Let U ′ be the set of all connector vertices of S in T , together with
the set of connector vertices of S1 in T . Note that |U ′| ≤ 4, so we can easily extend ϕ to an embedding of
S[U ′] in G[X−]. By Lemma 6.5, there is an embedding of S1 in G[W

−∪(X−\ϕ(U ′\V (S1)))] such that the
embedding agrees with ϕ on the connector vertices of S1, every vertex in W− in the image has at most 1
rightward neighbour in the embedded copy, except possibly the leftmost vertex of W−, which has at most
2 rightward neighbours, and there are at most ℓ1

100 ≤ ℓ
100 vertices in W− not covered by the embedding.

Thus, we get an extension of ϕ embedding S[V (S1) ∪ U ] in G[W− ∪X−] satisfying the conditions above.
By a greedy algorithm (i.e., by Lemma 6.2 with κ = 3, using ∆(H) ≤ n/50 and |X−| ≥ 5n/6), we can
extend this to an embedding of S in G[ϕ(V (S1)) ∪X−] ⊂ G[W− ∪X−], which then satisfies the required
conditions.

Thus, we can assume that both S1 and S2 are proper ends. Let U ′ be union of the sets of connector
vertices of S1, S2 and S in T , and note that |U ′| ≤ 6. Given a subset U of the connector vertices of S in
T , and some embedding ϕ of S[U ] in G[X−], we can extend ϕ to an embedding of S[U ′] in G[X−]. Let
W−

1 ,W
−
2 be a partition of W− such that H[W−

i ] is empty for each i ∈ [2]. By Lemma 6.4, we can find an
embedding of S1 in G[W−

1 ∪(X− \ϕ(U ′ \V (S1)))] such that the embedding agrees with ϕ on the connector
vertices of S1 in T , and, letting S′

1 be the embedded copy of S1, each vertex in W−
1 ∩ V (S′

1) has at most
one rightward edge in S′

1, and we have |W−
1 \ V (S′

1)| ≤ ℓ1−1
100 . Similarly, by Lemma 6.4, we can find an

embedding of S2 in G[W
−
2 ∪(X−\(ϕ(U ′) ∪ V (S′

1)))∪ϕ(U ′∩V (S2))] such that the embedding agrees with ϕ
on the connector vertices of S2 in T , and letting S′

2 be the embedded copy, each vertex in W−
2 ∩V (S′

2) has
at most one rightward edge in S′

2, and we have |W−
2 \V (S′

2)| ≤ ℓ2−1
100 . Putting together the two embeddings

producing S′
1 and S′

2 with the embedding ϕ, we get an extension of ϕ embedding S[U ′ ∪V (S1)∪V (S2)] in
G[W− ∪X−] such that each vertex of W− in the image has at most one rightward edge in the embedded
copy, and at most ℓ1−1

100 + ℓ2−1
100 ≤ ℓ−2

100 vertices in W− are not covered by the embedding. By a greedy
algorithm again (i.e., by Lemma 6.2 with κ = 4, using again that ∆(H) ≤ n/50 and |X−| ≥ 5n/6), we
can extend this (using vertices in X− only) to get an extension on ϕ embedding S in G[W− ∪X−] which
then satisfies the required conditions. □

6.3 Filling in the gaps in W with leaves

In the previous section we have seen (with Lemma 6.3) that we can cover each W−
i in Lemma 4.2 to have

‘few’ gaps, where the number of gaps is a small fraction of the number of leaves of the ends we use. We
now state a lemma that will be used to fill in this set of gaps in

⋃
i∈[k]W

−
i , using leaves of our tree. The

proof is similar to that of Lemma 5.1, inspired again by the method of Havet, Reed, Stein and Wood [10],
though, as the tree we embed comprises a smaller proportion of the overall vertices, the details are simpler.
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Lemma 6.6. Let 1/n ≪ ε ≪ λ ≪ 1 and r = εn. Let v1, . . . , vn be an ordering of the vertices of Kn

and let W = {v1, . . . , vr} and X = {vr+1, . . . , vn}. Let G ⊂ Kn have δ(G) ≥ 49n/50, and let H be the
complement of G in Kn. Suppose that e(H) ≤ εn2.

Let ℓ be a non-negative integer, let T be a tree, and let S be a subtree of T with at most 2 connector
vertices in T such that S has at most n/4 vertices and at least ℓ leaves outside of its connector vertices in
T . Let W− ⊂ W have size ℓ, and let X− ⊂ X contain at least 3n/4 vertices, including a set of vertices
A− ⊂ X− such that H[A−] is empty, there are no edges in H between A− and W−, and |A−| ≥ 3. Suppose
furthermore that each vertex in W− has at most 2λn edges in H.

Then, whenever U ⊂ V (S) is a subset of the (at most two) connector vertices of S in T , then any
embedding of S[U ] in G[A−] extends to an embedding of S in G[W− ∪X−] such that every vertex in W−

is used as a leaf of the image of S.

Proof. Let X−
0 = {v ∈ X− : dG(v,W

−) ≥ (1 − 8λ)ℓ} = {v ∈ X− : dH(v,W−) < 8λℓ}. Note that
eH(W−, X−) ≤ ℓ · 2λn, giving |X− \X−

0 | ≤ ℓ·2λn
8λℓ = n/4. In particular, |X−

0 | ≥ 1
2n, and note also that

A− ⊆ X−
0 .

Let L be a set of ℓ leaves of S which is disjoint from the connector vertices of S in T , and, for each
p ∈ V (S) \ L, let dp = dS(p, L) be the number of neighbouring leaves of p in L. Let d = maxp∈V (S)\L dp,
and let u be a vertex of S with xu = d. Let U be a subset of the (at most two) connector vertices of S in
T , and let ϕ be a given embedding of S[U ] in G[A−]. Let U ′ be the union of {u} and the set of connector
vertices of S in T (so that |U ′| ≤ 3), and extend ϕ arbitrarily to an embedding of S[U ′] in G[A−], using
|A−| ≥ 3.

Order the vertices of V (S − L) \ U ′ as s1, . . . , sm in such a way that, for all i ∈ [m], si has at most
3 neighbours to its left or in U ′ (in the same way as in the proof of Lemma 6.2). Now we extend ϕ to
embed S − L into G[X−

0 ], by embedding the vertices one-by-one in this order, such that for each i ∈ [m],
if Yi = NS(si) ∩ (U ′ ∪ {s1, . . . , si−1}) denotes the set of neighbours of si to its left or in U ′, then ϕ(si) is
picked uniformly at random from (X−

0 ∩
⋂
v∈Yi

NG(v)) \ ϕ(U ′ ∪ {s1, . . . , si−1}). Note that this is always
possible, as |Yi| ≤ 3 and, hence,∣∣∣∣(X−

0 ∩
⋂
v∈Yi

NG(v)

)
\ ϕ(U ′ ∪ {s1, . . . , si−1})

∣∣∣∣ ≥ n

2
− 3 · n

50
− |S| > 0.

First, assuming that d ≥ 8λℓ, we can show using Hall’s generalised matching criterion (see Lemma 3.9)
that we can complete the embedding of ϕ by mapping L to W−. Indeed, if P ⊆ V (S) \ L is non-empty,
then, by the definition of X−

0 , we have |NG(ϕ(P ))∩W−| ≥ (1− 8λ)ℓ. Thus, if
∑
p∈P dp ≤ (1− 8λ)ℓ, then

|N(ϕ(P )) ∩W−| ≥
∑
p∈P dp. On the other hand, if

∑
p∈P dp > (1 − 8λ)ℓ, then necessarily u ∈ P and

hence NG(ϕ(P )) ⊇ NG(ϕ(u)) ⊇W−. So we can indeed apply Lemma 3.9 to complete the embedding and
cover W− by the leaves in L.

Thus, from now on, we may assume that d < 8λℓ. (Note that this gives ℓ ̸= 0 and hence d ̸= 0.)
Similarly to the proof of Lemma 5.1, we will show the following claim.

Claim 6.7. With probability at least 1/2, there are at least ℓ− d vertices w ∈W− with∑
p∈V (S)\L:ϕ(p)∈NG(w)

dp ≥
ℓ

20
. (15)

Before proving this claim, we show that it can be used to finish the proof of the lemma. Take an
embedding ϕ of S − L as above such that (15) fails for at most d vertices in W−, as must exist by the
claim. Take a set W−

0 of d vertices in W− containing all vertices for which (15) fails, and embed them
as the leaves adjacent to u. Note that this is possible, as ϕ(u) ∈ A−. We show using Hall’s generalised
matching criterion (see Lemma 3.9) that we can complete the embedding of ϕ by mapping L \ NS(u)
to W− \ W−

0 . Consider any non-empty set P ⊂ V (S) \ (L ∪ {u}). By the definition of X−
0 , and as

d < 8λℓ, we have |NG(ϕ(P )) ∩ (W− \ W−
0 )| ≥ (1 − 8λ)ℓ − d ≥ 19

20ℓ. Hence, if
∑
p∈P dp ≤ 19

20ℓ, then

|NG(ϕ(P )) ∩ (W− \ W−
0 )| ≥

∑
p∈P dp. On the other hand, if

∑
p∈P dp >

19
20ℓ, then, by (15), for all
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w ∈ W− \W−
0 there is some p ∈ P with ϕ(p) ∈ NG(w), and hence NG(ϕ(P )) ⊇ W− \W−

0 . So we can
indeed apply Lemma 3.9 to cover W− \W−

0 by L \NS(u).
Thus, it is left only to prove Claim 6.7.

Proof of Claim 6.7. It is enough to show that, for all w ∈ W−, (15) fails with probability at most d
2ℓ .

Indeed, if this is the case, then by Markov’s inequality, with probability at least 1/2, (15) fails for at most
d vertices, as claimed. Thus, fix any w ∈W−. For each i ∈ [m], let

Zi =

{
dsi if ϕ(si) ∈ NG(w)
0 otherwise.

(16)

Observe that, for all i ∈ [m],

P (Zi = dsi | ϕ(s1), . . . , ϕ(si−1)) =

∣∣(X−
0 ∩

⋂
v∈Yi∪{w}NG(v)) \ ϕ(U ′ ∪ {s1, . . . , si−1})

∣∣∣∣(X−
0 ∩

⋂
v∈Yi

NG(v)) \ ϕ(U ′ ∪ {s1, . . . , si−1})
∣∣

≥
n
2 − 4 · n50 − |S|

n
≥ 1

10
.

Let us write d∗ = ℓ−
∑
i∈[m] dsi =

∑
p∈U ′ dp. Note that, since ϕ(U ′) ⊂ A− ⊂ NG(w), we have∑

p∈V (S)\L:ϕ(p)∈NG(w)

dp = d∗ +
∑
i∈[m]

Zi.

Using Azuma’s inequality (Lemma 3.10) for the submartingale
∑
j∈[i](Zj − dsj/10), we have

P
( ∑
p∈V (S)\L:ϕ(p)∈NG(w)

dp ≤
ℓ

20

)
= P

( ∑
i∈[m]

Zi + d∗ ≤
∑
i∈[m] dsi + d∗

20

)

= P
( ∑
i∈[m]

(
Zi −

dsi
10

)
≤ −

∑
i∈[m] dsi

20
− 19

20
d∗
)

≤ exp

(
−

(
∑
i∈[m] dsi/20 + 19d∗/20)2

2
∑
i∈[m] d

2
si

)
≤ exp

(
−

(
∑
p∈V (S)\L dp/20)

2

2
∑
p∈V (S)\L d

2
p

)
≤ exp

(
−

(
∑
p∈V (S)\L dp/20)

2

2d
∑
p∈V (S)\L dp

)
= exp

(
− ℓ

800d

)
≤ d

2ℓ
,

where in the last step we used d ≤ 8λℓ and λ ≪ 1. This finishes the proof of the claim and hence the
lemma. ⊡ □

6.4 Completing the embedding

The following lemma is the last step towards proving Lemma 4.2. It is used to extend our partial embedding
coveringW− to a full embedding, while making sure that a protected set X forb is covered by well-separated
degree 2 vertices (this is needed in the proof of the main lemma to guarantee thatD2 andD3 are satisfied).

Lemma 6.8. Let 1/n ≪ ε ≪ λ ≪ 1 and r = εn. Let v1, . . . , vn be an ordering of the vertices of Kn

and let W = {v1, . . . , vr} and X = {vr+1, . . . , vn}. Let G ⊂ Kn have δ(G) ≥ 49n/50, and let H be the
complement of G in Kn. Suppose that e(H) ≤ εn2.

Let T be a tree and let S be a subtree of T with at most λn leaves, at most 2 connector vertices in T ,
and with |S| ≥ n/7. Let X− ⊆ X have size |S|, and let X forb ⊆ X− with |X forb| ≤ 40λn.
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Then, whenever U ⊂ V (S) is a subset of the (at most two) connector vertices of S in T , then any
embedding of S[U ] in G[X− \X forb] extends to an embedding of S in G[X−] such that the vertices in X forb

are covered by an independent set of non-connector degree 2 vertices.

We will prove Lemma 6.8 by a natural argument which first embeds the tree with a large set of degree
2 vertices removed, and then completes the embedding by mapping those degree 2 vertices appropriately.
To do this, we will need a large well-separated set of degree 2 vertices, as guaranteed by the following
lemma, which is a rather special case of a more general lemma of Krivelevich [14] on bare paths in trees.

Lemma 6.9 ([14], Lemma 2.1). If T is a tree with n vertices and ℓ leaves, then T contains a set Y of

degree 2 vertices such that |Y | ≥ n−3(2ℓ−2)
3 and the sets {y}∪NT (y) (over all y ∈ Y ) are pairwise disjoint.

Proof of Lemma 6.8. Let X low = {v ∈ X− : dH(v) ≥ n/1000}, and observe that |X low| ≤ 2e(H)
n/1000 ≤

2000εn. By Lemma 6.9, we can find a set Y of degree 2 vertices in S such that |Y | ≥ n/22, and the sets
{y} ∪N(y) (y ∈ Y ) are pairwise disjoint from each other and also from the set of connector vertices of S
in T .

Let U be a subset of the connector vertices of S in T , and let ϕ be a given embedding of S[U ] in
G[X− \ X forb]. By a greedy algorithm, we can extend ϕ to an embedding of S[V (S) \ Y ] in G[(X− \
(X forb ∪X low)) ∪ ϕ(U)]. Indeed, Lemma 6.2 applies, as

|(X− \ (X forb ∪X low)) ∪ ϕ(U)| − (|S| − |Y |)− 2∆(H) ≥ |S| − 40λn− 2000εn−
(
|S| − n

22

)
− 2 · n

50
> 0.

Let B = X− \ ϕ(V (S) \ Y ). Note that |B| = |Y | and X forb ⊂ B. For each y ∈ Y , let xy, zy be the
two neighbours of y in S (labelled arbitrarily), and let By = NG(ϕ(xy))∩NG(ϕ(zy))∩B. Note that if we
can match Y and B with some bijection ψ so that ψ(y) ∈ By for all y ∈ Y , then, putting together ψ and
ϕ gives an embedding of S in G[X−], extending the original embedding of S[U ], such that B is covered
by Y (and hence X forb is covered by an independent set of non-connector degree 2 vertices). Thus, to
complete the proof of the lemma, it suffices to find such a matching. We will show that such a bijection
ψ exists using Hall’s matching criterion (see Lemma 3.9).

Note that, for all y ∈ Y , we have ϕ(xy), ϕ(zy) ∈ X− \ X low, and hence |By| ≥ |B| − 2n/1000 =
|Y | − n/500. Thus, if Y ′ ⊂ Y is non-empty with |Y ′| ≤ |Y | − n/500, then |

⋃
y∈Y ′ By| ≥ |Y ′|. On the

other hand, if Y ′ ⊂ Y with |Y ′| > |Y | − n/500, then |Y ′| > n/22 − n/500 > n/50. But δ(G) ≥ 49n/50,
so, for any b ∈ B, there are at most n/50 choices of y ∈ Y such that {xy, zy} ̸⊂ NG(b). It follows that if
Y ′ ⊂ Y with |Y ′| > |Y | − n/500 then

⋃
y∈Y ′ By = B, so the conditions of Lemma 3.9 are indeed satisfied

and the result follows. □

6.5 Deducing the second key lemma

Finally, we can prove our second key lemma, which we restate first for convenience.

Lemma 4.2. Let 1/n ≪ ε ≪ λ ≪ 1 and r = εn. Let v1, . . . , vn be an ordering of the vertices of Kn and
let W = {v1, . . . , vr} and X = {vr+1, . . . , vn}. Let G ⊂ Kn have δ(G) ≥ 49n

50 , and let H be the complement
of G in Kn. Suppose that e(H) ≤ εn2.

Let k ∈ [r]. Let T be a tree with at most λn leaves and with 99
100n ≤ |T | ≤ n. Let W− ⊂ W and

X− ⊂ X such that |W− ∪X−| = |T |. Let A− ⊂ X− satisfy |A−| = 16 and let A ⊂ X satisfy |A| ≤ 20r.
Let W−

1 ∪ . . . ∪W−
k be a partition of W−. Suppose the following hold.

C1 There are no edges between W− and A−, nor inside the set A−, in H.

C2 For each j ∈ [k], H[W−
j ] is 2-colourable and the leftmost vertex of W−

j is an isolated vertex in this

subgraph (or W−
j ̸= ∅).

C3 Each vertex in W− has at most 2λn neighbouring edges in H.

Then, for any U ⊂ V (T ) with |U | ≤ 2, any embedding of T [U ] in G[A−] extends to an embedding of T
in G[W− ∪X−], so that, if S is the embedded copy of T , then the following conditions are satisfied.
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D1 Each vertex of S in W− has at most 1 rightward neighbour in S unless it is the leftmost vertex in a
set in the partition W−

1 , . . . ,W
−
k , in which case it has at most 2 rightward neighbours in S.

D2 Every vertex in V (G) \ A− with more than n
200 neighbours in X in H, as well as every vertex in

A \A−, has at most 2 neighbours in X in S.

D3 S has no edges between W− and A \A−, nor inside A \A−.

Proof. Let U ⊂ V (T ) be given with |U | ≤ 2, and let ϕ be a given embedding of T [U ] in G[A−]. From
now on, whenever a subtree T ′ of T intersects U , each vertex in U ∩ V (T ′) will also be regarded as a
connector vertex. (This can be made precise, for example, by regarding T as a subtree of a larger tree
with an additional leaf edge added incident to each point of U .) Thus, for example, T is a tree with at
most 2 connector vertices.

Using Lemma 3.6 and Lemma 3.7, we can take a tree decomposition of T into subtrees F1, F2, F3, . . . , Fq
(for some q ≥ 3) such that each of these trees contain at most 2 connector vertices (including the vertices
in U), |F3| ≥ n/7, and for each i ∈ [2] we have n/1000 ≤ |Fi| ≤ n/100. (Indeed, we may use Lemma 3.6
to divide T into 4 trees with at most 2 connector vertices each, one of which has between n/7 and 6n/7
vertices. Then, taking the largest one of the other three trees, which has at least n/21 vertices, we may
use Lemma 3.7 to divide it into several trees with at most 2 connector vertices each such that two of
those trees have size between n/1000 and 6n/1000.) Let F1 and F2 have ℓ and ℓ′ non-connector leaves,
respectively. Without loss of generality, we may assume that ℓ ≤ ℓ′.

Let C be the set of connector vertices of F2 (so that |C| ≤ 2), and extend ϕ arbitrarily to an embedding
of T [U ∪ C] in G[A−], using |A−| ≥ 16. Pick also a subset Aforb ⊂ A− \ ϕ(U ∪ C) of size 3, to be
reserved for a later application of Lemma 6.6. Let X low = {v ∈ X \ A− : dH(v) ≥ n

200}, and note that

|X low| ≤ 2e(H)
n/200 ≤ 400εn. Let us write

X forb = X low ∪ (A \A−),

so that |X forb| ≤ 400εn + 20r = 420εn. We reserve X forb to be covered at the very end by F3, in an
application of Lemma 6.8.

For each i ∈ [k], let mi = |W−
i |, so that

106
( ∑
i∈[k]

(mi + 1)

)
≤ 106(|W |+ r) ≤ 2 · 106r ≤ |F1|/150,

as |F1| ≥ n/1000. Using Lemma 3.8, we can then take a tree decomposition of F1 into T1, . . . , Tk′ (for
some k′ ≥ k) so that, for each i ∈ [k], 106(mi + 1) ≤ |Ti| ≤ 6 · 106(mi + 1), and each Ti has at most 2
connector vertices. For each i ∈ [k], let Ti have ℓi non-connector leaves, so that Ti is then a (36|W−

i |, ℓi)-
end of T and

∑
i∈[k] ℓi ≤ ℓ, as ℓ is the number of non-connector leaves of F1. Let C0 be the set of

connector vertices in T1, . . . , Tk′ , and let C ′ = U ∪ C ∪ C0 ∪
⋃
i∈[k′]\[k] V (Ti) (equivalently, C ′ is the

set obtained from U ∪ C ∪ V (F1) after removing the non-connector vertices of Ti for each i ∈ [k]). As
|C ′| ≤ |F1|+ 4 ≤ n/50, we can (by Lemma 6.2 with κ = |U ∪ C| ≤ 4) greedily extend ϕ to an embedding
of T [C ′] in G[X− \ (X forb ∪Aforb)].

We can then extend ϕ to be defined on each V (Ti), i ∈ [k], as follows. For each i ∈ [k] in turn, write

Xused
i−1 = X− ∩ ϕ

((
C ′ ∪

⋃
j∈[i−1]

V (Tj)

)
\ V (Ti)

)

for the set of vertices in X− already in the image of ϕ (but not used as the image of a connector vertex
of Ti). Then set

X−
i = X− \

(
Xused
i−1 ∪X forb ∪Aforb

)
.

Note that |X−
i | ≥ |X−| − (|F1| + 4) − 420εn − 3 ≥ ( 99

100n − |W−|) − n/50 > 5n/6. Thus, we can

apply Lemma 6.3 to get an embedding of Ti inW
−
i ∪X−

i (agreeing with our embedding ϕ on the connector
vertices) such that at most ℓi

100 vertices in W−
i are not in the image, and all the vertices in W−

i in the
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image have at most one rightward edge, except the leftmost vertex of W−
i , which has at most 2 rightward

edges. This gives an extension of ϕ which covers V (Ti).
After the final one of these step-by-step extensions, we have an extension of ϕ embedding T [U ∪ C ∪

V (F1)] in G[W
−∪(X−\(X forb∪Aforb))] such that at most

∑
i∈[k]

ℓi
100 ≤ ℓ

100 vertices ofW− are uncovered,

and each vertex of W− in the image has at most one rightward edge in the embedded copy, except, for
each i ∈ [k], the leftmost vertex of W−

i , which has at most 2 rightward edges.
We will now use Lemma 6.6 to fill in the gaps left in W−, using the subtree F2. Let W−

0 = W− \
ϕ(V (F1)) be the set of vertices in W− not yet covered, let Xused

k+1 = X− ∩ ϕ((U ∪ V (F1)) \ C) be the
set of points in X− that are already used (apart from the images of connector vertices of F2), and let
X−

0 = X− \ (Xused
k+1 ∪X forb). Note that, by essentially the same calculation as above, |X−

0 | ≥ 5n/6. Write

A−
0 = ϕ(C) ∪Aforb, and note that A−

0 ⊂ X−
0 and |A−

0 | ≥ 3. Moreover, as A−
0 ⊂ A−, we have that H[A−

0 ]
is empty, and there are no edges between W−

0 and A−
0 in H. Also, F2 has ℓ′ ≥ ℓ ≥ |W−

0 | non-connector
leaves. Thus, as C3 holds, all conditions of Lemma 6.6 are satisfied, and we can find an embedding of
F2 in W−

0 ∪ X−
0 , agreeing with ϕ on the set C of connector vertices, such that each point of W−

0 is in
the image and is covered by a leaf. Thus, we get an extension of ϕ embedding T [U ∪ V (F1) ∪ V (F2)] in
G[W− ∪ (X− \X forb)] such that all points in W− are covered (by non-connector vertices), and each such
point has at most one rightward edge in the embedded copy, except, for each i ∈ [k], the leftmost vertex of
W−
i , which has at most two rightward edges. Thus, if we can extend this ϕ to embed T in G[W− ∪X−],

D1 will be satisfied.
It is left, then, to embed the subtrees F3, . . . , Fq appropriately using the remaining vertices of X−. As

∆(H) ≤ n/50 and T [U ∪ V (F1) ∪ V (F2)] has at most 4 connected components, and |F3| ≥ n/7, we can
greedily (by Lemma 6.2) extend ϕ to be an embedding of T [U ∪

⋃
i∈[q]\{3} V (Fi)] in G[W

−∪ (X− \X forb)].

LetXfinal = X−\ϕ(V (T )\V (F3)) be the set of vertices to be covered by F3, i.e., the vertices not yet covered
together with the images of the connector vertices of F3, so that |Xfinal| = |F3| and X forb ⊂ Xfinal. Recall
that |F3| ≥ n/7, |X forb| ≤ 420εn, and T , and hence F3, has at most λn leaves. Hence, by Lemma 6.8,
there is an embedding of F3 in G[Xfinal], agreeing with ϕ on the connector vertices of F3, such that the set
X forb is covered by an independent set of non-connector degree 2 vertices. Thus, we get an extension of ϕ
embedding T in W− ∪X−, satisfying all the required conditions. Indeed, we have already seen that D1
will hold, and D2 follows immediately from the fact that X forb is covered by degree 2 vertices. Finally,
D3 holds, since A \A− is covered by an isolated set of non-connector vertices in F3, and no vertex in W−

is covered by a vertex of F3. □

References
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