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Abstract

An n-vertex graph G is a C-expander if |N(X)| ≥ C|X| for every X ⊆ V (G) with |X| < n/2C
and there is an edge between every two disjoint sets of at least n/2C vertices. We show that there is
some constant C > 0 for which every C-expander is Hamiltonian. In particular, this implies the well
known conjecture of Krivelevich and Sudakov from 2003 on Hamilton cycles in (n, d, λ)-graphs. This
completes a long line of research on the Hamiltonicity of sparse graphs, and has many applications.

1 Introduction

A Hamilton cycle in a graph G is a cycle that contains all the vertices of G. The presence of such a cycle
categorizes G as Hamiltonian. This fundamental concept in Graph Theory has been extensively studied,
for example see [2, 12, 16, 19, 20, 28, 35, 43, 45, 49, 50, 57] and the surveys [33, 51]. Deciding whether a
graph is Hamiltonian or not is an NP-complete problem, and thus it is an important area of research to
find simple conditions which imply Hamiltonicity. One classic example is Dirac’s theorem [22] that any
graph with n ≥ 3 vertices and minimum degree at least n/2 is Hamiltonian. Another beautiful condition,
by Chvátal and Erdős [16], is that if the connectivity of a graph is at least its independence number, then
the graph is Hamiltonian. Other famous Hamiltonicity conditions include those of Chvátal [15], Jackson
[39] and Nash-Williams [55]. Most known conditions for Hamiltonicity, however, require the graph to be
very dense. All the results mentioned above imply that the graph has linear minimum degree, except
the Chvátal-Erdős result, which still implies minimum degree Ω(

√
n). Hence, it is of particular interest

to find Hamiltonicity conditions which also apply to sparse graphs.
A key area of research towards this in the last 50 years has been on Hamiltonicity in sparse random

graphs, and, in particular, which binomial random graphs G(n, p) and which random regular graphs
Gn,d are likely to be Hamiltonian. Pósa [57] was the first to determine the threshold for Hamiltonicity
in G(n, p), introducing the famous rotation-extension technique which quickly become a widely used
tool with innumerable applications (including in this paper). After a refinement of Pósa’s result by
Korshunov [42], in 1983 Bollobás [11] and Komlós and Szemerédi [41] independently showed that, if
p = (log n + log log n + ω(1))/n, then G(n, p) is almost certainly Hamiltonian. As is well-known, when
p = (log n + log log n − ω(1))/n, G(n, p) almost certainly has a vertex with degree 1, and hence no
Hamilton cycle. Random regular graphs, then, may be far sparser yet plausibly Hamiltonian with high
probability, and, after significant focus on the problem, it is now known that Gn,d will almost surely
have a Hamilton cycle for all 3 ≤ d ≤ n− 1. For further details on this, see the work of Cooper, Frieze,
and Reed [18] and Krivelevich, Sudakov, Vu, and Wormald [48].
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The well-established understanding of Hamiltonicity in random graphs presents an important step
towards the search for simple properties of sparse graphs which imply Hamiltonicity. It points to con-
sidering natural ‘pseudorandom’ conditions which are required by a deterministic graph to resemble a
random graph. However, forgoing the randomness of G(n, p) and relying only on these pseudorandom
properties to find a Hamilton cycle presents a significantly firmer challenge, similar to the generalisation
of other problems from random to pseudorandom graphs. Pseudorandom graphs have been systemati-
cally studied since work by Thomason [60, 61] in the 1980’s, a history that can be found in the survey by
Krivelevich and Sudakov [47]. The most studied class of pseudorandom regular graphs was introduced
by Alon and is defined using spectral properties. Recalling that if a graph G is d-regular then its largest
eigenvalue is d, we denote the second largest eigenvalue of G in absolute value by λ(G). Then, a graph
G is an (n, d, λ)-graph if it is d-regular with n vertices and satisfies |λ(G)| ≤ λ.

The first major step towards understanding the Hamiltonicity of such pseudorandom graphs was made
by Krivelevich and Sudakov in 2003 in their influential paper [46]. They showed that if d is sufficiently
larger than λ, then the graph is Hamiltonian. More precisely,

d

λ
≥ 1000 · log n · (log log log n)

(log log n)2
(1)

implies that every (n, d, λ)-graph is Hamiltonian. In the same paper, Krivelevich and Sudakov made the
beautiful conjecture that (1) can be replaced by d

λ ≥ C for some large constant C, as follows.

Conjecture 1.1. There exists C > 0 such that if d
λ ≥ C, then every (n, d, λ)-graph is Hamiltonian.

That is, if the absolute value of every other eigenvalue of a regular graph is at most a small constant
fraction of the largest eigenvalue, then the graph should be Hamiltonian.

Considering the result in [46] in the context of random graphs allows us to benchmark, broadly, this
progress. That is to say, the result of [46] is strong enough to prove the likely Hamiltonicity of the
random regular graph Gn,d when d ≥ log2−o(1) n, while the ultimate goal, Conjecture 1.1, would be
strong enough to prove the likely Hamiltonicity of the random regular graph Gn,d when d is at least
some large constant. Despite a great deal of attention, for example seen by the various relaxations and
generalisations of the problem studied in [4, 13, 35, 47, 44], and many incentivising applications (see
Section 1.1), the bound at (1) established in [46] remained unchallenged for 20 years. Only recently,
Glock, Munhá Correia and Sudakov [32] finally improved this, significantly strengthening the result
of [46] by showing that, for some large constant C > 0, d/λ ≥ C log1/3 n suffices to imply Hamiltonicity.
Moreover, they showed that Conjecture 1.1 holds in the special case where d ≥ nα, for any fixed α, that
is, in this case (1) can be weakened to d/λ ≥ C.

Krivelevich and Sudakov applied their bound at (1) to other problems on Hamiltonicity in sparse
graphs; these and other applications are discussed in Section 1.1. To allow applications to non-regular
graphs, other pseudorandom conditions which imply Hamiltonicity were also studied. Motivated by this,
shortly after Conjecture 1.1 was stated, several papers considered an even stronger conjecture, singling
out the key properties of (n, d, λ)-graphs thought to give some potential for proving Hamiltonicity. To
state this even stronger conjecture, whose variant appeared for example in [13], we need the following
definition.

Definition 1.2. An n-vertex graph G with n ≥ 3 is a C-expander if,

(a) |N(X)| ≥ C|X| for all vertex sets X ⊆ V (G) with |X| < n/2C, and,

(b) there is an edge between any disjoint vertex sets X,Y ⊆ V (G) with |X|, |Y | ≥ n/2C.

Conjecture 1.3. For every sufficiently large C > 0, every C-expander is Hamiltonian.

In 2012, Hefetz, Krivelevich and Szabó [35] made progress on this problem; the precise expansion con-
ditions used in their result can be found in Theorem 1.1 of [35] (in particular weakening (a) in our
Definition 1.2), but imply that every (log1−o(1) n)-expander is Hamiltonian.
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In this paper, we prove Conjecture 1.3, thus completing an extensive line of research on Hamiltonicity
problems.

Theorem 1.4. For every sufficiently large C > 0, every C-expander is Hamiltonian.

This result has a large number of applications, as discussed below. In particular, it is a standard exercise
to show that for every C > 0 there exists a constant C0 such that, if d

λ ≥ C0, then every (n, d, λ)-graph
is a C-expander. Thus, clearly Conjecture 1.1 is implied by Theorem 1.4, giving the following.

Theorem 1.5. There is a constant C > 0 such that if d
λ ≥ C then every (n, d, λ)-graph is Hamiltonian.

To prove Theorem 1.4, we take a very different approach to the previous work on this problem, and
so give a detailed outline of the proof in Section 2.2. We note here that in fact a stronger result than
Theorem 1.4 holds – such graphs are not only Hamiltonian, but Hamilton-connected. Furthermore, the
Hamilton cycle in Theorem 1.5 can be found in polynomial time. We discuss these strengthenings in the
concluding remarks. We finish this section by giving some examples of the applications of Theorems 1.4
and 1.5.

1.1 Applications

Pseudorandom conditions for Hamiltonicity have found a large variety of applications, and Theorems 1.4
and 1.5 immediately improve the bounds required for many such applications. We will discuss here
three applications: Hamiltonicity in random Cayley graphs, Hamiltonicity in well-connected graphs and
Hamilton cycles with few colours in edge-coloured graphs. Further applications, many of them discussed
in [32, 46], can be found in various other fields, ranging from problems in positional games (see, e.g.,
[25, 17, 35, 34]), to questions about finding coverings and packings of Hamilton cycles in random and
pseudorandom graphs (see, e.g., [27, 23, 37]), Hamiltonicity thresholds in different random graph models
(see, e.g., [30, 6, 31]), and for various other problems (see, e.g., [36, 40]), including as far afield as Alon
and Bourgain’s work on additive patterns in multiplicative subgroups [5].

Hamiltonicity in random Cayley graphs. In 1969, Lovász [52] made the following famous conjecture
about the Hamiltonicity of vertex-transitive graphs, which are graphs in which any vertex can be mapped
to any other vertex by an automorphism.

Conjecture 1.6. Every connected vertex-transitive graph contains a Hamilton path, and, except for five
known examples, a Hamilton cycle.

As Cayley graphs are vertex-transitive and none of the five known exceptions in Conjecture 1.6 are
Cayley graphs, Lovász’s conjecture implies the following earlier conjecture, posed in 1959, by Strasser
[58].

Conjecture 1.7. Every connected Cayley graph is Hamiltonian.

Conjecture 1.7 is known to be true when the underlying group is abelian, but the only progress towards
the conjectures in general is a result of Babai [8] that every vertex-transitive n-vertex graph contains a
cycle of length Ω(

√
n) (see [21] for a recent improvement by DeVos) and a result of Christofides, Hladký

and Máthé [14] that every vertex-transitive graph of linear minimum degree contains a Hamilton cycle.
The “random version” of Conjecture 1.7 is a natural relaxation of the original problem. Alon and

Roichman [7] showed that there is a constant C > 0 for which, for any group G, the Cayley graph
generated by a random set S of C log |G| elements, Γ(G,S) say, is almost surely connected. Hence, an
important instance of Conjecture 1.7 is to show that Γ(G,S) is almost surely Hamiltonian. This problem
was also stated as a conjecture by Pak and Radoičić [56]. Theorem 1.5 resolves this conjecture. Indeed,
Alon and Roichman [7] showed that if |S| ≥ C log |G| for some large constant C, then Γ(G,S) is almost
surely an (n, d, λ)-graph with d/λ ≥ K for some large constant K. Thus, we obtain the following.
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Theorem 1.8. Let C be a sufficiently large constant. Let G be a group of order n and d ≥ C log n. If
S ⊆ G is a set of size d chosen uniformly at random, then, with high probability, Γ(G,S) is Hamiltonian.

Hamiltonicity in well-connected graphs. For any function f : Z+ → R, we say that a graph G is
f -connected if |A∩B| ≥ f(min(|A\B|, |B\A|)) for every two subsets A,B\V (G) such that V (G) = A∪B
and there is no edge between A \B and B \ A. In [13], Brandt, Broersma, Diestel, and Kriesell proved
that if f(k) ≥ 2(k+1)2 for every k ∈ N then G is Hamiltonian. This bound was improved to k log k+O(1)
in [35]. Brandt et al. also conjectured that there exists a function f which is linear in k yet ensures
Hamiltonicity. It is not difficult to check that if f(k) = Ck for all k, then an f -connected graph is a
(C/2)-expander. Indeed, given a set X ⊆ V (G) of size at most n/C and its neighbourhood, N(X),
applying the f -connected condition with A = X ∪N(X), B = V (G) \X shows that |N(X)| ≥ C|X|/2,
while, given two disjoint sets X,Y ⊆ V (G) of size at least n/C, setting A = V (G) \X,B = V (G) \ Y
and applying the f -connected condition shows that there is an edge between X,Y . Therefore, Theorem
1.4 implies the conjecture, as follows.

Theorem 1.9. Let C be a sufficiently large constant and let f(k) = Ck for every k ∈ Z+. Then, any
f -connected graph with at least 3 vertices is Hamiltonian.

Hamilton cycles using few colours. An optimally edge-coloured graph G is one which is properly
coloured using the fewest possible number of colours. Akbari, Etesami, Mahini, and Mahmoody [3]
proved that any optimally coloured n-vertex complete graph Kn has a Hamilton cycle containing edges
of at most 8

√
n colours, and conjectured there should always be such a cycle using only O(log n) colours,

which would be best possible up to a multiplicative constant. The bound from [3] on the number of
colours was later improved to O(log3 n) by Balla, Pokrovskiy and Sudakov [10]. Their strategy is to
randomly pick d = O(log3 n) colours and show that the subgraph of these colours is an (n, d, λ)-graph
with high probability, for some appropriate λ, and apply the result from [46] on the Hamiltonicity of
(n, d, λ)-graphs. Using their improved condition, Glock, Munhá Correia and Sudakov [32] showed that
this is possible with only O(log5/3 n) colours using the same method. Applying instead the bound in
Theorem 1.5 immediately proves the conjecture (see [32] for more details).

Theorem 1.10. Every optimally coloured Kn has a Hamilton cycle with O(log n) colours.

2 Preliminaries

2.1 Notation.

Our notation is standard, and we recall here only the most important. A graph G has vertex V (G) and
edge set E(G), and we set |G| = |V (G)|. A linear forest is a graph consisting of a collection of vertex
disjoint paths. We denote by End(F) the set of vertices which are endpoints of paths in F . Two vertices
are at distance ℓ in G if the length of the shortest path between them in G is ℓ. For a subset of vertices
X, we denote by G[X] the induced subgraph of G with vertex set X, by ΓG(X) the set of vertices
adjacent to at least one vertex in X, and by NG(X) the (outer) neighbourhood NG(X) = ΓG(X) \X.
We omit G in the subscript when it is clear from the context which graph we are working with.

2.2 Proof outline

Where G is an n-vertex C-expander, for some large constant C, we wish to find a Hamilton cycle in G.
Before describing our methods, it is instructive to briefly recall the well-known Pósa rotation-extension
approach, and how the approach works on random graphs but not on pseudorandom graphs (for a more
detailed approach than this sketch, see, for example, [11]).

Take a maximal length path P in G, with endvertices x and x0, say. If x has a neighbour y in G on
P whose neighbour on P which is nearest to x, z say, is not equal to x, then the path P can be rotated

4



x0x yzP : x yzF :

Figure 1: On the left, a rotation of an xx0-path P by removing zy and adding
xy to get an xx0-path highlighted in blue. On the right, an example rotation of a
linear forest F to get the 4 paths highlighted in blue, thus removing x from the set
of endvertices and adding z.

by adding xy and removing yz (see Figure 1). This gives us a path with the same length as P , where
one endvertex is x0 and the other is a new endvertex, z. As Pósa showed, if G is a C-expander, then this
can be done iteratively to show that there are at least (say) n/3 different new endvertices v, say those in
Ex0 , so that you can rotate P repeatedly to get an x0v-path Pv with the same length as P . Then, each
of these paths Pv can be rotated without changing the endvertex v, to get at least n/3 new endvertices,
say those in Fv. If G contains any edge in {vu : v ∈ Ex0 , u ∈ Fv}, G has a cycle with length |P |, whence,
as G is connected (a trivial consequence of the expansion condition), if |P | < n then we can find a longer
path than P , a contradiction. Thus, G has a Hamilton cycle. Of course, G may not contain any edge
in {vu : v ∈ Ex0 , u ∈ Fv}. When working with random graphs, however, we can reserve some random
edges and sprinkle them in to find an edge in {vu : v ∈ Ex0 , u ∈ Fv} and hence a longer path than P –
doing this iteratively can get a Hamilton path and thus a Hamilton cycle.

In pseudorandom graphs we cannot do this sprinkling. Thus, the dream strategy would be to find
two large sets A,B with A × B ⊂ {vu : v ∈ Ex0 , u ∈ Fv}, so that we can apply Definition 1.2b) to
find the edge. Indeed, for their result discussed in the introduction, Hefetz, Krivelevich and Szabó [35]
found such sets A,B with |A|, |B| ≥ n/ log1−o(1) n. However, large linear sets A and B (as would be
required for Theorem 1.4) seem too hard to find, essentially because the rotations performed around
each endvertex of the path interfere with each other by rotating sections of the paths.

For our approach, instead of rotating only paths, we perform rotations of disjoint union of paths,
i.e., of linear forests. The details of these rotations can be found in Section 3, but, analogously, we
alter a linear forest and preserve all but one endvertex of these paths (one sample rotation is depicted
in Figure 1), iteratively developing many different possibilities for the endvertex we are changing. The
implementation is much more intricate, but, essentially, if most of the vertices in a linear forest F are
not in long paths then we can take two endvertices x and x′ of different paths, divide the paths in F
into two groups Fx and Fx′ , and perform rotations just within these groups to find new endvertices in
place of x and x′. As these two sets of rotations are done using disjoint linear forests, they can be done
independently, to get sets of new endvertices A and B respectively, such that any edge from A to B will
allow us to connect two paths together, reducing the number of paths in the linear forest by 1 and losing
the endvertices x and x′. This is done in Section 3.

We then wish to apply this iteratively to reduce the number of paths in our linear forest. However
these rotations may create long paths (so that it is hard to find the partition into forests Fx and Fx′).
Thus, we combine this with an argument showing if F has too many long paths then we can replace it
with a linear forest F ′ whose lengths are more evenly spread yet whose endvertices are still a subset of
the endvertices of F . This is also done using rotations, and is carried out in Section 4 (which includes
a sketch of the proof once the necessary definitions have been introduced). Starting with a spanning
linear forest F , we can alternately perform rotations and add an edge (reducing the number of paths by
one) while losing any two endvertices (where, moreover, with some more effort, we can specify these two
endvertices) and then replace the current linear forest with one with more evenly spread path lengths
(so that the first step keeps working). Ultimately, this allows us to reach F ′, a spanning linear forest of
at most n0.8 paths, all of whose endvertices were also endvertices of paths in F .

This argument can be pushed further to end up with fewer paths, but cannot produce a Hamilton
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path let alone a Hamilton cycle. Thus, we need some way to connect the paths we produce into a
Hamilton cycle. We do this by setting aside at the outset an (A,B)-linking structure H in G, where
|A| = |B| and this has the property that H contains a spanning linear forest connecting any desired
partition of pairs a, b with a ∈ A and b ∈ B. More precisely, this is defined as follows.

Definition 2.1. A graph H with disjoint sets A,B ⊆ V (H) of equal size is said to be an (A,B)-linking
structure if for every bijection φ : A → B there exist vertex disjoint paths P1, . . . , P|A| of equal length
such that the following hold.

1. The paths cover all the vertices of H, so that V (H) = V (P1) ∪ . . . ∪ V (P|A|).

2. For each i ∈ [|A|], the path Pi has endpoints a and φ(a) for some a ∈ A.

By using properties of sorting networks, adapting an approach of Hyde, Morrison, Müyesser, and Pavez-
Signé [38], we can find an (A,B)-linking structure H in G with |A| = |B| = n0.9 and |H| = o(n0.95).
Taking then an initial linear forest F which covers G− V (H) \ (A ∪ B) and has every vertex in A ∪ B
among its endvertices, we then apply our methods to reach a linear forest F ′ with the same vertex set
as F , but whose endvertices are exactly those in A∪B (with no isolated vertices in F ′). Then, applying
the linking property of H allows us to connect the paths in F ′′ together into our desired Hamilton cycle
(see Figure 2).

X
BA

Figure 2: Given a linear forest F ′ (depicted in red) which spans G− (X \ (A∪B))
with no isolated vertices and endvertices End(F ′) = A ∪ B, if G[X] is an (A,B)-
linking structure, then the paths in blue can be found disjointly while using all the
vertices in X, thus linking F ′ into a Hamilton cycle.

2.3 Expansion and linear forests

In order to carry out Pósa rotations in linear forests, we need to define the interior of sets with respect to
the linear forest, and a variation of expansion where we only consider the neighbourhood of sets within
the interior of the linear forest. For this, we will use the following definitions.

Definition 2.2. Let G be a graph, and U, V ⊆ V (G) with |U | ≥ 105C. We say that U C-expands into
V (in G) if all X ⊆ U with |X| ≤ |U |/5000C have |NG(X) ∩ V | ≥ C|X|.

Definition 2.3. Let G be a graph and F a linear forest in G. For a set U ⊆ V (F), we define the
interior of U in F to be the set intF (U) := {u ∈ U : NF (u) ⊆ U}. Furthermore, we say that U is an
(F , C)-expander if U C-expands into intF (U).

The following observation is immediate from the previous definition.
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Observation 2.4. For all linear forests F and subsets X,Y ⊆ V (F) it must be that intF (X \ Y ) ≥
intF (X)− 3|Y |.
To carry out rotations within only some of the paths in a linear forest, we will need to find expanding
subgraphs sitting within the interior of these specific paths. Often expander subgraphs can be found
using only Definition 1.2b) by removing a maximal set of vertices which does not expand and is not too
large (see, for example, [53, Section 3.7]). Here, we work similarly, but remove multiple sets Bi,j to find
a collection of 4 sets U ′

i with expansion properties (with respect to some linear forest F) as follows.

Lemma 2.5. Let C ≥ 105 and C ′ = C/5000. Let G be a C-expander containing a linear forest F ,
and let U1, U2, U3, U4 ⊂ V (G) be disjoint sets with |intF (Ui)| ≥ n/500 for each i ∈ [4]. Then, there are
subsets U ′

i ⊆ Ui, i ∈ [4], such that

• for each i, j ∈ [4], U ′
i C ′-expands into intF (U

′
j), and

• |U ′
i | ≥ |Ui| − 2n/C for each i ∈ [4].

In particular, for each i ∈ [4], U ′
i is an (F , C ′)-expander.

Proof. Pick sets Bi,j ⊆ Ui, i, j ∈ [4], satisfying the following:

(1) |Bi,j | ≤ 2n/C for all i, j ∈ [4].

(2)
∣∣∣N(Bi,j) ∩ intF

(
Uj \

⋃4
t=1Bj,t

)∣∣∣ ≤ C ′|Bi,j | for all i, j ∈ [4].

(3)
∑

i,j∈[4] |Bi,j | is as large as possible, subject to (1) and (2).

First note that this is indeed possible, as the sets Bi,j = ∅, i, j ∈ [4], satisfy (1) and (2). Let B :=⋃
i,j∈[4]Bi,j .

Claim 1. For each i, j ∈ [4], |Bi,j | < n/2C.

Proof. Suppose otherwise. Then, the definition of a C-expander implies that Bi,j is adjacent to all but
at most n/2C vertices of V (G) \Bi,j and, thus, to all but at most n/2C vertices in intF (Uj \B). Hence,

|N(Bi,j) ∩ intF (Uj \B)| ≥ |intF (Uj \B)| − n/2C ≥ |intF (Uj)| − 3|B ∩ Uj | − n/2C

≥ |intF (Uj)| − 3 · 16 · 2n/C − n/2C ≥ (10C ′ − 96.5)n/C > C ′|Bi,j |,

contradicting (2). Note that in the previous inequalities we used Observation 2.4, and that |intF (Ui)| ≥
n/500 for each i ∈ [4] and C ′ = C/5000. ⊡

We now show that setting U ′
i := Ui \B for each i ∈ [4] gives the first item of the desired outcome of the

lemma.

Claim 2. For each i, j ∈ [4], Ui \B C ′-expands into intF (Uj \B).

Proof. Suppose for contradiction that there is some i, j ∈ [4] for which there is some X ⊆ Ui \ B with
|N(X) ∩ intF (Uj \B)| < C ′|X| and |X| ≤ n/5000C ′ ≤ n/C. Then, |Bi,j ∪X| ≤ |Bi,j |+ |X| ≤ 2n/C by
Claim 1 and, furthermore,

|N(Bi,j ∪X) ∩ intF (Uj \B)| ≤ |N(Bi,j) ∩ intF (Uj \B)|+ |N(X) ∩ intF (Uj \B)|
≤ C ′|Bi,j |+ C ′|X| = C ′|Bi,j ∪X|.

For each s, t ∈ [4], we have |N(Bs,t) ∩ intF (Ut \ (B ∪X)) | ≤ |N(Bs,t) ∩ intF (Ut \B)| ≤ C ′|Bs,t|. Thus,
replacing Bi,j by Bi,j ∪ X in {Bs,t : s, t ∈ [4]} gives a family of sets satisfying (1) and (2), but with a
larger total number of vertices, contradicting (3). ⊡

Finally, setting U ′
i = Ui\B for each i ∈ [4] satisfies the lemma. Indeed, note that since |B∩Ui| ≤ 4·n/2C

for each i ∈ [4] by Claim 1, we have that |U ′
i | ≥ |Ui| − 2n/C. □
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3 Rotations of linear forests

In this section we give our methods for reducing the number of paths in a spanning linear forest in an
expander, by rotating the linear forest. After defining our rotations and making some simple observations
in Section 3.1, we will prove some intermediary results for these rotations in Section 3.2 before proving
the key result of this section, Lemma 3.7, in Section 3.3.

3.1 Rotation definition and simple observations

We first define rotations of linear forests, which can be compared to rotations of paths by lining up the
paths of the linear forest as in Figure 1. Rotations of linear forests can, however, look quite different
depending on whether the edge used to rotate is between two different paths, or between vertices in
the same path, and on whether these paths are isolated vertices, or not; the different possiblities are
illustrated in Figure 3.

Definition 3.1. Let P1 and P2 be two (possibly equal) paths of a linear forest F in a graph G. Let x
be an endpoint of P1 and let z be a neighbour (in G) of x in P2. Let y be a vertex adjacent to z in P2 if
|P2| ≥ 1 (if P1 = P2, then let y be the vertex closer to x in P1, where we may have y = x), and let y = z
otherwise. Then, the linear forest F ′ obtained from F by removing the edge yz (if y ̸= z) and adding
the edge xz ∈ E(G) is called a 1-rotation of F in G.

We call the vertex x the old endpoint, y the new endpoint (indeed, note that y ∈ End(F ′)), and z the
pivot. The edge zy is called the broken edge of the rotation. We will refer to the process of removing yz
(if it exists) and adding xz to F as a 1-rotation, as well as the resulting linear forest F ′, for example,
saying that, by performing a 1-rotation on F with old endpoint x, pivot z and new endpoint y, we get
the 1-rotation F ′ of F .

x

P1 P2

b)

z
y

x

P1 P2

d)

z
y

x

P1 P2

c)

y = z

a)

x

P1 = P2

z
y

End(F ′) = (End(F) \ {x}) ∪ {y} End(F ′) = End(F) \ {x} End(F ′) = End(F) ∪ {y}

Figure 3: Different 1-rotations of F = {P1, P2} to get F ′ by removing the edge
yz (if it exists) and adding the dashed edge xz, with the new paths highlighted in
blue and the change in endvertices given underneath. In a) P1 = P2, and in b)–d)
P1 ̸= P2. In b) neither x or z are isolated, in c) y = z is isolated but not x and in
d) x is isolated but not z.

As in Pósa’s original rotation-extension method on paths, we will repeatedly rotate linear forests to find
many different new endvertices. For this, we will now define a k-rotation.

Definition 3.2. A k-rotation of a forest F in a graph G is any forest which is obtained by a sequence
of k consecutive 1-rotations starting with F in G, where the old endpoint of each 1-rotation is the new
endpoint of the previous one and the pivot is at least at distance 3 in F from the old endpoint of the
first 1-rotation and the pivot in the i-th rotation for all i < k (and thus the broken edge belongs to F
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as well). We say that the k-rotation has old endpoint x, or starts at x, and new endpoint y if x is the
old endpoint of the first 1-rotation and y is the new endpoint of the last 1-rotation.

For a set U ⊆ V (G) we denote by Ek
U (v,F) the set of new endpoints obtained by i-rotations of

F starting from v (i.e., with old endpoint v) with i ≤ k, such that the pivots of each 1-rotation are
contained in intF (U), so that each broken edge belongs to F [U ]. We call such rotations (U, i)-rotations,
and where i is not specified call them U -rotations.

Next we prove some simple results on k-rotations.

Lemma 3.3. Let F ′ be a (U, k)-rotation of F , with k ≥ 1, starting with vertex v and let u be the new
endpoint. Then, the following holds.

(A) If Ek
U (v,F) ⊆ S ⊆ Ek+1

U (v,F), then the set of pivots used in the 1-rotations to get new endpoints
in S is of size at most 2|S|.

Furthermore, if F has no isolated vertices, then the following also hold.

(B) The only possible isolated vertex in F ′ is u, which furthermore can only be isolated in F ′ if u ∈
End(F).

(C) End(F ′) = (End(F) ∪ {u}) \ {v}.

Proof. For (A) note that every pivot used for a i-rotation in S is adjacent to a vertex in S in the forest
F , or is equal to a vertex in S in the case this pivot is isolated in F . This is because all broken edges in
a k-rotation F ′ are always edges in the initial forest F . As the maximum degree of the linear forest F
is 2, there are at most 2|S| pivots used.

We prove part (B) by induction on k and under the weaker assumption that F has no isolated vertices
except for, possibly, v. For k = 1, let z be the pivot of the rotation, and note that v is adjacent to z
in F ′, hence it is not isolated in F ′. Since F contains no other isolated vertices, note that the only
possible isolated vertices in F ′ are z and u, as zu is the only deleted edge in F . But z is adjacent to v
in F ′, so only u can be isolated in F , and this happens if and only if it did not have any other adjacent
vertex in F besides z, i.e. if and only if it is an endpoint of F . Suppose now the statement holds for
k − 1 ≥ 1. Consider a k-rotation Fk of F with old endpoint v and new endpoint u. By definition of
k-rotation, we get a (k − 1)-rotation Fk−1 of F with old endpoint v and new endpoint w, such that
Fk is a 1-rotation of Fk−1 with old endpoint w and new endpoint u and a pivot z. By the induction
hypothesis, the only possible isolated vertex in Fk−1 is w. Applying the induction hypothesis to Fk−1

and then to its 1-rotation Fk implies that u is the only possible isolated vertex in Fk, and that this is
the case if and only if u is an endpoint of Fk−1. As z is at distance at most 3 from all the previous
pivots (used for Fk−1), we know that u is an endpoint of Fk−1 if and only if it is an endpoint of F , which
completes this part of the proof.

For part (C), we also proceed by induction. Let k = 1 and let z be the pivot of the 1-rotation F ′. If
z is the neighbouring vertex of v in F , the statement trivially holds as F = F ′ and u = v. Otherwise,
note that v has precisely one neighbour in F , while it has another neighbour z in F ′, so v is not an
endpoint in F ′. On the other hand, the edge zu is removed from F , so u has at most one neighbour
in F ′, so it is an endpoint. Assume the statement holds for k − 1 ≥ 1. Consider a k-rotation Fk of
F with old endpoint v and new endpoint u. As before, we get a (k − 1)-rotation Fk−1 of F with old
endpoint v, new endpoint w, such that Fk is a 1-rotation of Fk−1 with old endpoint w and new endpoint
u and a pivot z. By the induction hypothesis, we know that End(Fk−1) = (End(F) ∪ {w}) \ {v}.
We distinguish two cases. If w is not an endpoint of F , then by (B) it is not isolated in Fk−1, and
hence by applying the induction hypothesis to the 1-rotation Fk of Fk−1, we see that End(Fk) =
(End(Fk−1) ∪ {u}) \ {w} = (End(F) ∪ {u}) \ {v}. In the second case, when w is an endpoint of F ,
again by (B) we have that w is the only isolated vertex in Fk−1. Thus, the 1-rotation Fk of Fk−1 still
contains w as an endpoint, while similarly to the case k = 1 the only new created endpoint is u. Hence
End(Fk) = ((End(F) ∪ {w}) \ {v}) ∪ {u} = (End(F) \ {v}) ∪ {u} as required.
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3.2 Intermediate results on rotations

As mentioned in the proof sketch, a key part of Pósa’s rotation-extension technique is to show that
performing rotations iteratively in an expander creates a linear-sized set of potential endvertices. We
now show the corresponding result for our linear forest rotations.

Lemma 3.4. Let C > 100 and let F be a linear forest in a graph G, v an endpoint of F , and U an
(F , C)-expander containing v. Then |Ek

U (v,F)| ≥ |U |/105 for k = 2 logC n.

Proof. Suppose, to the contrary, that |Ek
U (v,F)| < |U |/105. For each i ∈ [k− 1], we have |Ei

U (v,F)| ≤
|Ek

U (v,F)| < |U |/105. Now, for each i ∈ [k − 1], and each pair (x, y) with x ∈ Ei
U (v,F), y ∈ intF (U)

and xy ∈ E(G), y is a good candidate to use as a pivot for a 1-rotation of a linear forest which has x
as an endvertex, created by rotating F up to k − 1 times. However, by our definition, we need to have
that this pivot is at least at distance 3 in F from all the previous pivots in the same rotations. In total,
though, as we have at most 2|Ei

U (v,F)| pivots used by part (A) of Lemma 3.3, this will rule out at most
10|Ei

U (v,F)| potential pivots y. Finally, we note that two pivots in N(Ei
U (v,F))∩ intF (U) may possibly

correspond to the same new endpoint. Therefore, we have

|Ei+1
U (v,F)| ≥

|N(Ei
U (v,F)) ∩ intF (U)| − 10|Ei

U (v,F)|
2

. (2)

If |Ei
U (v,F)| ≥ |U |/5000C, then, by considering a subset S ⊆ Ei

U (v,F) of size |U |/5000C, we have that
since U is an (F , C)-expander, |N(S) ∩ intF (U)| ≥ C|S| and so, |N(Ei

U (v,F)) ∩ intF (U)| ≥ C|S| −
|Ei

U (v,F)| ≥ |U |/5000 − |U |/105 ≥ 9|U |/105 + 10|Ei
U (v,F)|, where we are using that |Ei

U (v,F)| ≤
|U |/105. Then, by (2), |Ei+1

U (v,F)| ≥ |U |/105, a contradiction. Therefore, |Ei
U (v,F)| ≤ |U |/5000C,

whence we have |N(Ei
U (v,F))∩ intF (U)| ≥ C|Ei

U (v,F)| as U is an (F , C)-expander, so that (2) implies

|Ei+1
U (v,F)| ≥

C|Ei
U (v,F)|
3

.

As this holds for every 0 ≤ i ≤ k − 1, we have |Ek
U (v,F)| ≥ (C/3)k > n, a contradiction.

The next lemma essentially says that if a linear forest F in an n-vertex expander can be split into two
so that rotations can be done on each subcollection of paths independently starting from two vertices x
and y respectively, then we can alter O(log n) edges in F to decrease the number of paths by 1 while
losing exactly x and y as endvertices, as follows.

Lemma 3.5. Let C > C ′ > 1010 and let G be an n-vertex C-expander and F a spanning linear forest in
G. Suppose F has no isolated vertices and let x, y be two endpoints of F . Let X,Y be (F , C ′)-expanders
of size at least 0.0001n such that x ∈ X, y ∈ Y , no path in F intersects both X and Y , and there is no
vertex in (X \{x})∪ (Y \{y}) which is an endpoint in F . Then, there is a spanning linear forest F ′ in G
for which |E(F)∆E(F ′)| = O(log n), End(F ′) = End(F) \ {x, y}, and F ′ contains no isolated vertices.

Proof. Let FX be the collection of paths in F which intersect X and FY be the collection of paths in
F which intersect Y , so that FX ∩FY = ∅. By Lemma 3.4, there exists a subset X ′ ⊆ X of size at least
|X|/105 > n/C such that for all x′ ∈ X ′ there is an X-rotation Fx′ of F with new endpoint x′. Note
crucially that since Fx′ is an X-rotation, we have that FY ⊆ Fx′ . Similarly, there is a subset Y ′ ⊆ Y of
size at least |Y |/105 > n/C such that for all y′ ∈ Y ′ there is a Y -rotation Fy′ of F with new endpoint
y′. Let x′y′ be an edge between X ′ and Y ′, which exists as G is a C-expander.

Now, the forest Fx′ is such that FY ⊆ Fx′ . Therefore, any Y -rotation of F is identical when restricted
to Y to any Y -rotation of Fx′ with the same change in endpoints. Therefore, since y′ is a new endpoint
created by a Y -rotation Fy′ of F , there is then a linear forest Fx′,y′ which is obtained by performing the
X-rotation and Y -rotation consecutively. Note that Fx′,y′ has no isolated vertices by Lemma 3.3 (B).
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In particular, then, x′, y′ are not isolated in Fx′,y′ and so adding the edge x′y′ to Fx′,y′ we obtain the
forest F ′ which has neither x′ or y′ as endvertices. More precisely, End(F ′) = End(F) \ {x, y}. Since
Fx and Fy are O(log n)-rotations, we conclude that F and F ′ differ in at most O(log n) edges, i.e.,
|E(F)∆E(F ′)| = O(log n).

Unfortunately, even when we can split our linear forest into two subcollections of paths with many
vertices, we cannot guarantee that we can rotate within them independently (as for Lemma 3.5) from
two arbitrary endvertices x and y. Therefore, in our proof, we will first need to rotate in the whole linear
forest to replace x and y by vertices for which we can do this. This is carried out in Section 3.3, using
the following lemma.

Lemma 3.6. Let C ≥ C ′ > 106 and let G be an n-vertex C-expander which contains a linear forest F
with no isolated vertices. Let U, V ⊆ V (G) be two subsets of vertices. Let u ∈ U be an endpoint of F and
U an (F , C ′)-expander with |U | ≥ 105n/C. Let V satisfy |intF (V )| ≥ 11n/C and contain no endpoints
of F . Then, there is an (U ∪ V,O(log n))-rotation F ′ of F and v ∈ V such that End (F ′) = (End (F) \
{u}) ∪ {v}. Furthermore, we have that F ′[V \ v] = F [V \ v], all the edges broken in the successive
1-rotations except the last one are not in F [V ], and F ′ has no isolated vertices.

Proof. First apply Lemma 3.4 to see that |E2 logC′ n
U (u,F)| ≥ |U |/105 ≥ n/C. We consider two cases.

Case 1: E
2 logC′ n
U (u,F) ∩ V ̸= ∅.

Let k ≤ 2 logC′ n be the smallest integer such that Ek
U (u,F) ∩ V ̸= ∅ and v ∈ Ek

U (u,F) ∩ V . Let F ′ be
the rotation corresponding to the endpoint v. Then F ′ is a O(log n)-rotation of F . Furthermore, by the
minimality of k, none of the new endpoints, except for v, in the successive 1-rotations creating F ′ belong
to V . Hence, none of the broken edges in these successive rotations are contained in V . Therefore, the
only difference between F ′[V ] and F [V ] occurs in the last 1-rotation, with a broken edge incident to v.
Hence, F ′[V \ v] = F [V \ v], as desired. It is easy to check that F ′ has no isolated vertices. Indeed,
note that by Lemma 3.3 (B), the only candidate is possibly v, but since V has no endpoints in F , by
Lemma 3.3 (B) we are done.

Case 2: E
2 logC′ n
U (u,F) ∩ V = ∅.

Let k ≤ 2 logC′ n be the smallest integer such that |Ek
U (u,F)| ≥ n/C, and let Ek−1

U (u,F) ⊆ X ⊆
Ek

U (u,F) satisfy |X| = n/C. Let P be the set consisting of u and all the pivots used in 1-rotations
creating endpoints in X and note that by part (A) of Lemma 3.3 we have |P | ≤ 2|X|+1. Let P 2 be set
of vertices which are at distance at most 2 from P in the forest F . Now we have that |intF (V ) \ P 2| ≥
11n/C − 5|P | ≥ 11n/C − 10n/C − 5 ≥ n/2C. Since G is a C-expander, there is an edge xy with x ∈ X
and y ∈ intF (V ) \P 2. Consider the (U, i)-rotation of F for which x is the last new endpoint. Combined
with the 1-rotation with old endpoint x, pivot y and a new endpoint v ∈ V , we obtain a new rotation
which satisfies two properties: its last new endpoint is in V , and all the previous pivots except maybe
the last one are in U . Denote this rotation by F ′.

The above argument shows that the obtained i-rotation F ′ satisfies i ≤ 2 logC′ n + 1 < log n. Note
that, by construction, all the pivots used to obtain F ′ are at least at distance 3 in F . Also note that
since F ′ is a combination of a (U, i)-rotation and another 1-rotation, such that the (U, i)-rotation uses
no new endpoints in V , the only edge which is possibly broken in F [V ] is in the last 1-rotation when
the edge yv is broken. This immediately implies F ′[V \ v] = F [V \ v]. Finally, again by Lemma 3.3 (B)
there are no isolated vertices in F ′.

3.3 The main rotation lemma

The next lemma is one of our key results. As it is the most technical part of our proof, we will now
outline its proof briefly. Given an n-vertex C-expander G containing a spanning linear forest, with most
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of its vertices on paths that are not too long, in which x and y are endvertices, we wish to perform
rotations on F until we have enough vertices potentially replacing x and y as endpoints that can use
Definition 1.2b) to connect two paths so that we end up with one fewer path while losing exactly x and
y as endpoints (see Lemma 3.7). Using Lemma 3.6, we can perform rotations on F to replace x and y
each with linearly many different new endpoints. However, we want to do this independently, so that
Definition 1.2b) can be applied. We manage this in two stages. First, we use rotations to replace x and
y by two new endpoints x1 and x2 so that we can use rotations on two different sets of vertices (U1 and
U2 respectively) to change x1 or to change x2. We then use this property to replace x1 and x2 by two
new endpoints x3 and x4, so that these endpoints can be rotated independently by using vertices on two
different sets of paths (by rotating with vertex sets U3 and U4, whose vertices never appear together on
the same path). The two sets of endpoints created by doing this will have some edge between them by
Definition 1.2b), allowing us to join two paths together. However, this might create a cycle if x3 and x4
were endpoints of the same path. Therefore, instead, we first rotate to replace x1 by some other vertex
h (lying in a fifth set Uhop) before performing one extra rotation to change h to a new endpoint, x3,
where this brief ‘hop’ allows us to ensure that x3 is then not an endpoint of the same path as x4.

Lemma 3.7. Let C > 1010, let G be an n-vertex C-expander and let F be a spanning linear forest in G
with no isolated vertices and such that at least 0.1n vertices of G belong to paths in F of lengths between
100 and

√
n. Let also x, y ∈ End(F). Then, there is a spanning linear forest F ′ in G with no isolated

vertices such that |E(F)∆E(F ′)| = O(log n) and End(F ′) = End(F) \ {x, y}.

Proof. Let P1, . . . , Pt be the paths in F of length between 100 and
√
n, so that

∑
i∈[t] |Pi| ≥ 0.1n. Let

H := {P ′
1, . . . , P

′
t}, such that each path P ′

i is obtained from Pi by removing the two endpoints of the
path Pi, so that now

∑
i∈[t] |P ′

i | ≥ 0.1n(1 − 1
50) ≥ 0.098n. Take a partition of this linear forest H into

H1,H2,H3,H4,Hhop, each of which span at least 0.015n vertices. Hence, the interior of each of these
forests (since they consist of paths of length at least 98) is at least of size 96

98 · 0.015n ≥ 0.01n.
Let C ′ = C/5000. By Lemma 2.5, we can find subsets U1 ⊆ V (H1) and U2 ⊆ V (H2), where Ui

is such that it C ′-expands into intH(Uj) ⊆ intF (Uj) for all i, j ∈ {1, 2}. In particular, U1 and U2 are
(F , C ′)-expanders. Furthermore, every vertex in U1 has at least C ′ > 100 neighbours in intF (U2), and
every vertex in U2 has at least C ′ > 100 neighbours in intF (U1). We also can get from Lemma 2.5 that,
for each i ∈ {1, 2}, it holds that |intF (Ui)| ≥ |V (Hi)| − 2n/C ≥ 0.01n− 2n/C ≥ 0.005n.

We now use Lemma 3.6 to prove that the following holds.

Claim 3. There is a linear forest F ′ and x1 ∈ U1, x2 ∈ U2 such that End(F ′) = (End(F) \ {x, y}) ∪
{x1, x2}, |E (F ′[U1 ∪ U2])∆E (F [U1 ∪ U2]) | ≤ 20 and |E(F)∆E(F ′)| = O(log n). Furthermore, F ′ has
no isolated vertices.

Proof. First, apply Lemma 3.6 with u := x, U := V (G), and V := U1 ∪ U2 to give a (V (G), O(log n))-
rotation F1 of F , where x is replaced by a new endpoint x1 ∈ U1 ∪ U2, so that End(F1) = (End(F) \
{x})∪{x1}, and F [(U1∪U2)\x1] = F1[(U1∪U2)\x1]. Furthermore, F1 has no isolated vertices. Without
loss of generality, let x1 ∈ U1.

Now, we apply again Lemma 3.6 to F1 with u := y, U := V (G) \ T, and V := (U1 ∪ U2) \ T , where
T is the set of vertices which are at most at distance 2 from x1 in F , so that |T | ≤ 5. Thus, we
get a O(log n)-rotation F2 of F1 where y is replaced by a new endpoint w ∈ (U1 ∪ U2) \ T , so that
End(F2) = (End(F) \ {x, y})∪{x1, w} and F1[V \ {w}] = F2[V \ {w}]. Furthermore, since the endpoint
is not in T , it is different to x1. Finally, F2 has no isolated vertices.

Now, in the case that w ∈ U2, the linear forest F ′ := F2 is as desired with x2 := w and x1 since
F [(U1 ∪U2) \ ({x1, w} ∪ T )] = F2[(U1 ∪U2) \ ({x1, w} ∪ T )]. Otherwise, if w ∈ U1, then, by the previous
condition that every vertex in U1 has at least 100 neighbours in intF (U2), there is an edge wz for some z ∈
intF (U2)∩intF2(U2). We can then use this edge to create a 1-rotation F ′ of F2, replacing the old endpoint
w with a new endpoint x2 ∈ U2 \{x1}, that is, End(F2) = (End(F)\{x, y})∪{x1, x2}. The linear forest
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F ′ is then as desired since, in particular, F [(U1 ∪U2) \ ({w, z, x2}∪T )] = F ′[(U1 ∪U2) \ ({w, z, x2}∪T )]
and again, by Lemma 3.3 (B), since F2 has no isolated vertices and x2 is not an endpoint of F , and so,
also not one of F2 given that End(F2) = (End(F) \ {x, y}) ∪ {x1, w}, F ′ has no isolated vertices.

Finally, we have |E (F ′[U1 ∪ U2])∆E (F [U1 ∪ U2]) | ≤ 20, since these linear forests differ in at most 8
vertices, either T ∪ {x1, w} in the first case, or T ∪ {w, z, x2} in the second. ⊡

Let us make two remarks. First, the future rotations of F ′ that we will perform in the rest of the proof
will all be V (H)-rotations, and, therefore, none of those linear forests will contain any isolated vertices;
this is important since there will be applications of Lemma 3.3, Lemma 3.5 and Lemma 3.6 throughout
the rest of the proof. Secondly, note that to obtain F ′ we rearranged some paths, hence, it is entirely
possible that, in F ′, vertices in U1 live in the same paths as vertices in U2 (although this was not the
case in F). Thus, we cannot yet apply Lemma 3.5 to the new endpoints x1, x2.

Now, let H′
3 ⊆ H3,H′

4 ⊆ H4, and H′
hop ⊆ Hhop, be the linear sub-forests of H3,H4,Hhop consisting of

paths P ′
i such that Pi ∈ F ∩ F ′. By the previous claim, we have that |E(F)∆E(F ′)| = O(log n). Since

each path in H has size at most
√
n = o(n/ log n), we must then have that |V (H′

j)| ≥ 0.009n for each
j ∈ {3, 4, hop}. By Lemma 2.5, there exist an (H′

3, C
′)-expander U3, an (H′

4, C
′)-expander U4, and an

(H′
hop, C

′)-expander U5, each of size at least 0.009n− n/2C ≥ 0.005n. As before, since we also can get
that each Ui is such that it C ′-expands into intF ′(Uj) (for all i, j ∈ {3, 4, hop}), we can have that every
vertex in Uhop has at least C ′ ≥ 1 neighbours in intF ′(U3). Also, note the following crucial observation.

Claim 4. U1 and U2 are (F ′, C ′ − 40)-expanders.

Indeed, this is easy to see since the claim before implies that |E (F ′[U1 ∪ U2])∆E (F [U1 ∪ U2]) | ≤ 20.
We now apply Lemma 3.6 again. First, we apply the lemma to F ′ with x := x1, U := U1, and V := Uhop

(recall that Uhop does not contain endpoints of F , and so also of F ′), which gives a (U1∪Uhop, O(log n))-
rotation F ′

1 of F ′ in which the endpoint x1 is replaced by an endpoint h ∈ Uhop. Moreover, we have that
F ′
1[Uhop \ h] = F ′[Uhop \ h] and F ′

1 is a (U1 ∪ Uhop)-rotation, so that all broken edges in the successive
rotations belong to U1 ∪ Uhop and, thus, U2 is still an (F ′

1, C
′ − 40)-expander, intF ′

1
(U4) = intF (U4) is

of size at least 0.001n, and F ′
1[U4] = F ′[U4]. Furthermore, the lemma implies that no vertex of U4 is

an endpoint of F ′
1. Therefore, we can apply again Lemma 3.6 to F ′

1, now with x := x2, U := U2, and
V := U4. This gives a (U2 ∪ U4, O(log n))-rotation F ′

2 with a new endpoint x4 ∈ U4 replacing x2.
Now, note that for all paths P ′

i ∈ H′
3, we have that Pi ∈ F ′

2. Note also that since the previous
rotations forming F ′

1 and F ′
2 are such that all the broken edges in the successive 1-rotations apart from

the last ones are not in F [Uhop] or F [U4], we have that the path in F ′
2 containing h is a sub-path of a

path Pi ∈ F such that P ′
i is contained in H′

hop and the path containing x4 is a sub-path of a path Pj ∈ F
such that P ′

j is contained in H′
4. Thus, h, x4 are endpoints of different paths in F ′

2. Now, by assumption,
h ∈ Uhop has a neighbour in intF ′(U3) = intF ′

2
(U3). This implies that we can perform a 1-rotation on F ′

2

to get F ′
3 and a vertex x3 ∈ U3 with End(F ′

3) = (End(F ′
2) \ {h}) ∪ {x3} = (End(F) \ {x, y}) ∪ {x3, x4}.

Now, since h, x4 were endpoints of different paths in F ′
2, it is easy to check that there can be no path

of F ′
3 which intersects both U3 and U4. Since U3 and U4 are still (F ′

3, C
′− 2)-expanders and have size at

least 0.005n, Lemma 3.5 implies the existence of a linear forest F ′
4 so that End(F ′

4) = End(F) \ {x, y}.
Moreover, since every rotation performed was an O(log n)-rotation, we have that |E(F)∆E(F ′

4)| =
O(log n), as desired. □

4 Linear forests with few paths

The goal of this section is to find a spanning linear forest in an expander with a relatively small number
of paths. That is, we will prove the following result.

Lemma 4.1. Let G be an n-vertex C-expander for C > 1010. Then, it contains a spanning linear forest
with at most n0.8 paths and no isolated vertices.
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We will find the required linear forest for Lemma 4.1 by taking a minimal such linear forest under a
certain ordering, which is based on the lengths of the paths in the forest. In this section we will define
the length of a path to be the number of vertices it has (which makes calculations a bit easier).

Definition 4.2. Given a linear forest F and integers a, b, we define SF (a, b) to be the set of vertices in
the collection of paths in F of length at least a and at most b. For each v ∈ V (F), we denote by segF (v)
the path in F which contains v. We omit F in the subscript when it is clear from the context.

Definition 4.3. Let <lex be the ordering on the family of all linear forests, where for any two linear
forests F1 and F2 we have F1 <lex F2 if

• F1 has fewer paths than F2, or

• F1 and F2 have the same number of paths and the vector of path lengths of F1 in decreasing order
is lexicographically smaller than that of F2.

To illustrate this definition, for example, if F1 consists of paths of length 8, 5, 3, 2, 2 and F2 consists of
paths of length 8, 5, 4, 2, 1, then we have F1 <lex F2 as they both have 5 paths but (8, 5, 3, 2, 2) is smaller
than (8, 5, 4, 2, 1) in the lexicographic ordering.

As discussed in Section 3, it will be convenient to use spanning linear forests with no isolated vertices.
We will be able to apply the following lemma to show that a <lex-minimal spanning linear forest in an
expander has no isolated vertices.

Lemma 4.4. Let F be a <lex-minimal spanning linear forest in an n-vertex C-expander G for some
C > 106. Suppose that F contains an isolated vertex v, and F ′ is a k-rotation of F with old endpoint v.
Then F ′ is <lex-minimal, the new endpoint u of F ′ is isolated in F ′, and End(F ′) = End(F).

Proof. We prove this by induction on k. For the initial case, “k = 1”, let w be the pivot of the 1-
rotation, and let P be the path of F containing w. Let P1 and P2 be the two (possibly empty) subpaths
of P−w, labelled so that |P1| ≤ |P2|. If |P2| ≥ 2, then replacing {v} and P in F with the paths P1wv and
P2 gives a linear forest F ′ with F ′ <lex F , which is a contradiction. Similarly, if |P1| = 0, then replacing
{v} and P in F with the path P2wv gives a linear forest F ′ with F ′ <lex F , which is a contradiction.
Thus we can suppose that P1, P2 are both single vertices, i.e. that P = xwy for some x, y. Then, a
1-rotation with pivot w replaces the paths P and {v} with either the paths vwx, y or the paths vwy, x.
In both cases the new linear forest has the same path lengths as F did (and so stays <lex-minimal), the
same set of endpoints as F , and has new endpoint either x or y, which is now isolated.

For the induction step, consider a k-rotation Fk of F with old endpoint v. By the definition of a
k-rotation, we get a (k − 1)-rotation Fk−1 of F with old endpoint v, new endpoint u, such that Fk is a
1-rotation of Fk−1 with old endpoint u. By induction we get that Fk−1 is <lex-minimal, has u isolated,
and has End(Fk−1) = End(F). By the “k = 1” case, we have that Fk is <lex-minimal, its new endpoint
is isolated, and End(Fk) = End(Fk−1) = End(F).

We now sketch out the proof of Lemma 4.1. Given a <lex-minimal spanning linear forest F in a C-
expander G, with C large, we will first observe that there cannot be an edge in G from the end of a path
in F to a path in F which is more than five times as long (see Lemma 4.5). We will then argue, for
any i ≥ 0, that this implies that if we perform a sequence of i 1-rotations starting with an endpoint of a
smallest path in a <lex-minimal spanning linear forest F , then the new endvertex must be in a path at
most 6i times as long as a smallest path (see Lemma 4.6). However, Lemma 3.4 implies that within at
most k := 2 logC n rotations we reach at least n/105 new endpoints, which then collectively have edges
to all but at most n/2C vertices in the graph by the definition of a C-expander. After using Lemma 4.4
and assuming, for sake of contradiction that F has more than n0.8 paths, we can deduce that F has no
isolated vertices and also note that F must have at most 100n/C vertices contained in paths of length
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less than 100, so that the <lex-minimality of F then implies by Lemma 3.7 that at least 0.8n of the
vertices of G are in paths in F with more than

√
n vertices. In combination, this all implies that the

shortest path in F must have at least 6−(k+1)√n vertices, so that F contains at most
√
n · 6(k+1) ≤ n0.8

paths, a contradiction, as required.
First, then, we show endvertices of paths cannot have an edge to much longer paths in a <lex-minimal

spanning linear forest, in the following stronger form.

Lemma 4.5. Let t ≥ t′ > 0 be integers. Let F be a minimal spanning linear forest in G with respect to
<lex, with paths of decreasing lengths ℓ1, . . . , ℓt. Let F ′ be another forest with paths of lengths s1, . . . , st
in decreasing order, where the first t′ − 1 lengths are the same as in F , i.e. ℓi = si for each i < t′. Let x
be an endpoint in F ′ in a path of length at most st′. Then, NG(x) ⊆ SF ′(0, 5st′).

Proof. Suppose for contradiction there is a path Pi (of length si) in F ′ with si ≤ st′ , whose endpoint x
has a neighbour y in another path Pj of length at least 5st′ ≥ 5|Pi| ≥ 5. Then, we can obtain a new forest
F ′′ from F ′ such that F ′′ <lex F , as follows. We replace the paths Pi and Pj in F ′ by two new paths.
The first new path is the concatenation of Pi, the edge xy and the shorter subpath of Pj which starts at y
and ends in an endpoint of Pj . The other path is the remaining part of Pj . Note that both of those paths
are shorter than Pj as the first path is of length at most |Pi| + 1 + |Pj |/2 ≤ |Pj |/5 + 1 + |Pj |/2 < |Pj |,
and the second one is a strict subpath of Pj . This contradicts the <lex-minimality of F .

Next, we iterate Lemma 4.5, showing that repeatedly applying 1-rotations cannot create a new endpoint
with a neighbour in a considerably longer path than the path containing the old endpoint, as follows.

Lemma 4.6. Let F be a <lex-minimal spanning linear forest of G. Let v be an endpoint of a path in F .
Then N(Ek

G(v,F)) ⊆ SF (0, 6
k+1|segF (v)|) for every positive integer k.

Proof. Let Fk be a k-rotation of F and let uk be its new endpoint and v = u0 its old endpoint. Consider
the linear forests F = F0,F1,F2, . . . ,Fk, where Fi is a 1-rotation of Fi−1, and where the new endpoint
of Fi is ui, the old endpoint is ui−1, and the pivot is zi. We show that the following two conditions hold
for every i ≥ 0:

(1) N(ui) ⊆ SF (0, 6
i+1|segF (v)|)

(2) The paths of length > 6i+1|segF (v)| are the same in F and Fi+1.

Hence, the particular case i = k proves the statement of the lemma. For the base case i = 0, let
ℓ1, . . . , ℓt be the lengths of the paths in F in decreasing order. Let t′ be such that v is in a path of
length ℓt′ . Note that by Lemma 4.5 applied to F = F ′ with t′, we know that v only has neighbours in
SF (0, 5|segF (v)|) ⊆ SF (0, 6|segF (v)|), as required for part (1). In the resulting linear forest F1 only two
paths have changed compared to F – one of length |segF (v)| and one of length at most 5|segF (v)|, and
so we obtained two new paths of length at most 6|segF (v)| each. Hence, all the paths in F1 of length
larger than 6|segF (v)| are the same as in F , proving part (2).

Suppose now the claim holds for all j < i, and let us prove it for i. Note that the first condition
implies that all the pivots zj for j ≤ i are in SF (0, 6

j |segF (v)|), as each zj lives in N(uj−1). In
particular, zi ∈ SF (0, 6

i|segF (v)|), meaning that ui ∈ SF (0, 6
i|segF (v)|), because either zi = ui or

the broken edge ziui is in F , so ui and zi are on the same path in F . Additionally, note that by
the induction hypothesis (part (2)) all the paths of length larger than 6i|segF (v)| are the same in F
and Fi. Hence, since ui ∈ SF (0, 6

i|segF (v)|), then ui ∈ SFi(0, 6
i|segF (v)|). Therefore we can apply

Lemma 4.5 to F ,Fi and ui to get that N(ui) ⊆ SFi(0, 5|segFi
(ui)|), which by the previous discussion

gives that N(ui) ⊆ SFi(0, 5 · 6i|segF (v)|). Now, we show that (2) holds. Note that, in order to get
Fi+1, in Fi the path which contains ui and a path which contains a vertex in N(ui) are replaced
with two paths on the same set of vertices. Thus the two newly obtained paths are of length at most
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6i|segF (v)|+5 · 6i|segF (v)| ≤ 6i+1|segF (v)|. As the paths of length > 6i|segF (v)| are the same in F and
Fi, this means that the paths of length > 6i+1|segF (v)| are the same in F and Fi+1, completing part (2).

For part (1), recall that N(ui) ⊆ SFi(0, 5 · 6i|segF (v)|). Thus, N(ui) ⊆ SF (0, 6
i+1|segF (v)|). Indeed,

otherwise a vertex x ∈ N(ui) is in a path of length > 6i+1|segF (v)| ≥ 6i|segF (v)| in F , but in Fi it is
in a path of length at most 6i+1|segF (v)|. By the induction hypothesis for part (2) for i− 1, the paths
of length > 6i|segF (v)| are the same in F and Fi and thus, this is a contradiction. This completes the
proof.

Next, we show that in a <lex-minimal spanning linear forest with quite a lot of paths, only a small
proportion of the vertices can lie in very long paths.

Lemma 4.7. Let C > 1010. Let F be a <lex-minimal spanning linear forest in an n-vertex C-expander G.
Suppose that the number of paths in F is at least nε, for some ε > 0. Then, |S(6n1−ε+2 logC 6, n)| ≤ n/2C.

Proof. Since we have nε paths, there is one of length at most n1−ε. Set k := 2 logC n, let v be
an endpoint of a shortest path, which is of length m ≤ n1−ε, and suppose for contradiction that
|S(6mn2 logC 6, n)| > n/2C. By Lemma 3.4, we have |Ek

G(v,F)| ≥ n/2C. We now have two cases.
If Ek

G(v,F) ∩ S(6mn2 logC 6, n) ̸= ∅, then let i be the smallest such that there exists x ∈ Ei
G(v,F) ∩

S(6mn2 logC 6, n). Let y be the pivot for x in the corresponding i-rotation and recall that x, y are in
the same path in F , hence y ∈ S(6mn2 logC 6, n) as well. Note also that y ∈ N(Ei−1

G (v,F)), so that
S(6mn2 logC 6, n) ∩N(Ei−1

G (v,F)) ̸= ∅. On the other hand, if Ek
G(v,F) ∩ S(6mn2 logC 6, n) = ∅, then by

the definition of a C-expander, we have that N(Ek
G(v,F)) ∩ S(6mn2 logC 6, n) ̸= ∅. Both of these cases

contradict Lemma 4.6, which says that for i ≤ k we have

N(Ei
G(v,F)) ⊆ S(0, 6k+1|segF (v)|) = S(0, 61+2 logC nm) = S(0, 61+2 log6 n/ log6 Cm) = S(0, 6mn2 logC 6).

Hence, |S(6n1−ε+2 logC 6, n)| ≤ |S(6mn2 logC 6, n)| ≤ n/2C.

Finally, then, in this section, we can put this all together to prove Lemma 4.1.

Proof of Lemma 4.1. Let F be a <lex-minimal spanning forest in G. First we will show that it must
contain at most n/C paths. Indeed, suppose otherwise and let S be a set which contains exactly one
endpoint from each path in F . Split S into disjoint sets S = S1 ∪ S2, both of size |S1|, |S2| ≥ n/2C.
Since G is a C-expander, there is an edge between S1 and S2. Adding this edge to F creates a linear
forest with one fewer path than F , contradicting the <lex-minimality of F .

We now show that F has no isolated vertices. Again, suppose otherwise and let v be an isolated
vertex in F . By Lemma 4.4, for all k, we have that Ek(v,F) ⊆ End(F). Lemma 3.4 then tells us that
|End(F)| ≥ |E2 logC n(v,F)| ≥ n/105 > 2n/C. This contradicts the previous assertion that F has at
most n/C paths.

Now that we know that F has at most n/C paths and no isolated vertices, it must be that at
most 100n/C vertices in F are contained in paths of length less than 100. To conclude, assume for
contradiction that this forest has more than n0.8 paths. Now, apply Lemma 4.7 with ε = 0.8 to conclude
that F satisfies |SF (6n

1−ε+2 logC 6, n)| ≤ n/2C. Since 1 − ε + 2 logC 6 < 1/2, the number of vertices in
paths longer than

√
n is less than n/2C < n/2. Hence, at least n/2−100n/C ≥ 0.1n of the vertices are in

SF (100,
√
n). Now, apply Lemma 3.7 to F to obtain a new linear forest with fewer paths, contradicting

the <lex-minimality of F .

5 Linking structures and decomposing the expander graph

In this section, we will prove the main result we need which will find an appropriate linking structure
in an expander. For convenience for our application, we will additionally find relatively long paths
connecting the two special sets in the linking structure, as in the following result.
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Lemma 5.1. Let C > 1015, let n be sufficiently large and let G be a C-expander. Then, there is a
partition of V (G) into three sets X,Y, Z, and disjoint sets A,B ⊂ X, with the following properties.

• G[X] is an (A,B)-linking structure and |A| = |B| = n0.9.

• G[Y ∪A ∪B] has a spanning linear forest with |A| = |B| paths of size n0.1/5 whose endpoints are
in A ∪B.

• G[Z] and G[Z ∪ Y ∪A ∪B] are both C/100-expanders.

For [38, Proposition 4.4], Hyde, Morrison, Müyesser and Pavez-Signé showed that there exist linking
structures with convenient properties, which allow for them to be constructed in pseudorandom graphs.
Our methods would be content with a linking structure with much smaller sets A,B, than in the efficiently
constructed linking structure in [38], but we will use the same construction, briefly outlining the main
arguments for the sake of completeness. We will start in Section 5.1 by recalling some ‘extendability’
methods, before proving in Section 5.2 that there is a linking structure that can be constructed using
these methods, and using this to prove Lemma 5.1.

5.1 Embedding in expanders

Here we briefly discuss a very useful ‘extendability’ method for embedding sparse graphs in expander
graphs. The method combines a technique Friedman and Pippenger [29] used to inductively embed
trees leaf-by-leaf into expanding graphs with a ‘roll-back’ idea of Johannsen (used to prove Lemma 5.3
below). For more on this technique, see [24]. The key definition defining a type of ‘good’ embedding is
the following.

Definition 5.2. Let D,m be positive integers with D ≥ 3. Let G be a graph and let H ⊂ G be a
subgraph with ∆(H) ≤ D. Then H is (D,m)-extendable (in G) if for every S ⊂ V (G) with 1 ≤ |S| ≤ 2m
we have

|ΓG(S) \ V (H)| ≥ (D − 1)|S| −
∑

u∈S∩V (H)

(dH(u)− 1). (3)

The main result to state here is the following, which allows us to add paths to existing (D,m)-extendable
subgraphs of an expander such that the resulting subgraph stays (D,m)-extendable. Hence, we will be
able to embed in expanders any type of sparse graphs which can be recursively built by adding path by
path. This lemma is, for example, a weaker version of [53, Corollary 3.12].

Lemma 5.3. Let C > 10D and let G be an n-vertex C-expander with a (D,n/2C)-extendable subgraph
H with |H| ≤ n− 5nD/C − ℓ, where ℓ ≥ log n. Then, the following hold for all vertices y ∈ V (H) with
degH(y) ≤ D/2.

• There exists a path P in G with endpoint y of length ℓ such that all its vertices except for y lie
outside of H and H ∪ P is (D,n/2C)-extendable.

• For every x ∈ V (H) \ {y} with degH(x) ≤ D/2, there exists an xy-path P in G of length ℓ such
that all its internal vertices lie outside of H and H ∪ P is (D,n/2C)-extendable.

5.2 Linking structures in expanders

We first need the following definition, as introduced in [38].

Definition 5.4. Let G be a graph and A ⊆ V (G). We say that G is A-path-constructible if there exists
a sequence of edge-disjoint paths P1, . . . , Pt in G with the following properties.

1. E(G) =
⋃

j∈[t]E(Pj).
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2. For each i ∈ [t], the internal vertices of Pi are disjoint from A ∪
⋃

j∈[i−1] V (Pj).

3. For each i ∈ [t], at least one of the endpoints of Pi belongs to A ∪
⋃

j∈[i−1] V (Pj).

We will say that G is A-path-constructible with paths of length between ℓ1 and ℓ2 if all the paths Pt have
lengths between ℓ1 and ℓ2.

The crucial property of path-constructible graphs is simple to observe given Section 5.1: if they have
low maximum degree and the paths Pi are sufficiently long (that is, of size Ω(log n)), then Lemma 5.3
implies that they can be embedded in expanders (and, in particular, in pseudorandom graphs, as done
in [38]). As mentioned before, we now state the main lemma for finding our linking structure, which is
a weaker version of [38, Proposition 4.4].

Lemma 5.5. For all sufficiently large N , there exists a graph H with at most N1.1 vertices and disjoint
sets A,B ⊆ V (H) such that H is an (A,B)-linking structure and the following hold.

1. |A| = |B| = N and A ∪B is an independent set in H.

2. ∆(H) ≤ 4.

3. H is (A ∪B)-path-constructible with paths of length between 10 logN and 40 logN .

In order to obtain their stronger version of Lemma 5.5, the authors in [38] rely on a result concerning
sorting networks with optimal depth. Earlier uses of sorting networks in extremal combinatorics include
in the work of Kühn, Lapinskas, Osthus and Patel [49] on Hamilton cycles in highly connected tourna-
ments and in the work of Müyesser and Pokrovskiy [54] giving, among other results, a combinatorial
proof of the Hall-Paige conjecture. We will define directly the graph theoretic counterpart of a sorting
network, for convenience calling this itself a sorting network. For a more detailed discussion concerning
sorting networks and their graph theoretic counterpart see, for example, [38, Section 4].

Definition 5.6. A graph G is an (N, ℓ)-sorting network if there exist A,B ⊆ V (G) for which G is an
(A,B)-linking structure and disjoint sets V0 = A, V1, . . . , Vℓ−1, Vℓ = B with the following properties.

1. V (G) = V0 ∪ . . . ∪ Vℓ.

2. For every 0 ≤ i ≤ ℓ, Vi is an independent set in G with |Vi| = |A| = |B| = N .

3. For every 0 ≤ i ≤ ℓ, the bipartite graph G[Vi, Vi+1] is the disjoint union of K2,2’s and edges.

Sorting networks which are efficient enough for our purposes are simple to construct, and results as early
as 1959 ([59]) imply that there exist (N,O(log2N))-sorting networks. Moreover, in 1983, Ajtai, Komlós
and Szemerédi [1] showed that, for each N , there exist (N, ℓ)-sorting networks with ℓ = O(logN), where
ℓ can easily seen to be optimal up to a constant multiple. The sorting network in the above definition is
not necessarily the linking structure we require for Lemma 5.5 – although it has a low maximum degree,
it might not be (A ∪ B)-path-constructible. As observed in [38], it is possible to ‘transform’ a sorting
network into an (A ∪ B)-path-constructible linking structure. Briefly, to do this, start by taking the
graph G with the properties above with |A| = |B| = N and ℓ = O(logN). Then, for each 0 ≤ i < ℓ,
take the bipartite graph G[Vi, Vi+1] and, using part 3 of the definition above, substitute each single edge
by a path of an appropriately chosen length m and each K2,2 with vertices a1, a2 ∈ Vi and b1, b2 ∈ Vi+1

by the (2m)-vertex graphs in Figure 4.
Notice that the graph in Figure 4 is an ({a1, a2}, {b1, b2})-linking structure. Indeed, the two horizontal
paths are vertex disjoint paths linking a1 to b1 and a2 to b2, and they span all the vertices, and the blue
and red paths are vertex disjoint paths linking a1 to b2 and a2 to b1, and they span all the vertices. Since
each of these graphs is a linking structure, substituting each K2,2 in each G[Vi, Vi+1] with one of these
graphs and each edge in each G[Vi, Vi+1] with a path, maintains that G is an (A,B)-linking structure.

18



a1

a2

b1

b2

Figure 4: Each K2,2 in the sorting network with parts {a1, a2} and {b1, b2} is
substituted with a graph of the type above. Each full line represents an edge and
each dotted line represents a path of an appropriately chosen length. The pattern
in the figure is such that we can always construct such a graph with any number of
marked vertices (i.e., those drawn with a circle in the figure) which is sufficiently
large and divisible by 4. Note that the union of the full lines is simply an even cycle.

The crucial property of the graph in Figure 4 is that it is also {a1, a2}-path-constructible (as well
as {a1, a2, b1, b2}-path-constructible). Indeed, it can be constructed by first taking a1 and adding its
incident path represented by a dotted line, then, constructing the even cycle in the middle formed by the
full lines (which represent edges), and, finally, adding all of the remaining paths represented by dotted
lines. Furthermore, substituting each K2,2 in each G[Vi, Vi+1] with one of the graphs in Figure 4 and
each edge in each G[Vi, Vi+1] with a path, transforms G into an A ∪B-path-constructible graph.

We can now complete our sketch proof of Lemma 5.5 by taking the illustrated graph to be such
that it has between 10 logN and 40 logN marked vertices (which as is explained in the caption of the
figure is possible) and the dotted lines to represent equally-sized paths with length also between 10 logN
and 40 logN . We then have that the illustrated graph has 2m = Θ(log2N) vertices and it is {a1, a2}-
path-constructible (and {a1, a2, b1, b2}-path-constructible) with paths of length between 10 logN and
40 logN . Then, substituting each K2,2 in each G[Vi, Vi+1] with one of these illustrated graphs and each
edge in each G[Vi, Vi+1] with a path of length m makes it so that the resulting graph is an (A,B)-linking
structure with O(N log3N) ≤ N1.1 vertices and is (A ∪ B)-path-constructible with paths of length
between 10 logN and 40 logN . Thus, it satisfies Lemma 5.5.

Using Lemma 5.5, Lemma 5.3 and Definition 5.2, we can now prove Lemma 5.1.

Proof of Lemma 5.1. First, we will find A,B ⊆ V (G) and a subgraph H ⊆ G such that H is an
(A,B)-linking structure with the following properties.

1. |A| = |B| = n0.9.

2. |H| ≤ n/100.

3. ∆(H) ≤ 4.

4. H is (C/50, n/2C)-extendable.

We will then set X := V (H). Let then N := n0.9 and apply Lemma 5.5 to find a linking structure with
the given properties. Now we embed H in G so that it is extendable. First, we embed H[A ∪ B] in
G such that H[A ∪ B] is (C/50, n/2C)-extendable. For this, note that Lemma 5.3 implies that there
exists a path P in G of length |A|+ |B| which is (C/50, n/2C)-extendable. Indeed, we can start with a
(C/50, n/2C)-extendable edge xy in G (since G is a C-expander, every edge is (C/50, n/2C)-extendable)
and then apply the lemma with ℓ = |A| + |B|. Since P is (C/50, n/2C)-extendable, the subgraph on
V (P ) formed by removing all edges (i.e., the empty subgraph with vertex set V (P )) is also (C/50, n/2C)-
extendable and hence, we can partition P into two sets A,B of equal size and we have an embedding of
H[A ∪B] in G which is (C/50, n/2C)-extendable.
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Since H is A ∪ B-path-constructible, there exists a sequence of paths P1, . . . , Pt and graphs H0 :=
H[A ∪ B], H1, . . . ,Ht := H such that for each i, the following hold: Hi+1 = Hi ∪ Pi+1; and Pi+1 is a
path whose internal vertices are not in Hi and with at least one endpoint in Hi. Furthermore, each path
Pi is of length between 10 logN and 40 logN . Since |V (H)| ≤ N1.1 ≤ n/100 ≤ n − n/10 − 40 log n,
we can then iteratively apply Lemma 5.3 embedding the paths Pi one by one while maintaining the
(C/50, n/2C)-extendability property. At the end, we have H ⊆ G satisfying all desired properties.

We now set X := V (H) and note that the definition of a (C/50, n/2C)-extendable subgraph implies
that G[V (G) \X] and G[(V (G) \X) ∪ A ∪ B] are C ′-expanders for C ′ = C/100. Indeed, by definition,
for every S ⊆ V (G) of size at most n/C we have

|Γ(S) \ V (H)| ≥ (C/50− 1)|S| −
∑

u∈S∩V (H)

(dH(u)− 1) ≥ C|S|/50− 5|S|,

which implies that S satisfies |NG−X(S)| ≥ C|S|/50− 5|S| − |S| ≥ C|S|/100 = C ′|S|.
By repeated application of Lemma 5.3, we can then construct a linear forest F with |A| = |B|

equally-sized paths whose endpoints are in A ∪ B, interior vertices are in V (G) \ X, and which have
length n0.1/5, such that H ∪ F is a (C/50, n/2C)-extendable subgraph of G. Let Y ∪ A ∪ B be the set
of vertices spanned by F , where Y is disjoint to X. Finally, let Z denote the rest of the vertices. Since
H ∪F is (C/50, n/2C)-extendable, by the same argument as above we have that G[Z] is a C ′-expander
for C ′ = C/100. Finally, since (V (G) \X) ∪ A ∪B = Z ∪ Y ∪ A ∪B, as mentioned above we also have
that G[Z ∪ Y ∪A ∪B] is a C/100-expander.

6 Proof of Theorem 1.4

Finally, we can put our work together to prove Theorem 1.4.

Proof of Theorem 1.4. Let G be a C-expander and apply Lemma 5.1 to find X,Y, Z with the stated
properties. The following holds due to the properties of the linking structure in G[X] and is crucial to
observe. If there exists a spanning linear forest F of G′ := G−(X \(A∪B)) with no isolated vertices and
such that End(F) = A∪B, thenG contains a Hamilton cycle (see Figure 2). More formally, we can relabel
the vertices so that the pairs of endpoints in F are (a1, b1), (a2, b2), . . . , (at, bt) for some t ≤ |A|, as well
as the pairs (at+1, at+2), (at+3, at+4) . . . , (a|A|−1, a|A|) and (bt+1, bt+2), (bt+3, bt+4) . . . , (b|A|−1, b|A|), then
use the linking structure to find paths which span G[X], such that the pairs of endpoints are (ai+1, bi)
for all i, with indices taken modulo |A|.

All we need now is to find such an F . First apply Lemma 4.1 to G[Z], which is an expander by
the property from Lemma 5.1, giving a spanning linear forest in G[Z] with at most n0.8 paths and no
isolated vertices. Now, we define the linear forest F0 in G′ to be the union of two linear forests: the
first is the linear forest in G[Y ∪ A ∪ B] with endpoints in A ∪ B given by Lemma 5.1, and the second
is the linear forest found in G[Z] with at most n0.8 paths. Let us denote the paths in the first forest by
P1, . . . , Pt (with t = n0.9) and the second linear forest as H. Recall that the paths P1, . . . , Pt have size
n0.1/5.

To find the linear forest F , we now apply Lemma 3.7 repeatedly as follows, starting with F0. At each
step, we take the current linear forest Fi, and if there are at least t/2 = n0.9/2 paths Pj (so that they
span at least 0.1n vertices) which are still in Fi, we do the following (maintaining the invariants that
there are no isolated vertices in Fi and that A ∪B ⊆ End(Fi)):

• If |End(Fi)| ≥ |A ∪ B| + 1, then note that since every path in Fi has two endpoints, the total
number of endpoints is even. Since |A ∪ B| is even, then there are at least two endpoints outside
of this set, call them x and y. By applying Lemma 3.7 with x, y and F := Fi we obtain a forest
Fi+1 such that End(Fi+1) = End(Fi) \ {x, y} and |E(Fi+1)∆E(Fi)| = O(log n).
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• Otherwise, F := Fi is the desired linear forest and we finish the process.

Now, clearly, we can have only at most 2|End(F0) \ A ∪ B| = 2|H| ≤ 2n0.8 steps in this process.
Moreover, it is possible to perform each step because at each step we have |E(Fi+1)∆E(Fi)| = O(log n),
and therefore O(log n) paths Pi are changed for the next linear forest. This implies that, at each step,
Fi still contains at least t−O(i log n) ≥ t−O(n0.8 log n) ≥ t/2 paths Pj . Thus, we can find such an F
at the end of the process and, hence, a Hamilton cycle.

7 Concluding remarks

We have shown that every C-expander is Hamiltonian for large enough C. In fact a stronger statement
holds that the graph is Hamilton-connected, i.e. that between every two vertices there exists a Hamilton
path. This result is especially interesting for applications, as oftentimes one needs to complete the
embedding of a structure by constructing a spanning path between two specified vertices in an expanding
subgraph of the host graph (see, for example, [23, 35, 37, 53]). We will only comment on the parts of
the proof which have to be changed to prove the following result.

Theorem 7.1. For every sufficiently large C > 0, every C-expander is Hamilton-connected.

Proof sketch. Given a pair of vertices x, y in a C-expander G, we wish to find a Hamilton cycle whose
endpoints are x, y. To this end, we may assume that G contains the edge xy and then show that G has
a Hamilton cycle which contains xy. Indeed, if G does not contain xy, then we can simply add it to G
and the resulting graph will still be a C-expander.

The only change needed in our proofs to yield this is the following. In Lemma 5.1, we can also require
that one of the paths which in G[Y ∪A∪B] contains the edge xy. This is a straightforward application
of the extendability method.

Note that the only place where we might change the paths in G[Y ∪ A ∪ B] is in the proof of
Theorem 1.4, by applying Lemma 3.7. But if we modify Lemma 3.7 slightly so that the rotations never
break the edge xy, then the resulting structure obtained in Theorem 1.4 is a Hamilton path between
x and y. And it is indeed not a problem to always avoid a small absolute constant number of vertices
when performing rotations, as we have seen many times in the proof of Theorem 1.4.

As mentioned in the outline, Hamiltonicity is an NP-complete problem. Nevertheless, our proof yields an
efficient (polynomial time) algorithm for finding a Hamilton cycle in spectral expanders with a modest
bound on the spectral ratio. This complements the classic result by Bollobás, Fenner, and Frieze [12]
for random graphs at the Hamiltonicity threshold.

Theorem 7.2. There exists C > 0 such that d
λ > C implies that every (n, d, λ)-graph is Hamiltonian,

and the Hamilton cycle can be found in polynomial time.

Proof sketch. We will discuss how each relevant part of the proof can be made algorithmic. First, in
Section 2, Lemma 2.5 is currently not algorithmic, but in the case that the graph is an (n, d, λ)-graph,
having a fraction of the degrees of each vertex inside of a set already implies expansion, so the cleaning
procedure can be done efficiently. Indeed, we can simplify the current proof by constructing the sets
Bi,j by always adding one vertex v at a time from Ui to Bi,j if v has a small number of neighbours in

intF

(
Uj \

⋃4
t=1Bj,t

)
. Now, no Bi,j cannot become too large, as this would violate the Expander mixing

lemma (see, e.g., Theorem 2.11 in [47]).
Every result in Section 3 can also be implemented in polynomial time, and this is not hard to see

that performing the relevant rotations can be done efficiently with slightly careful bookkeeping.
The main result of Section 4 shows that in a C-expander there exists a linear forest with n0.8 paths

and no isolated vertices. The proof shows that a <lex-minimal forest has those properties. Moreover, the
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proofs are structured in such a way that they show that either a <lex-minimal forest has a certain prop-
erty, or it can be slightly changed to get a smaller forest in the <lex-ordering to obtain a contradiction.
To make the proofs algorithmic, we can simply start with an arbitrary linear forest, and if the current
forest does not satisfy the required property, then we replace it with another forest in polynomial time.
Since we always replace two paths of lengths a, b with another two paths with integer lengths c, d in the
open interval (a, b) so that a+ b = c+ d, the sum of the squares of the lengths of the paths drops by at
least 1. Since the sum of the squares is at most n2, we need to perform the mentioned procedures only
at most n2 many times, resulting in a polynomial time algorithm.

For Section 5, note that we use the extendability method to find the required structures. Although
the extendability method as quoted is based on a non-constructive result, and no constructive version
is known for C-expanders, there is a version developed in [24] which works for robust expanders, and
in particular for (n, d, λ)-graphs, which can be used to construct the linking structure with desired
properties in polynomial time.

Section 6 applies the results from the previous sections only at most a linear number of times, so we
only need polynomially many steps in total.

Note added to proof: Simultaneously with the present paper, Ferber, Han, Mao, and Vershynin posted
the arXiv preprint [26], where they used tools from random matrix theory to show that (n, d, λ)-graphs
with d/λ > C are Hamiltonian if d > log10 n.
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[1] M. Ajtai, J. Komlós, and E. Szemerédi. An O(n log n) sorting network. In Proceedings of the fifteenth annual
ACM symposium on Theory of computing, pages 1–9, 1983.
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[32] S. Glock, D. Munhá Correia, and B. Sudakov. Hamilton cycles in pseudorandom graphs. arXiv preprint
arXiv:2303.05356, 2023.

[33] R. J. Gould. Recent advances on the Hamiltonian problem: Survey iii. Graphs Combin., 30:1–46, 2014.
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