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Abstract

For every k ≥ 2 and ∆, we prove that there exists a constant C∆,k such that the following holds.
For every graph H with χ(H) = k and every tree with at least C∆,k|H| vertices and maximum degree
at most ∆, the Ramsey number R(T,H) is (k− 1)(|T | − 1) + σ(H), where σ(H) is the size of a smallest
colour class across all proper k-colourings of H. This is tight up to the value of C∆,k, and confirms a
conjecture of Balla, Pokrovskiy, and Sudakov.

1 Introduction

Given two graphs G and H, the Ramsey number R(G,H) is defined as the smallest integer N such that every
red/blue colouring of the edges of the complete graph KN contains either a red copy of G or a blue copy of
H. The fundamental result of Ramsey [25] implies that R(G,H) is well-defined for any pair of graphs G and
H. The exact value of R(G,H) is known for very few pairs of graphs (G,H), and in general it is difficult
even to give good bounds on R(G,H). Of the few exact Ramsey numbers known, many share the same
general extremal lower bound construction given below. The area of Ramsey goodness studies the graphs G
and H for which this lower bound is tight.

Erdős showed in 1947 that the Ramsey number of an n-vertex path Pn and a complete m-vertex graph
Km is R(Pn,Km) = (m−1)(n−1)+1. Here, the lower bound construction is the disjoint union of m−1 red
(n−1)-vertex cliques with all possible edges in blue added between them. As Chvátal and Harary [9] observed,
this construction contains no connected red n-vertex subgraph and no blue subgraph with chromatic number
at least m; if G is connected, we therefore have R(G,H) ≥ (χ(H)−1)(|G|−1)+1. Let σ(H) denote the size of
a smallest colour class across all proper χ(H)-colourings of H. If 2 ≤ σ(H) ≤ |G|, then this construction can
be improved by adding further a red clique of order σ(H)− 1 connected to the rest of the construction with
blue edges. This observation, made by Burr [6], implies that for every connected graph G with |G| ≥ σ(H)
we have

R(G,H) ≥ (|G| − 1)(χ(H) − 1) + σ(H). (1.1)

As coined by Burr and Erdős [7] in 1983, we say that a graph G is H-good if (1.1) holds with equality, that
is, if R(G,H) = (|G| − 1)(χ(H) − 1) + σ(H). A family of graphs G is said to be H-good if there is some
n0 such that every graph G ∈ G is H-good if |G| ≥ n0. Chvátal [8] had already shown in 1977 that the
family of trees is Kr-good for all r. Inspired by this, Burr and Erdős sought to determine which families G
are Kr-good for all r. They showed that, for each fixed b, the family of graphs with bandwith at most b is
Kr-good for all r, and raised a series of questions concerning the Kr-goodness of various natural families [7].

In 1985, Erdős, Faudree, Rousseau, and Schelp [11] showed that the family of bounded degree trees is
H-good for any graph H, where some (possibly much weaker) restriction on the maximum degree is needed
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(see [5]). All but one of the Burr-Erdős questions raised in [7] were solved by Nikiforov and Rousseau [22] in
2009, mostly as a result of their proof of the Kr-goodness for each r of any family of graphs with constant
maximum degree which have a ‘small’ set of vertices whose removal divides the graph into small linear-sized
components (see [22] for a more precise statement). The last question in [7] was solved by Fiz Pontiveros,
Griffiths, Morris, Saxton, and Skokan [12] in 2014, who proved that the n-dimensional hypercube Qn is
H-good if n is sufficiently large. Beyond these questions, Allen, Brightwell, and Skokan [1] showed in 2013
that the family of graphs G with constant maximum degree and bandwith o(|G|) is H-good for every graph
H.

More recently, focus has been turned on quantitative considerations of the Ramsey goodness problem.
That is, when G is an H-good family, how large does n0 need to be before every G ∈ G is H-good if
|G| ≥ n0. As their result quoted above shows that for any graph H, the path Pn and the n-vertex cycle
Cn are H-good if n is sufficiently large depending on H, Allen, Brightwell, and Skokan [1] conjectured that
n ≥ χ(H)|H| should be sufficient. In the case of paths, this was proved in a strong form when χ(H) ≥ 4
by Pokrovskiy and Sudakov [23], who showed that, if n ≥ 4|H|, then Pn is H-good. For cycles, Pokrovskiy
and Sudakov [24] later showed that Cn is H-good as long as n ≥ 1060|H| and σ(H) ≥ χ(H)22. This result
was recently improved by Haslegrave, Hyde, Kim, and Liu [16], who showed that, for some universal C > 0,
n ≥ C|H| log4 χ(H) is sufficient for the cycle Cn to be H-good, which is optimal up to the logarithmic factor
of χ(H) and confirms the conjecture of Allen, Brightwell, and Skokan for graphs with large enough chromatic
number.

Though not mentioned explicitly, quantitative bounds can be taken more generally for the Ramsey
goodness of bounded degree trees from the proof of Erdős, Faudree, Rousseau, and Schelp [11] mentioned
above. That is, the proof can be used to show that, for each k and ∆, there is some C∆,k such that for
each graph H with χ(H) = k and each n ≥ C∆,k|H|4, every n-vertex tree T with maximum degree at
most ∆ is H-good. This was improved by Balla, Pokrovskiy, and Sudakov [2] in 2018, who proved that
n ≥ C∆,k|H| log4 |H| suffices, for some appropriate C∆,k. Furthermore, they showed the factor log4 |H|
is not needed when T has Ω(n) leaves, and conjectured this should be true for every tree, that is, that
n ≥ C∆,k|H| should suffice for T to be H-good. The purpose of this paper is to confirm this conjecture, as
follows.

Theorem 1.1. For all ∆ and k, there exists a constant C∆,k such that the following holds. Given a graph
H with χ(H) = k and n ≥ C∆,k|H|, every n-vertex tree T with maximum degree at most ∆ is H-good. In
other words, R(T,H) = (k − 1)(n− 1) + σ(H).

Theorem 1.1 is tight up to the value of C∆,k, as it is easy to see that R(G,H) ≥ |H| for any non-empty
graphs G and H, so G is not H-good if |G| < |H|/k, and hence C∆,k = Ω(1/k). However, without much
more difficulty, it can be seen that we must have C∆,k ≥ ∆/100k log ∆ for sufficiently large ∆, by taking m
to be sufficiently large, letting H be the k-partite complete graph with m vertices in each class, and letting
T be any tree with maximum degree ∆ on n = ∆m/100 log ∆ vertices. To see this, let N = ∆m/10 log ∆,
and take a blue complete ⌊k/3⌋-partite graph with N vertices in each class, and colour the edges within each
class red/blue so that the maximum red degree is at most ∆ − 1 and there is no blue copy of Km,m. This
colouring is possible using the probabilistic method, more precisely, colouring edges of K2N red independently
at random with probability ∆/4N and removing vertices with at least ∆ red neighbouring edges. Call the
final red/blue coloured graph G. If there is a blue copy of H in G, then at least 3m vertices from this
copy are within one class of N vertices in the original partition of G, and hence the colouring within this
class must contain a blue copy of Km,m, a contradiction. As G has maximum red degree at most ∆ − 1,
it contains no red copy of T , and therefore R(T,H) > ⌊k/3⌋N > kn. Thus, T is not H-good, so we must
have C∆,k ≥ |T |/|H| ≥ ∆/100k log ∆. We have not optimised the value of C∆,k in Theorem 1.1 as our proof
would give an upper bound on C∆,k that is very far from this ∆/100k log ∆ lower bound.
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2 Preliminaries

After covering the basic notation that we use, we will give a detailed sketch of the proof of Theorem 2.1 in
Section 2.2 before outlining the rest of the paper in Section 2.3.

2.1 Notation

A graph G has vertex set V (G) and edge set E(G), and we write |G| = |V (G)| and e(G) = |E(G)|. A
vertex v ∈ V (G) has neighbourhood N(v) and degree d(v) = |N(v)|. Given a vertex set S ⊂ V (G),
the set of neighbours of S (including those in S) is N ′(S) = ∪s∈SN(s) and its external neighbourhood is
N(S) = ∪s∈SN(s) \ S. For a vertex v ∈ V (G) and sets U, S ⊂ V (G), we write d(v, U) = |N(v) ∩ U | and
N(S,U) = N(S) ∩U . Given a subset S ⊂ V (G), G[S] is the subgraph of G induced on S, with vertex set S
and every edge of G contained within S. We write G−S for the graph G[V (G)\S]. For a subset X ⊂ V (G),
I(X) denotes the subgraph of G with vertex set X and no edges. The complement of G, denoted Gc, is the
graph with V (Gc) = V (G) and such that xy forms an edge in Gc if and only if xy is not an edge in G.

Given two subgraphs H1, H2 ⊂ G, H1 ∪H2 is the subgraph with vertex set V (H1)∪ V (H2) and edge set
E(H1) ∪E(H2). If H ⊂ G is a subgraph and e = xy ∈ E(G), then H + e denotes the subgraph with vertex
set V (H) ∪ {x, y} and edge set E(H) ∪ {xy}. Given x, y ∈ V (G), an x, y-path is a path with endvertices x
and y. A path P with ℓ vertices has length ℓ− 1. We use H +P to denote H ∪P , and H −P to denote the
graph resulting from removing the edges of P from H and any internal vertex of P which is now isolated.
For subsets S1, S2 ⊂ V (G), an S1, S2-path is a path with one endpoint in S1 and the other endpoint in S2.

For a positive integer n ∈ N, we write [n] = {1, . . . , n} and [n]0 = [n] ∪ {0}. We will use the standard
hierarchy notation, that is, for a, b ∈ (0, 1], we will write a ≪ b to mean that there exists a non-decreasing
function f : (0, 1] → (0, 1] such that if a ≤ f(b) then the rest of the proof holds with a and b. Hierarchies
with more constants are defined in a similar way and are to be read from the right to the left. For simplicity
we will ignore floor and ceiling signs whenever this does not affect the argument.

2.2 Outline of the proof of Theorem 2.1

Let H have chromatic number k such that |H| ≤ µn. Let m = σ(H). For convenience, if not elegance, sake,
we will use Kk−1

µn ×Kc
m to denote the complete k-partite graph whose first k − 1 classes have size µn and

whose last class has size m. Thus, if a graph G contains a copy of Kk−1
µn ×Kc

m, then it contains a copy of
H, so that, to prove Theorem 1.1 it is enough to prove the following (where we also take µ∆,k = 1/C∆,k).

Theorem 2.1. For all ∆ and k, there exists a constant µ∆,k such that the following holds for each m ≤
µ∆,kn. Every tree T with n vertices and maximum degree at most ∆ satisfies R(T,Kk−1

µ∆,kn
× Kc

m) = (k −
1)(n− 1) + m.

We will prove Theorem 2.1 by induction on k, and therefore the proof falls into two parts, the base case
(k = 2) and the inductive step. This follows the work of Balla, Pokrovskiy, and Sudakov [2], who proved
Theorem 2.1 under a stronger assumption equivalent to replacing µ∆,kn with µ∆,kn/ log4 n throughout. The
critical case for making our improvement is the case k = 2, and we concentrate on this in this sketch, before
outlining briefly how the case for k ≥ 3 follows by induction.

For the case k = 2, it is sufficient to prove the following for some µ = µ(∆). That, for every n-vertex
tree T with maximum degree ∆ and all m ≤ µn, the following holds.

A If G has n + m− 1 vertices, and the complement of G is Km,µn-free, then G contains a copy of T .

An (n + m − 1)-vertex graph G whose complement is Km,µn-free satisfies the natural expansion condition
that, for each set U of m vertices, |NG(U)| ≥ |G| − |U | −µn ≥ (1− 2µ)n. Beginning with work by Friedman
and Pippenger [13], through a key development by Haxell [17], trees can be embedded into graphs satisfying
expansion conditions (see, for example, Corollary 2.19). A typical such application of these methods would
give the following.

3



B If every set U of m vertices in a graph G satisfies |N(U)| ≥ |G| − 2µn, then a tree T with maximum
degree ∆ can be embedded in G if G has at least 20∆ · max{µn,m} more vertices than T .

Our trouble, then, is the gulf between A and B: we only have m − 1 more vertices in G than T in A, far
from the 20∆ · µn spare vertices required to use B, particularly as m can be any value between 1 and µn.
Critically, we use the following observation for our graph G whose complement is Km,µn-free. That, for
some large constant K, if we take a set V ⊂ V (G) of Km vertices at random, then, any set U ⊂ V (G)
of m vertices has at most µn non-neighbours in G, so can expect to have at most 2µKm non-neighbours
in V . With a little care, then, we can show, with high probability, that every set U ⊂ V with |U | = m
satisfies |NG[V ](U)| ≥ (1− 3µ)|V |. Then, in G[V ], we can apply B to embed a tree with maximum degree ∆
using only O(∆ ·max{µ|V |,m}) = O(∆ ·max{µKm,m}) spare vertices. When we embed using m− 1 spare
vertices (as at A), this is still not enough, but for small m we are much closer, needing O(m) spare vertices
instead of O(n) spare vertices. With more analysis, and choosing the constants involved carefully, we can
show that, for some small λ, G[V ] here is likely to be Kλm,λm-free, which will allow us to use B to embed a
tree with maximum degree ∆ into G[V ] while using only m− 1 spare vertices.

This key idea for finishing the embedding leads to the following strategy. We take a nested sequence
of random subsets V (G) = U0 ⊃ U1 ⊃ . . . ⊃ Uℓ with geometrically-decreasing size, before embedding T in
ℓ stages, at each stage i ∈ [ℓ] using all unused vertices in Ui−1 \ Ui and as few vertices in Ui as possible,
until we finish by embedding the last part of T within G[Uℓ]. This approach is inspired by the ‘cover
down methods’ in the iterative absorption techniques used by the first author with Glock, Kühn, Lo, and
Osthus [15] (developing earlier work by Barber, Kühn, Lo, and Osthus [3]), and similarly we also call our
nested sequence of sets a vortex.

Between this sketch and our implementation, there are several complications. We cannot take a simple
vortex and must run a cleaning process on an initial random vortex. The ‘vortex’ embedding method also
requires m to be at least some large constant; when it is not we must use a separate (though much easier)
embedding. Finally, before doing anything, we need to efficiently gain an expansion property for small sets
(i.e., those with fewer than m vertices). As in previous work (in particular, [2]), we can remove a small set
of vertices (effectively some small maximal set which does not expand) to gain this property, but removing
these vertices gives us fewer ‘spare vertices’ to work with than the m− 1 we need. If we end up with m′ − 1
spare vertices, then it will not be hard to show that sets with size m′ expand significantly, but this change
in the value of m needs to be dealt with carefully, which we do in Section 2.4.

Finally, we note that, while some of the tree embeddings we use are quite intricate, there exist very good
methods to carry them out in a flexible fashion using expansion properties. More specifically, we use an
‘extendability’ method for embedding trees that combines the inductive embedding of trees in expanding
graphs by Haxell [17] (developing work by Friedman and Pippenger [13]) with a ‘roll-back’ idea by Johannsen
(see [10]), as used by Glebov, Johannsen, and Krivelevich [14], and Draganic, Krivelevich, and Nenadov [10].
For embedding part of the tree into our vortex while making sure we cover all of the unused vertices (as
discussed above) we use results of the first author from [21], which we develop into the form we require in
Section 4.

Case k ≥ 3. Having proved the k = 2 case, we will then proceed by induction on k. To prove Theorem 2.1
for k, we will have a graph G with (k− 1)(n− 1) +m vertices and an n-vertex tree T with maximum degree
∆, and m ≤ µn for some small µ > 0, and look to show that either G contains a copy of T or Gc contains a
copy of Kk−1

µn ×Kc
m. We proceed differently according to three cases, a)–c), the proof of which are carried

out in Sections 6.1–6.3 where a more detailed proof sketch for each case can be found.

a) In this case, T has linearly (in n) many leaves, and we follow a method of Balla, Pokrovskiy, and
Sudakov [2].

b) In this case, G is not well connected in the sense that there is a small set V0 such that G−V0 has two
large disjoint parts. We can assume (using induction) that the subgraphs of G induced on these large parts
both satisfy an expansion condition. If there is a vertex with ∆ neighbours in each part then we can embed
part of the tree T in each part, connected together appropriately by this vertex. Where there is no such
vertex, we partition V (G) into two large sets which have few edges between them in G. If G has no copy
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of T , then we can apply induction to both subgraphs induced by the sets of this partition to find complete
partite graphs in their complement, which we combine before removing some vertices in the larger classes in
order to find our desired complete partite graph in Gc.

c) In the final case, G is well-connected and T has few leaves. The embedding we use here is the most
complicated one in the inductive step. Effectively, though, we use expansion conditions to embed T with
many bare paths (i.e., paths which no branching vertices in T ) removed, which exist as T has few leaves,
before using a results on the Ramsey goodness of paths to find paths that we then connect into the embedding
of T using the connectivity property. This sketch serves more to motivate our eventual embedding, which
cannot follow this sketch closely, but will be discussed in full in Section 6.3.

2.3 Organisation of the paper

In the rest of this section, we will first show, in Section 2.4 that the case k = 2 of Theorem 2.1 can be
divided into 2 subcases, covered by Theorem 2.4 and Theorem 2.5, where the latter represents the critical
case sketched in Section 2.2. We then find our tree decompositions (Section 2.5), give some basic results
involving expansion properties (Section 2.6), and cover the tree embedding tools we will use (in Section 2.7).
In Section 3, we prove Theorem 2.4. In Section 4, we show how to embed trees while covering a vertex set,
to be applied at each stage when embedding the tree in the critical case. This then allows us to prove the
result in this critical case, Theorem 2.5, in Section 5. Finally, in Section 6, we use induction on k to prove
Theorem 2.1 from the k = 2 case.

2.4 Subcases when k = 2

As discussed in Section 2.2, the case when k = 2 in Theorem 2.1 is equivalent to the following result, which
for convenience we state separately.

Theorem 2.2. Let µ ≪ 1/∆ and 1 ≤ m ≤ µn, and let T be an n-vertex tree with ∆(T ) ≤ ∆. Then,
R(T,Km,µn) = n + m− 1.

We will separate Theorem 2.2 into two subcases, but first need the following definition for the main forms
of expansion used throughout this paper.

Definition 2.3. Let m,m′ ∈ N, d > 0 and let G be a graph.

i) We say that G is a (d,m)-expander if |N(U)| ≥ d|U | for all subsets U ⊂ V (G) with |U | ≤ m.

ii) We say that G is (m,m′)-joined if every pair of disjoint sets A and B, with |A| = m and |B| = m′,
has an edge between them in G. When m = m′, we simply say the graph is m-joined.

Note that a graph is (m,m′)-joined exactly when its complement is Km,m′ -free. Using these definitions,
we can now state two results, Theorems 2.4 and 2.5, before proving that Theorem 2.2 follows from them using
an additional result, Proposition 2.6. Theorem 2.4 covers Theorem 2.2 when m is at most some constant
depending on µ, while Theorem 2.5, roughly speaking, will cover Theorem 2.2 when m is larger and some
stronger expansion condition holds. For convenience in their proofs, we adjust the parameters so that they
are applied to trees with n−m+ 1 vertices in an n-vertex graph (instead of n and n+m− 1, respectively).

Theorem 2.4. Let µ ≪ 1/∆, 1/m with m ≤ µn, and let G be an n-vertex (m,µn)-joined graph.
Then, G contains a copy of every (n−m + 1)-vertex tree T with ∆(T ) ≤ ∆.

Theorem 2.5. Let 1/D, 1/m, µ ≪ 1/∆ and m ≤ µn, and let G be an n-vertex (m,µn)-joined graph which
is a (D,m)-expander.

Then, G contains a copy of every (n−m + 1)-vertex tree T with ∆(T ) ≤ ∆.

Before showing these two results imply Theorem 2.2, we need to find an expander in the sense of Defini-
tion 2.3i) in our graphs covered by this theorem, which we do in the following proposition.
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Proposition 2.6. Let n0,m ∈ N and d > 0, and let G be an (m,n0)-joined graph with |G| ≥ n0 +(2d+2)m.
Then, there exists some W ⊂ V (G) such that |W | < m and, setting m′ = m−|W |, G−W is an (m′, n0+dm)-
joined (d,m)-expander.

Proof. Let W ⊂ V (G) be a maximal subset subject to |W | < 2m and |NG(W )| ≤ d|W |, possible as W = ∅
satisfies these conditions. Note that if |W | ≥ m, then, as G is (m,n0)-joined, |V (G) \ (W ∪NG(W )| < n0,
so that |NG(W )| ≥ |G| − |W | − n0 ≥ 2dm > d|W |, a contradiction. Thus, we have |W | < m. Let
m′ = m− |W | ≥ 1.

Now, if U ⊂ V (G) \W with |U | ≤ m and U ̸= ∅, then, as |W | < m, we must have that |U ∪W | < 2m
and |U ∪W | > |W |. To avoid contradicting the choice of W , we must have |NG(U ∪W )| ≥ d|U ∪W |, and
hence |NG−W (U)| ≥ d|U ∪W | − d|W | ≥ d|U |. Thus, G−W is an (d,m)-expander.

Furthermore, if X,Y ⊂ V (G −W ) are disjoint sets with |X| = m′, |Y | = n0 + dm, and eG′(X,Y ) = 0,
then eG(X ∪W,Y \NG(W )) = 0, |X ∪W | = m and |Y \NG(W )| ≥ n0 + dm− d|W | ≥ n0, which contradicts
that G is (m,n0)-joined. Thus, G−W is (m′, n0 + dm)-joined.

We can now deduce Theorem 2.2 from Theorems 2.4 and 2.5 using Proposition 2.6, as follows.

Proof of Theorem 2.2. Let µ ≪ 1/∆ and 1 ≤ m ≤ µn, let T be an n-vertex tree with ∆(T ) ≤ ∆, and let G
be a graph on n+m−1 vertices such that Gc does not contain a copy of Km,µn. To prove Theorem 2.2, then,
we need to show that G contains a copy of T . Using that µ ≪ 1/∆, let µ̄ and m̄ satisfy µ ≪ µ̄ ≪ 1/m̄ ≪ 1/∆
and let D = µ̄n/100m ≥ µ̄/100µ (as m ≤ µn), so that 1/D ≪ 1/∆.

We have n ≥ µ̄n/2 + (2D + 2)m, and that G is (m, µ̄n/2)-joined as its complement is Km,µn-free and
µ ≪ µ̄. Thus, using Proposition 2.6 and Dm ≤ µ̄n/2, we can find a set W ⊂ V (G) with |W | < m such that,
setting m′ = m−|W | and G′ = G−W , G′ is an (m′, µ̄n)-joined (D,m)-expander. Note that |G′| = n+m′−1
and m′ ≤ m ≤ µn ≤ µ̄n.

If we have m′ < m̄, then, as µ̄ ≪ 1/m̄, 1/∆ and G′ is an (m′, µ̄n)-joined graph with n + m′ − 1 vertices,
G′ contains a copy of T by Theorem 2.4. If m′ ≥ m̄, then since G′ is a (D,m)-expander and m′ ≤ m, it is
also a (D,m′)-expander. Then, as 1/m̄, 1/D, µ̄ ≪ 1/∆, m′ ≥ m̄, and G′ is (m′, µ̄n)-joined, G′ contains a
copy of T by Theorem 2.5, as required.

2.5 Structural decompositions of trees

To show our cases cover all trees, we will need the following useful result which states that, if a tree has few
leaves, then it has many bare paths in compensation.

Lemma 2.7 ([20, Lemma 2.1]). Let k, ℓ, n ∈ N and let T be a tree with n vertices and at most ℓ leaves.
Then T contains at least n

k+1 − 2ℓ + 2 vertex disjoint bare paths, each of length k.

We now give our main tree decomposition, decomposing the edges of a bounded degree tree T into
subtrees T1, . . . , Tℓ such that Ti and Ti+1 intersect only on a leaf of Ti, as in the following definition.

Definition 2.8. Let ℓ ∈ N and let n = (n1, . . . , nℓ) ∈ Nℓ. An n-decomposition of a tree T is a tuple
(T1, . . . , Tℓ) of edge-disjoint subtrees of T such that

i) E(T ) = E(T1) ∪ . . . ∪ E(Tℓ),

ii) |T1| = n1, and |Ti| = ni + 1 for each 2 ≤ i ≤ ℓ, and

iii) for each i ∈ [ℓ− 1], Ti contains no vertices in Ti+2 ∪ . . .∪Tℓ, and V (Ti)∩V (Ti+1) contains exactly one
vertex, which is a leaf of Ti.

We want to find such a decomposition where the trees T1, . . . , Tℓ decrease in size by approximately a
constant factor each time. That is, an n-decomposition where n is (γ1, γ2)-descending, as follows.

Definition 2.9. For 0 < γ1 < γ2 < 1, we say that a tuple n = (n1, . . . , nℓ) ∈ Nℓ is (γ1, γ2)-descending if
γ1ni ≤ ni+1 ≤ γ2ni for every i ∈ [ℓ− 1].
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We will find descending decompositions of trees, by iteratively using the following proposition.

Proposition 2.10. Let γ ∈ (0, 1) and n,∆ ∈ N satisfy γn ≥ ∆ and n ≥ 2. Let T be a tree with n vertices
and ∆(T ) ≤ ∆, and let t ∈ V (T ). Then, there exists two subtrees T1, T2 ⊆ T such that

i) E(T ) = E(T1) ∪ E(T2),

ii) T1 and T2 share exactly one vertex v, which is a leaf of T1,

iii) t ∈ V (T ) \ V (T2), and

iv) γn ≥ |T2| ≥ γn/2∆.

Proof. View T as being rooted at t. Let v be a vertex furthest from t subject to the condition that the
subtree T2 of T rooted at v has size |T2| ≥ γn/2∆. Note that this is possible as t has at most ∆(T ) ≤ ∆
neighbours, the subtree rooted at one of these must have size at least (n − 1)/∆ ≥ n/2∆ and hence is a
candidate for v as γ < 1. Moreover, this shows v ̸= t. Let T1 be subgraph of T induced by the vertex set
(V (T ) \ V (T2)) ∪ {v}. Note that T1 is a subtree of T and v is leaf in T1. It follows that T1, T2 satisfies
conditions i), ii) and iii). For condition iv), let v′ be any neighbour of v in T2. To avoid contradicting the
definition of v, the subtree rooted at v′ must have size at most ⌊γn/2∆⌋. Since there are at most ∆ such v′,
we have |T2| ≤ 1 + ∆ · ⌊γn/2∆⌋ ≤ γn, as required.

We can now find our desired descending decompositions of large bounded degree trees, as follows.

Lemma 2.11. Let 0 < γ < 1/2 and let n,N,∆ ∈ N satisfy n − 1 > N ≥ ∆/γ. Then for any n-
vertex tree T with maximum degree at most ∆ and any t ∈ V (T ), there exists a ( γ

4∆ , 2γ)-descending tuple
n = (n1, . . . , nℓ) ∈ Nℓ with γ

3∆N ≤ nℓ ≤ N such that T has an n-decomposition (T1, . . . , Tℓ) with t ∈ V (T1).

Proof. We construct the desired decomposition iteratively, beginning with T ′
1 = T , and after i iterations

obtain a sequence of trees (T1, T2, . . . , Ti−1, T
′
i ) forming a (|T1|, |T2|−1, . . . , |Ti−1|−1, |T ′

i |−1)-decomposition
of T . For each i ≥ 1, if |T ′

i | − 1 ≤ N , then stop iterating. Otherwise, let ti be the unique common vertex of
T ′
i and Ti−1 if i ≥ 2 and let t1 = t. Noting that |T ′

i | > N ≥ ∆/γ, we can apply Proposition 2.10 to obtain
subtrees Ti and T ′

i+1 of T ′
i such that E(T ′

i ) = E(Ti)∪E(T ′
i+1), Ti and T ′

i+1 share a unique vertex ti+1 which
is a leaf of Ti, ti ∈ V (Ti) \ V (T ′

i+1), and γ|T ′
i | ≥ |T ′

i+1| ≥ γ|T ′
i |/2∆. This implies that (T1, T2, . . . , Ti, T

′
i+1)

is a (|T1|, |T2| − 1, . . . , |Ti| − 1, |T ′
i+1| − 1)-decomposition of T .

As γ < 1, this process must end; suppose it ends with a sequence (T1, . . . , Tℓ−1, T
′
ℓ). Let n1 = |T1|,

ni = |Ti| − 1 for each 2 ≤ i ≤ ℓ − 1, nℓ = |T ′
ℓ | − 1, and n = (n1, . . . , nℓ), so that (T1, . . . , Tℓ−1, T

′
ℓ) is an

n-decomposition of T . Noting that ℓ ≥ 2 as |T ′
1| = n > N + 1, and since the process stopped after ℓ and not

ℓ− 1 iterations, we have nℓ ≤ N and |T ′
ℓ−1| > N , the latter of which implies nℓ ≥ γ|T ′

ℓ−1|/2∆− 1 > γN/3∆.
It is left then only to show that n is ( γ

4∆ , 2γ)-descending.
For each i ∈ [ℓ− 1], we have |T ′

i+1| ≤ γ|T ′
i |, so that |T ′

i | ≥ |Ti| = 1 + |T ′
i | − |T ′

i+1| ≥ 1 + (1− γ)|T ′
i |. Thus,

for every i ∈ [ℓ], we have (1 − γ)|T ′
i | ≤ ni ≤ |T ′

i |. Then, for each i ∈ [ℓ− 1], we have ni+1 ≤ |T ′
i+1| ≤ γ|T ′

i | ≤
γni/(1 − γ) ≤ 2γni. Furthermore, for each i ∈ [ℓ − 1], we have ni+1 ≥ (1 − γ)|T ′

i+1| ≥ (1 − γ)γ|T ′
i |/2∆ ≥

(1 − γ)γni/2∆ ≥ γni/4∆. Thus, n is ( γ
4∆ , 2γ)-descending, as required.

We will use Lemma 2.11 directly, as well as through the following corollary.

Corollary 2.12. Let 0 < γ < 1/4 and let n, k,∆ ∈ N satisfy n > (8∆/γ)k+1. Then for any n-vertex
tree T with maximum degree at most ∆ and any t ∈ V (T ), there exists a ( γ

8∆ , 2γ)-descending tuple n =
(n1, . . . , nk) ∈ Nk such that T has an n-decomposition (T1, . . . , Tk) with t ∈ V (T1).

Proof. Let N = 1
2 ( γ

8∆ )kn and note that N > ∆/γ. Then, by Lemma 2.11, there is a ( γ
8∆ , γ)-descending

tuple n′ = (n′
1, . . . , n

′
ℓ) ∈ Nℓ with γ

4∆N ≤ nℓ ≤ N such that T has an n-decomposition (T ′
1, . . . , T

′
ℓ). Now,

as N ≥ |T ′
ℓ | − 1 ≥ (γ/8∆)ℓ|T ′

1| ≥ (γ/8∆)ℓn/2, we have that ℓ ≥ k. Let Ti = T ′
i for each i ∈ [k − 1] and

Tk =
⋃ℓ

i=k T
′
i . Let ni = n′

i for each i ∈ [k − 1], and nk =
∑ℓ

i=k n
′
i − (ℓ− k), and let n = (n1, . . . , nk). Note

that n is ( γ
8∆ , 2γ)-descending, and (T1, . . . , Tk) is an n-decomposition of T .
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2.6 Another expansion property

We will use the following variant of Proposition 2.6, which is proved in a similar manner.

Proposition 2.13. Let n0,m ∈ N and d > 0, and let G be an (m,n0)-joined graph which contains a set
V ⊂ V (G) with |V | ≥ n0 + (2d+ 2)m. Then, there exists some W ⊂ V (G) such that |W | < m and, for each
U ⊂ V (G) \W with |U | ≤ m, |NG(U, V \W )| ≥ d|U |.

Proof. Let W ⊂ V be a maximal subset subject to |W | < 2m and |NG(W,V )| ≤ d|W |, possible as W = ∅
satisfies these conditions. Note that if |W | ≥ m, then, as G is (m,n0)-joined, |V \ (W ∪ NG(W )| < n0, so
that |NG(W,V )| ≥ |V | − |W | − n0 ≥ 2dm ≥ d|W |, a contradiction. Thus, we have |W | < m.

Now, if U ⊂ V (G) \ W satisfies |U | ≤ m and U ̸= ∅, then, as |W | < m, we have |U ∪ V | < 2m and
|U ∪W | > |W |. To avoid contradicting the choice of W , we must have |NG(U ∪W,V )| ≥ d|U ∪W |, and hence
|NG(U, V \W )| ≥ d|U∪W |−d|W | ≥ d|U |. Thus, for each U ⊂ V (G) with |U | ≤ m, |NG(U, V \W )| ≥ d|U |.

2.7 Tree embeddings and (d,m)-extendability

As noted in Section 2.2, to carry out our tree embedding schemes we use techniques that come from combining
a development by Haxell [17] of a tree embedding method of Friedman and Pippenger [13] with a ‘roll-back’
idea of Johannsen (see [10]) as used by Draganic, Krivelevich and Nenadov [10]. We use the language of
extendability (first used by Glebov, Johannsen, and Krivelevich [14]): in a graph with certain expansion
conditions we embed a tree iteratively, each time adding a leaf so that the embedded subgraph maintains
an ‘extendability condition’. Key to the flexibility of this method is that removing a leaf (‘rolling-back’)
maintains the extendability condition.

The key definition here is that of a (d,m)-extendable subgraph S in a graph G, which is a subgraph
with the property that every small subset of V (G) has many neighbours outside S. Note that the following
definition uses the set N ′

G(U) = ∪v∈UNG(v).

Definition 2.14. Let d,m ∈ N be such that d ≥ 3 and m ≥ 1. Let G be a graph and let S ⊂ G be a
subgraph. We say that S is (d,m)-extendable in G if S has maximum degree at most d and, for all U ⊂ V (G)
with 1 ≤ |U | ≤ 2m, we have

|N ′
G(U) \ V (S)| ≥ (d− 1)|U | −

∑
u∈U∩V (S)

(dS(u) − 1). (2.1)

The next lemma shows how to verify the extendability condition using only the external neighbourhood.

Proposition 2.15. Let d,m ∈ N be such that d ≥ 3 and m ≥ 1. Let G be a graph and let S ⊂ G be a subgraph
with maximum degree at most d. If, for all U ⊂ V (G) with 1 ≤ |U | ≤ 2m we have |N(U, V (G)\V (S))| ≥ d|U |,
then S is (d,m)-extendable.

Proof. For each U ⊂ V (G) with 1 ≤ |U | ≤ 2m, we have

|N ′(U) \ V (S)| ≥ |N(U) \ V (S)| = |N(U, V (G) \ V (S))| ≥ d|U | ≥ (d− 1)|U | −
∑

u∈U∩V (S)

(dS(u) − 1),

as required.

The next three lemmas are the core of the extendability method, and can be found as Lemmas 5.2.6,
5.2.7 and 5.2.8 in [14]. They will allow us to manipulate an extendable graph by adding/removing a vertex
or an edge while remaining extendable. The latter two are simple to verify, while the first follows the original
inductive step in the argument by Haxell [17]. The first lemma we state in our (m,m′)-joined language, and
it follows from Lemma 5.2.6 in [14] by observing that in such a graph G any set U of m vertices satisfies
|NG(U)| ≥ |G| −m′ − |U | = |G| −m′ −m.
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Lemma 2.16 (Adding a leaf). Let d,m,m′ ∈ N be such that d ≥ 3 and m,m′ ≥ 1, and let G be an (m,m′)-
joined graph. Let S be a (d,m)-extendable subgraph of G such that |G| ≥ |S| + (2d + 2)m + m′ + 1. Then,
for every s ∈ V (S) with dS(s) ≤ d− 1, there exists y ∈ NG(s) \ V (S) such that S + sy is (d,m)-extendable.

Lemma 2.17 (Removing a leaf). Let d,m ∈ N be such that d ≥ 3 and m ≥ 1, let G be a graph and let
S ⊂ G be a subgraph of G. Suppose that there exist vertices s ∈ V (S) and y ∈ NG(s) \ V (S) so that S + sy
is (d,m)-extendable. Then, S is (d,m)-extendable.

Lemma 2.18 (Adding an edge). Let d,m ∈ N be such that d ≥ 3 and m ≥ 1. Let G be a graph and let S
be a (d,m)-extendable subgraph of G. If s, t ∈ V (S) with dS(s), dS(t) ≤ d− 1 and st ∈ E(G), then S + st is
(d,m)-extendable in G.

We will use Lemma 2.16 through the follow corollary where a tree is built on to an extendable subgraph
by applying it iteratively (see also Corollary 3.7 in [21]).

Corollary 2.19. Let d,m,m′ ∈ N be such that d ≥ 3, and let G be an (m,m′)-joined graph. Let T be a
tree with ∆(T ) ≤ d/2 and let R be a (d,m)-extendable subgraph of G with maximum degree at most d/2. If
|R| + |T | ≤ |G| − (2d + 2)m −m′, then for every vertex t ∈ V (T ) and v ∈ V (R), there is a copy S of T in
G− (V (R) \ {v}) in which t is copied to v and S ∪R is a (d,m)-extendable subgraph of G.

2.8 Concentration results

We will use the following standard version of Chernoff’s bound for binomial or hypergeometric random
variables (see, e.g., [18] for the standard definition of such variables with parameters n and p and with
parameters N , n and m, respectively).

Lemma 2.20 (see, e.g., Corollary 2.3 and Theorem 2.10 in [18]). Let X be a hypergeometric random
variable with parameters N , n and m, or a binomial random variable with parameters n and p. Then, for
any 0 < ε ≤ 3/2,

P(|X − EX| ≥ εEX) ≤ 2 exp

(
−ε2

3
EX
)
.

A sequence of random variables (Xi)i≥0 is a submartingale if E[Xi+1 | X0, . . . , Xi] ≥ Xi for each i ≥ 0.
We will use the following Azuma-type bound for submartingales.

Lemma 2.21 (see, e.g., [26]). Let (Xi)i≥0 be a submartingale and let ci > 0 for each i ≥ 1. If |Xi−Xi−1| < ci
for each i ≥ 1, then, for each n ≥ 1,

P(Xn −X0 ≤ t) ≤ 2 exp

(
− t2

2
∑n

i=1 c
2
i

)
.

3 Proof of Theorem 2.4

We now prove Theorem 2.4, which covers Theorem 2.2 when m is at most some large constant depending
on ∆. As our n-vertex graph G here is (m,µn)-joined (for some small µ), sets with constant size (i.e., m)
already have a neighbourhood covering almost all of the graph, making the graph very dense, with Θ(n2/m)
edges. Embedding a tree is not so difficult in this case, and, for example, we could use an approach of Balla,
Pokrovskiy, and Sudakov [2] if T has linearly many leaves and an absorption approach like that in [21] if T
does not have linearly many leaves. To take a unified approach, however, we will use an embedding inspired
by work by the first author and Kathapurkar [19] and the first author and Böttcher, Parczyk, and Person [4].

To do this we first embed a small linear portion of the tree randomly, before extending this greedily
vertex by vertex. Where a new leaf cannot be embedded because some embedded vertex, w say, has no more
unused neighbours, we show that a vertex in the set U of (at least m) unused vertices can be swapped into
the embedding to free up a neighbour of w, allowing the embedding to continue. This swapping property
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will follow from the random embedding of the first part of the tree, as the (m,µn)-joined property of G
implies that for some u ∈ U , many good neighbours of w have a large common neighbourhood with u, so
that, for many of these good neighbours, w′ say, w′ will have a vertex of T embedded to it with all of its
neighbours in the embedding in T embedded to common neighbours of u and w′ (see Claim 3.1) – exactly
what we need to swap w′ with u, and then use ww′ to extend the embedding.

Proof of Theorem 2.4. To recap our situation, we have µ ≪ 1/∆, 1/m with m ≤ µn, an n-vertex (m,µn)-
joined graph G, and an (n −m + 1)-vertex tree T with ∆(T ) ≤ ∆ to embed into G. Note that, moreover,
we can assume that 1/n ≪ µ, as we could take some µ′ with µ ≪ µ′ ≪ 1/∆, 1/m and prove this with µ′ in
place of µ first, where m ≤ µn implies that 1/n ≤ µ and thus 1/n ≪ µ′.

Let γ and β satisfy µ ≪ γ ≪ β ≪ 1/∆, 1/m. Applying Proposition 2.10 with an arbitrary t ∈ V (T ),
we find subtrees T0 and T1 of T sharing exactly one vertex t1, such that E(T ) = E(T1) ∪ E(T2) and
4βn ≤ |T0| ≤ 8∆βn. Label the remaining vertices in T as t2, . . . , tn−m+1 such that T [{t1, . . . , ti}] is a tree
for each i ∈ [n−m + 1], and T [t1, . . . , t|T0|] = T0. Moreover, do this so that, for a set J ⊂ {4, . . . , |T0|} with
|J | = γn, for each j ∈ J , tj−3tj−2tj−1tj is a path in T and the neighbours of tj in T except for tj−1 (if there
are any) appear in the labelling directly after tj , and the vertices tj , j ∈ J are all at distance at least 3 apart
in T (that this is possible follows easily as ∆(T ) ≤ ∆ and γ ≪ β).

Now, if V (G) contains a set U of m vertices with degree at most n/2m, then |NG(U)| ≤ m · n/2m =
n/2 < n − µn −m, and hence G is not (m,µn)-joined, a contradiction. Therefore, setting V0 to be the set
of vertices in V (G) with degree at least n/2m, we have |V (G) \ V0| < m.

We now randomly embed T0 into G[V0] vertex by vertex, as follows, creating an embedding ϕ. Arbitrarily,
choose v1 ∈ V0 and set ϕ(t1) = v1. Then, for each 2 ≤ i ≤ |T0| in turn, let wi be the image under ϕ of the
sole neighbour of ti in T [{t1, . . . , ti}], choose vi ∈ NG(wi, V0) \ {v1, . . . , vi−1} uniformly at random and set
ϕ(ti) = vi. Note that, for each 2 ≤ i ≤ |T0|, we have that wi ∈ V0, and therefore

|NG(wi, V0) \ {v1, . . . , vi−1}| ≥
n

2m
−m− |T0| ≥

n

2m
−m− 8∆βn ≥ n

4m
,

so that this embedding successfully embeds T0. We will show the following claim.

Claim 3.1. For each U ⊂ V (G) with |U | = m and v ∈ V0 \ U , with probability 1 − o(n−m−1), there are at
least 4µn values of j ∈ J such that vjv ∈ E(G) and Nϕ(T0)(vj) ⊂ NG(u) for some u ∈ U .

Proof. Fix U ⊂ V (G) with |U | = m and v ∈ V0 \ U . Now, for each y ∈ V0 \ U , as |NG(y)| ≥ n/2m and G is
(m,µn)-joined, we have

|NG(U) ∩NG(y) ∩ V0)| ≥ n

2m
−m− µn−m ≥ n

4m
.

Thus, there is some u ∈ U with |NG(u) ∩ NG(y) ∩ V0| ≥ n/4m2. As this holds for every y ∈ V0 \ U
and |NG(v, V0) \ U | ≥ n/2m − 2m ≥ n/4m, there is some u ∈ U such that, for at least n/4m2 vertices
y ∈ N(v, V0) \ U , we have |NG(u) ∩NG(y) ∩ V0| ≥ n/4m2. Say the set of these vertices y is Yv,u.

We now show that, with probability at least 1 − o(n−(m+1)), for at least 4µn values of j ∈ J , we have
vj ∈ Yv,u and Nϕ(T0)(vj) ⊂ NG(u). Let J = {j1, . . . , jγn}, in order, and, for each i ∈ [γn], let Xi be the
indicator function for vji ∈ Yv,u and Nϕ(T0)(vji) ⊂ NG(u).

Consider i ∈ [γn] and suppose we have embedded t1, . . . , tji−3. As vji−3 ∈ V0, for each y ∈ Yv,u, note
that, as |NG(u) ∩ NG(y) ∩ V0| ≥ n/4m2, all but at most m vertices in NG(vji−3) have at least n/8m3

neighbours in |NG(u) ∩ NG(y) ∩ V0|, for otherwise, as before, we get that G is not (m,n/8m2)-joined, a
contradiction as n/8m2 ≥ µn. Therefore, the probability that vji−1 ∈ NG(u) ∩NG(y) ∩ V0, vji = y and any
subsequent neighbours of tji are embedded into NG(u) ∩NG(y) ∩ V0 is at least

|NG(vji−3, V0) \ {v1, . . . , vji−3}| −m

|NG(vji−3, V0) \ {v1, . . . , vji−3}|
· n/8m3

n
· 1

n
·
(
n/4m2 − |T0|

n

)∆

≥ 1

n(8m)2∆+3
.
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As these events are distinct for each y ∈ Yv,u, we have that, conditioned on any possible values of v1, . . . , vji−3,

P(Xi = 1) ≥ |Yv,u| ·
1

n(8m)2∆+3
≥ n

4m2
· 1

n(8m)2∆+3
≥ 1

(8m)2∆+5
.

Therefore, setting α = 1
(8m)2∆+5 so that α ≫ µ, and letting Zi =

∑i
i′=1(Xi′ − α) for each i ∈ [γn], we have

that (Z0, Z1, . . . , Zγn) is a submartingale, using that, for all 1 ≤ i < i′ ≤ γn, tji and tji′ have distance at
least 3 apart in T , and tji and its neighbours appear in the sequence t1, . . . , t|T0| before tji′ or any of its
neighbours. Furthermore, for each i ∈ [γn], we have |Zi − Zi−1| ≤ 1. Therefore, by Azuma’s inequality
(Lemma 2.21), we have

P
( ∑

i∈[γn]

(Xi − α) ≤ αγn/2
)
≤ 2 exp

(
− (αγn/2)2

2γn

)
= 2 exp(−α2γn/8),

so that
∑

i∈[γn] Xi ≥ αγn/2 ≥ 4µn with probability at least 1 − 2 exp(−α2γn/8) = 1 − o(n−(m+1)), as

required, using α, γ ≫ µ ≫ 1/n.

Therefore, by Claim 3.1 and a union bound, we can assume that ϕ has the property that, for each
U ⊂ V (G) with |U | = m and v ∈ V0 \ U , there are at least 4µn values of i ∈ J such that viv ∈ E(G) and
Nϕ(T0)(vi) ⊂ NG(u) for some u ∈ U . Next, we greedily extend the embedding of T0 to one of T , where if we
cannot simply extend the embedding by embedding ti we use the property from Claim 3.1 to swap a single
vertex in the embedding to allow this extension. That is, we do the following.

Let ϕ|T0| = ϕ. Then, for each i with |T0| < i ≤ n − m + 1 in turn, we will take ϕi−1, an embedding
of T [{t1, . . . , ti−1}] into G[{v1, . . . , vi−1}], and find vi ∈ V (G) \ {v1, . . . , vi−1} and an embedding ϕi of
T [{t1, . . . , ti}] into G[{v1, . . . , vi}], as follows. Let wi be the image under ϕi−1 of the sole neighbour of ti in
T [{t1, . . . , ti}] and,

i) if possible, choose vi ∈ NG(wi, V0 \ {v1, . . . , vi−1}) and set ϕi(ti) = vi and ϕi(tj) = ϕi−1(tj) for each
j < i,

ii) otherwise, if possible, pick vi ∈ V (G) \ {v1, . . . , vi−1} and j ∈ J such that ϕi−1(tj) = vj , wivj ∈ E(G)
and ϕi−1(NT0(tj)) ⊂ NG(vi), and set ϕi(ti) = ϕi−1(tj), ϕi(tj) = vi and ϕi−1(tj′) = ϕi−1(tj′) for each
j′ ∈ [i− 1] \ {j} (noting that this does embed T [{t1, . . . , ti}] into G[{v1, . . . , vi}] as NT0(tj) = NT (tj)),
and,

iii) otherwise, stop the embedding.

Suppose the process first fails to embed tℓ for some |T0| < ℓ ≤ |T |, otherwise we have embedded all of T
in G and are done. We first show that step ii) has been carried out at most 3µn times. Indeed, suppose
otherwise, and let I be the set of the first µn values of i with |T0| < i < ℓ for which vi was embedded using
step ii), so that i < ℓ − 2µn for each i ∈ I. Now, for each i with |T0| < i < ℓ, ϕi−1 and ϕi differ on at
most one vertex in {t1, . . . , ti−1} which (if it exists) must be some vertex tj with j ∈ J for which we still
have ϕi−1(tj) = vj . Therefore, as wi ∈ {v1} ∪ ϕi−1(V (T ) \ V (T0)), once a vertex has been embedded to wi

by some ϕi′ , it is embedded to wi by any subsequent embedding. Thus, as ∆(T ) ≤ ∆, there must be at
most ∆ values of i′ > |T0| with wi′ = wi. Therefore, letting W = {wi : i ∈ I}, we have |W | ≥ |I|/∆. Let
V1 = V0 \ {v1, . . . , vℓ−2µn}, and note that there are no edges in G between W and V1, for otherwise there is
an edge from wi to V1 for some i ∈ I, which contradicts that ti was not embedded by a step i). Thus, as
|V1| ≥ 2µn−m ≥ µn and |W | ≥ µn/∆ ≥ m (using m ≪ 1/µ ≪ n), this contradicts that G is (m,µn)-joined.
Thus, we have that step ii) has been carried out at most 3µn times.

Let then J0 = {j ∈ J : ϕℓ−1(vj) = ϕ(vj)}, so that |J \ J0| ≤ 3µn. Now, we have wℓ ∈ {v1}∪ϕℓ−1(V (T ) \
V (T0)), and from the process above, we have that ϕℓ−1(t1) = v1 and, for each |T0| < i < ℓ, ti is either
embedded into V0 at step i) or embedded to some vertex ϕi−1(tj) = ϕ(tj), which is also in V0. Thus,
wℓ ∈ V0. Let Uℓ ⊂ V (G)\{v1, . . . , vℓ−1} have size m, possible as |V (G)\{v1, . . . , vℓ−1}| ≥ n− (|T |−1) ≥ m.
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Then, noting wℓ ∈ V0 \ Uℓ and using the property in Claim 3.1, there is some j ∈ J0 and vℓ ∈ Uℓ with
wℓvj ∈ E(G) and ϕ(NT0(tj)) ⊂ NG(vℓ). As the vertices in J have distance at least 3 apart in the tree, for
each j′ with tj′ ∈ NT0

(tj), we have j′ /∈ J , and therefore ϕℓ−1(NT0
(tj)) = ϕ(NT0

(tj)) ⊂ NG(vℓ). Note that
vℓ and j show that ii) can be carried out to embed tℓ, contradiction. Therefore, the process runs until all
the vertices of T have been embedding, showing that G contains a copy of T .

4 Embedding trees to cover vertex subsets

In this section, we prove the following key embedding result, which we use in Section 5 to embed each piece
of the tree into the vortex while covering a prescribed set of vertices, represented in Lemma 4.1 by the set
X.

Lemma 4.1. Let ∆ ≥ 2, d ≥ 20, m ∈ N and 0 < γ < 1/10 satisfy m ≥ d8, d ≥ ∆ and d ≫ ∆3/γ. Let G
be an m-joined graph containing a vertex v. Let T be a tree satisfying |T | ≥ 2d2m and ∆(T ) ≤ ∆, and let
t ∈ V (T ). Suppose X ⊂ V (G)\{v} contains at most (1−γ)|T | vertices, and I(X ∪{v}) is (d,m)-extendable
in G. Let t′ be a leaf of T which is not t, and suppose |G| ≥ |T | + 20dm.

Then, G contains a copy of T that covers X, in which t is copied to v, and t′ is copied into V (G) \X.

In order to prove this, we first show the following result, which embeds a tree to cover most of a prescribed
set of vertices.

Lemma 4.2. Let d,m,∆ ∈ N satisfy d ≥ 3 and d ≥ ∆. Let G be an m-joined graph which contains a set
X ⊂ V (G) and a vertex v ∈ V (G) \X such that I(X ∪ {v}) is (d,m)-extendable in G. Let T be a tree with
∆(T ) ≤ ∆ and let t ∈ V (T ). Suppose that

|T | ≥ |X| + ∆m + 2 and |G| ≥ |T | + (2d + 4)m + 1. (4.1)

Then, there is a copy S of T such that t is copied to v, S∪I(X) is (d,m)-extendable in G, and |X\V (S)| < m.

Proof. Let ℓ = |T |. Let t1 = t, and label the vertices of V (T ) \ {t} as t2, . . . , tℓ so that, for each i ∈ [ℓ],
Ti = T [{t1, . . . , ti}] is a tree. For each 2 ≤ i ≤ ℓ, let si be the unique neighbour of ti in T [{t1, . . . , ti}]. Let
v1 = v and let S1 be the graph containing just the vertex v1, so that S1 is a copy of T1 with t1 copied to v1,
and S1 ∪ I(X) is (d,m)-extendable in G. Now, carry out the following process, where for each j = 2, . . . , ℓ
in turn, if possible we perform the following Step Cj to embed tj and produce a copy Sj of Tj in which t is
copied to v and Sj ∪ I(X) is (d,m)-extendable in G.

Cj • Let uj be the copy of sj in Sj−1. If there exists a vertex vj ∈ X \ V (Sj−1) so that ujvj ∈ E(G), then
let Sj = Sj−1 + ujvj and note that Sj is a copy of Tj in G. Moreover, Sj ∪ I(X) is (d,m)-extendable
in G by Lemma 2.18. In this case, we say Step Cj is a good step.

Cj • Otherwise, if possible let vj be a neighbour of uj in V (G) \ (V (Sj−1) ∪ X) such that, setting Sj =
Sj−1 + ujvj , Sj ∪ I(X) is (d,m)-extendable in G. Note that Sj is a copy of Tj in G. In this case, we
say Step Cj is a neutral step.

We will show that we can successfully perform steps Cj for each 2 ≤ j ≤ ℓ, and that the resulting tree Sℓ

will satisfy |X \ V (Sℓ)| < m. Then, as Sℓ is a copy of Tℓ = T with t1 = t copied to v1 = v, this completes
the proof.

Claim 4.3. For each 2 ≤ j ≤ ℓ, if we have reached the start of step Cj and |X \ V (Sj−1)| ≥ m, then fewer
than ∆m neutral steps have been taken so far.

Proof of Claim 4.3. Suppose we have reached the start of step Cj and |X \ V (Sj−1)| ≥ m. Let J ⊂ [j − 1]
be the set of indices i for which the step Ci was a neutral step, noting that, for each i ∈ J , ui has no
neighbour in G in X \ V (Si−1), and hence no neighbour in X \ V (Sj−1). Thus, as G is m-joined, we have
|{ui : i ∈ J}| < m. As ∆(T ) ≤ ∆, |{ui : i ∈ J}| ≥ |J |/∆, so |J | < ∆m, and thus before the start of step Cj

we took fewer than ∆m neutral steps. ⊡
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Suppose then, for contradiction, that the process reaches the start of Step Cj for some 2 ≤ j ≤ ℓ and
fails to take either a good or neutral step. Note that the number of good steps that have been taken is
|V (Sj−1) ∩X| and the number of neutral steps that have been taken is |V (Sj−1) \X| − 1, which is at most
|Sj−1| − |X| + m− 2 if |X \ V (Sj−1)| < m. Therefore, by Claim 4.3, the number of neutral steps is at most
max{∆m, |Sj−1| − |X| + m− 2}, so that

|Sj−1 ∪ I(X)| = (|X| + 1) + (|V (Sj−1) \X| − 1) ≤ |X| + 1 + max{∆m, |Sj−1| − |X| + m− 2}

≤ max{|X| + ∆m + 1, |Sj−1| + m}
(4.1)

≤ |T | + m.

Therefore, by (4.1), |G| ≥ |T |+ (2d+ 4)m+ 1 ≥ |Sj−1 ∪ I(X)|+ (2d+ 2)m+m+ 1, so that, by Lemma 2.16,
there is some vj ∈ V (G) \ (V (Sj−1) ∪X) which is a neighbour of uj in G and such that Sj−1 ∪ I(X) + ujvj
is (d,m)-extendable in G, contradicting that we did not take a good or neutral step at Step Cj .

Therefore, the process has successfully taken Step Cj for each 2 ≤ j ≤ ℓ, and produced Sℓ, a copy of Tℓ

in G with t1 = t copied to v1 = v. Finally, note that at the start of Step Cℓ we will have taken at most
|X| good steps, and thus at least (ℓ− 2) − |X| = |T | − |X| − 2 ≥ ∆m neutral steps by (4.1). Therefore, by
Claim 4.3, |X \ V (Sℓ)| ≤ |X \ V (Sℓ−1)| < m, and thus Sℓ is the required copy of T . □

Given a graph G and a subset Q ⊂ V (G), we say that Q is k-separated in G if each pair of vertices in Q
is at distance at least k in G. We now need two results from [21], which we state in a slightly simpler form
that follow directly from [21, Corollary 3.16] and [21, Lemma 4.1], respectively.

Proposition 4.4. Let k ≥ 0 and ∆ ≥ 2. Let T be a tree with ∆(T ) ≤ ∆ and |T | ≥ 3∆k. Then, there is a
subset Q ⊂ V (T ) which is (2k + 2)-separated in T such that |Q| ≥ |T |/(8k + 8)∆k.

Lemma 4.5. Let k, d,m ∈ N with d ≥ 20. Let G be an m-joined graph and let R ⊂ G be a subgraph with
∆(R) ≤ d/4. Suppose X ⊂ V (G)\V (R) is such that R∪I(X) is (d,m)-extendable in G. Let T be a tree with
∆(T ) ≤ d/4 which has a set of 3|X| vertices which is (4k + 4)-separated in T . Let t ∈ V (T ) and r ∈ V (R),
and suppose |R| + |X| + |T | ≤ |G| − 10dm− 2k.

Then, there is a copy S of T in G−V (R \ {r}) so that t is copied to r, R∪ I(X)∪S is (d,m)-extendable
in G and |X \ V (S)| ≤ 2m/(d− 1)k.

We can now prove Lemma 4.1. The proof takes a tree decomposition using Corollary 2.12, embed the
first piece to cover most of X using Lemma 4.5, and then repeatedly uses Proposition 4.4 and Lemma 4.5
to embed the remaining pieces while covering more and more of the uncovered vertices in X until all the
vertices in X are covered.

Proof of Lemma 4.1. Let γ2 = γ/10, γ1 = γ2/16∆ and T ′ = T − t′. Let ℓ be the smallest integer such that
2m/(d− 1)ℓ−1 < 1, so that ℓ ≥ 9 as m ≥ d8. By minimality, we also have that 2m ≥ (d− 1)ℓ−2, and thus,
using d ≫ ∆3/γ, we have

|T ′| ≥ 2d2m− 1 ≥ d2(d− 1)ℓ−2 − 1 > (16∆/γ2)ℓ+1. (4.2)

Then, by Corollary 2.12, there is a (γ1, γ2)-descending tuple n = (n1, · · · , nℓ) ∈ Nℓ such that T ′ has an
n-decomposition (T1, . . . , Tℓ) with t ∈ V (T1). Let t0 = t and, for each i ∈ [ℓ− 1], let ti be the unique vertex
shared by Ti and Ti+1.

Note that
∑ℓ

i=2 ni ≤ 2γ2n1 ≤ 2γ2|T |, so

|T1| ≥ (1 − 2γ2)|T | − 1 ≥ (1 − γ/2)|T | ≥ |X| + γ|T |/2 ≥ |X| + ∆m + 3.

As |G| ≥ |T | + 20dm, we may apply Lemma 4.2 to find a copy S1 of T1 in G in which t is copied to v,
S1 ∪ I(X) is (d,m)-extendable in G and |X \V (S1)| < m. Next, for each 2 ≤ j ≤ ℓ in turn, do the following.

Dj If possible, find a copy Sj of Tj in G − (∪i∈[j−1]V (Si) \ {vj−1}) such that tj−1 is copied to vj−1,
(∪i∈[j]Si) ∪ I(X) is (d,m)-extendable in G, and |X \ (∪i∈[j]Si)| < 2m/(d− 1)j−1.
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T1 T2 T3T : t0 t1 t2 t3 . . .

V0 V1 V2 V3 V4 · · ·

G : . . .S1 S2 S3

v0

v1

v2
v3

Figure 1: To embed T for Theorem 2.5, we divide T into T1 ∪ . . . ∪ Tℓ using Lemma 2.11, then find an
accompanying vortex partition V0 ∪ V1 ∪ . . . ∪ Vℓ (of a large subgraph G′ of G) using Lemma 5.8. We then
use Lemma 4.1 to iteratively embed Ti into G[Vi−1 ∪ Vi], where, if i < ℓ, any unused vertices in Vi−1 are
covered and the common vertex ti of Ti and Ti+1 is embedded to vi in Vi.

Suppose that for some 2 ≤ j ≤ ℓ this was not possible. Note that the set Xj = X \ (∪i∈[j−1]Si) satisfies

|Xj | < 2m/(d − 1)j−2, and |Tj | = nj + 1 ≥ γj−1
1 n1 ≥ γj−1

1 |T |/2 ≥ γj−1
1 d2m. Hence, we may apply

Proposition 4.4 to obtain a set Qj of vertices in Tj that is (4j)-separated, with

|Qj | ≥
|Tj |

16j∆2j−1
≥ γj−1

1 d2m

16j∆2j−1
≥ 6m

(d− 1)j−2
· γ

j−1
1 (d− 1)j

96j∆2j−1
≥ 6m

(d− 1)j−2
≥ 3|Xj |,

where the second last inequality follows from d ≫ ∆3/γ. Furthermore, we have

| ∪i∈[j−1] Si| + |Xj | + |Tj | ≤ |T | + |Xj | ≤ |T | + 2m ≤ |G| − 10dm− 2(j − 1),

so we may apply Lemma 4.5 with R = ∪i∈[j−1]Si, X = Xj , T = Tj , r = vj−1 and t = tj−1 to find a copy Sj

of Tj , satisfying all the required conditions in Dj , which is a contradiction.
Therefore, we can complete Dj for each 2 ≤ j ≤ ℓ. Taking S′ = ∪j∈[ℓ]Sj , we have, then, a copy of T ′ in

which t is copied to v such that I(X) ∪ S′ is (d,m)-extendable and |X \ V (S′)| < 2m/(d − 1)ℓ−1 < 1. In
other words, the copy S′ of T ′ covers X. Let s′ be the vertex of S′ which needs a leaf added to make S′ into
a copy of T . As |G| ≥ |S′|+ (2d+ 2)m+m+ 1, by Lemma 2.16 there is some v′ ∈ V (G) \V (S′) ⊂ V (G) \X
which is a neighbour of s′. Let S = S′ + s′v′, and note that this is a copy of T which covers X, in which t
is copied to v and t′ is copied into V (G) \X, as required.

5 Proof of Theorem 2.5

In this section, we prove Theorem 2.5, where we embed a tree T with n−m+ 1 vertices and ∆(T ) ≤ ∆ into
an n-vertex (m,µn)-joined (D,m)-expander graph G, where m ≤ µn and µ, 1/D, 1/m ≪ 1/∆. We wish to
do the following. First, we partition T into trees T1 ∪ . . . ∪ Tℓ with geometrically-decreasing size. We then
use the sizes of the trees in this partition to inform the sizes of a partition of all but at most m/4 vertices of
G as V0 ∪ V1 ∪ . . .∪ Vℓ. Then, for each i ∈ [ℓ] in turn, we embed Ti into G[Vi−1 ∪ Vi], attached appropriately
to the existing embedding, so that, if i < ℓ, all the unused vertices in Vi−1 are covered, and the sole vertex
shared by Ti and Ti+1 is embedded into Vi. This is depicted in Figure 1.

To embed each Ti, except for the last piece, Tℓ, where we have very few spare vertices, we use Lemma 4.1.
In order to do this in the manner described for the partition V0 ∪ V1 ∪ . . . ∪ Vℓ, we need several properties,
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which we record, as follows, as a vortex-partition. Essentially, we require the sets to have (approximately)
the right size (see E1), and that, for each i ∈ [ℓ], the subgraph we are using to embed Ti (which will be a
subgraph of G[Vi−1 ∪ Vi]) is joined (see E2) and the set of any remaining vertices in Vi−1 to be covered is,
considered as a empty graph, extendable (which will follow from E3).

Definition 5.1 (Vortex partition). Let d ∈ N and λ > 0, and let n ∈ Nℓ+1. For a graph G an (n, λ, d)-
vortex-partition in G is a partition V0 ∪ V1 ∪ . . . ∪ Vℓ of V (G) such that the following hold.

E1 For each i ∈ [ℓ]0, |Vi| = (1 ± λ)ni.

E2 For each i ∈ [ℓ], G[Vi−1 ∪ Vi] is (λni−1)-joined.

E3 For each i ∈ [ℓ], I(Vi−1) is (d, λni−1)-extendable in G[Vi−1 ∪ Vi].

We need the vortex partition that we find to cover all but very few (at most m/4) vertices in the graph
G. To do this, we first find an initial ‘vortex’ in Section 5.1, before ‘cleaning’ this into a vortex partition in
Section 5.2. We can then carry out our embedding in Section 5.3, completing the proof of Theorem 2.5.

5.1 Vortices

To find our vortex partition, we first find a vortex in our graph G, which is a nested sequence of vertex sets
with an increasingly good expansion property as the sets decrease in size. We define this precisely as follows.

Definition 5.2 (Vortex). Let ℓ be a non-negative integer, λ > 0, m ∈ N, and let n = (n0, . . . , nℓ) ∈ Nℓ+1.
For a graph G on n0 vertices, an (n,m, λ)-vortex in G is a sequence of subsets U0 ⊃ U1 ⊃ . . . ⊃ Uℓ such that
U0 = V (G) and, for each i ∈ [ℓ],

F1 |Ui| = ni, and

F2 every subset U ⊂ Ui−1 with |U | = m satisfies |N(U,Ui)| ≥ (1 − λ)|Ui|.

For an appropriate descending tuple n = (n0, . . . , nℓ) ∈ Nℓ+1 and an n-vertex graph G which is (m,µn)-
joined we will find an (n,m, 2λ)-vortex U0 ⊃ U1 ⊃ . . . ⊃ Uℓ in G (with µ ≪ λ) by randomly choosing such a
nested subsequence subject only to |Ui| = ni for all i ∈ [ℓ]0, and showing that it is an (n,m, 2λ)-vortex with
high probability (see Lemma 5.3). In this we are inspired by a similar vortex used by Barber, Kühn, Lo,
and Osthus [3] in a graph with high minimum degree, and we use some similar calculations in the analysis.

More challengingly though, we want to show that we can ensure that G[Uℓ−1] is also (λm)-joined. To
this end, we additionally choose the vortex with two vertex sets V0 ⊃ V1 such that, with high probability,
V0 and V1 fit into the randomly chosen nested subsequence that will be (with high probability) our vortex
so that V1 contains Uℓ−1. Then, we show that with high probability, every m-set in V0 has at most λm
non-neighbours in V0, and, conditioned on this, that every (λm)-set in V1 has at most λm non-neighbours
in V0. For this, we need the random sets to jump down in size by more than the standard ratio between the
sets in the vortex, which is why we take the additional sets V0 and V1. We also use sets W and W ′ chosen
disjointly which will fit within U1 \ U2 with high probability, for a similar ease of analysis for the expansion
of small sets into U1 \U2. Using all this, we prove the following lemma finding the vortex that we will need.

Lemma 5.3. Let
1

m
≪ µ ≪ 1

K
,

1

D
≪ λ, γ1, γ2 ≤ 1

9
,

with γ1 < γ2 and let n be such that m ≤ µn. Let G be an n-vertex (m,µn)-joined graph which is a (D,m)-
expander, and let n = (n0, n1, . . . , nℓ) be a (γ1, γ2)-descending tuple with n0 = n and γ1Km ≤ nℓ ≤ 2Km.

Then, G contains an (n,m, 2λ)-vortex U0 ⊃ U1 ⊃ . . . ⊃ Uℓ such that G[Uℓ−1] is λm-joined and, for every
U ⊂ V (G) with |U | = ⌊m

4 ⌋, |NG(U,U1 \ U2)| ≥ γ1Dm/200.
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Proof. Let K0 be such that µ ≪ 1
K0

≪ 1
K and let k ∈ [ℓ] be some index with γ1K0m ≤ nk ≤ K0m.

Let p0 = 2nk

n0
and q = n1−n2

4n0
, and take random disjoint sets V0, W and W ′ in V (G) so that the location

of each vertex is selected uniformly at random and is in V0 with probability p0, in W with probability q
and in W ′ with probability q. Let V1 ⊂ V0 be formed by including each element of V0 independently at
random with probability p1 := 2nℓ−1

nk
. Let F be the event that nk ≤ |V0| ≤ 3nk, nℓ−1 ≤ |V1| ≤ 9nℓ−1, and

n1−n2

6 ≤ |W |, |W ′| ≤ n1−n2

3 . If F holds, then let U0 ⊃ U1 ⊃ . . . ⊃ Uℓ be a sequence of sets chosen uniformly
at random subject to Uk−1 ⊃ V0 ⊃ Uk, Uℓ−2 ⊃ V1 ⊃ Uℓ−1, U1 \U2 ⊃ W ∪W ′, and |Ui| = ni for each i ∈ [ℓ]0
(where we have used that |W ∪W ′| ≤ 2(n1−n2)

3 , |V1| ≤ 9nℓ−1 ≤ nℓ−1/γ2 ≤ nℓ−2, and, similarly, |V0| ≤ nk−1).
If F does not hold, then let U0 ⊃ U1 ⊃ . . . ⊃ Uℓ be a sequence of sets chosen uniformly at random subject
to Ui = ni for each i ∈ [ℓ]0.

Claim 5.4. With probability more than 3/4, F holds.

Claim 5.5. With probability more than 3/4, U0 ⊃ U1 ⊃ . . . ⊃ Uℓ is an (n,m, 2λ)-vortex in G.

Claim 5.6. With probability more than 3/4, for every set U ⊂ V (G) with |U | = ⌊m
4 ⌋, we have |NG(U,W ∪

W ′)| ≥ γ1Dm/200.

Claim 5.7. With probability more than 3/4, G[V1] is (λm)-joined.

These claims easily imply the lemma. Indeed, by them, we have that, with positive probability, F
holds, U0 ⊃ U1 ⊃ . . . ⊃ Uℓ is an (n,m, 2λ)-vortex in G, every subset U ⊂ V with |U | = ⌊m

4 ⌋ satisfies
|N(U,W ∪W ′)| ≥ γ1Dm/200, and G[V1] is (λm)-joined. Moreover, as F holds, we have Uℓ−1 ⊂ V1 and thus
G[Uℓ−1] is (λm)-joined, and, as W ∪W ′ ⊂ U1 \ U2, we have that every subset U ⊂ V (G) with |U | = ⌊m

4 ⌋
satisfies |N(U,U1 \ U2)| ≥ γ1Dm/200, as required. Thus, it is left only to prove the four claims.

Proof of Claim 5.4. Now, by Lemma 2.20, using p0 = 2nk/n0 and nk ≥ γ1K0m, we have

P
(∣∣|V0| − 2nk

∣∣ > nk

)
≤ 2 exp(−2nk/12) = 2 exp(−nk/6) < 1/16.

Conditioning on nk ≤ |V0| ≤ 3nk and again by Lemma 2.20, using p1 = 2nℓ/nk and nℓ ≥ γ1Km, we have

P(|V1| ≤ nℓ or |V1| ≥ 9nℓ) ≤ P(||V1| − p1|V0|| ≥ p1|V0|/2) ≤ 2 exp(−nℓ/6) < 1/16.

Similarly, by Lemma 2.20, using q = n1−n2

4n0
and n2 ≤ γ2n1, we have for each i ∈ [2],

P
(∣∣|Wi| − n1−n2

4

∣∣ > n1−n2

12

)
≤ 2 exp(−(n1 − n2)/108) <

1

16
. (5.1)

Thus, with probability more than 1 − 4/16 = 3/4, we have nk ≤ |V0| ≤ 3nk, nℓ ≤ |V1| ≤ 9nℓ, and
n1−n2

6 ≤ |W |, |W ′| ≤ n1−n2

3 , and hence F holds. ⊡

Proof of Claim 5.5. Note that, as V0, V1,W,W ′ are themselves random sets, the sets U0 ⊃ U1 ⊃ . . . ⊃ Uℓ have
the same distribution as a nested sequence of sets chosen uniformly at random subject to |Ui| = ni for each

i ∈ [ℓ]0, whether F holds or not. Now, for each i ∈ [ℓ]0, let εi = (m/ni)
1/4

and ni = (n0, n1, . . . , ni). For each
i ∈ [ℓ], let Ei be the event that U0 ⊃ U1 ⊃ . . . ⊃ Ui−1 is an (ni,m, λ+ εi−1)-vortex, but U0 ⊃ U1 ⊃ . . . ⊃ Ui

is not an (ni,m, λ + εi)-vortex. As ε0 ≥ 0 and λ ≥ µ, U0 = V (G) is an (n0,m, λ + ε0)-vortex. If no event
Ei, i ∈ [ℓ], holds, then U0 ⊃ U1 ⊃ . . . ⊃ Uℓ is an (n0,m, λ + εℓ)-vortex, and hence an (n0,m, 2λ)-vortex as
εℓ = (m/nℓ)

1/4 ≤ (γ1K)−1/4 ≤ λ. Therefore, to prove the claim it is sufficient to show that∑
i∈[ℓ]

P(Ei) <
1

4
.
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Let i ∈ [ℓ], and suppose that U0 ⊃ U1 ⊃ . . . ⊃ Ui−1 is an (ni−1,m, λ + εi−1)-vortex. For each U ⊂ Ui−1

with |U | = m, as |N(U,Ui−1)| ≥ (1 − λ− εi−1)ni−1, we have E|N(U,Ui)| ≥ (1 − λ− εi−1)ni ≥ ni/2 and, by
Lemma 2.20 with ε = (m/ni)

1/3, that

P

(
|N(U,Ui)| <

(
1 − λ− εi−1 −

(
m

ni

)1/3 )
ni

)
≤ 2 exp

(
−
(
m

ni

)2/3

· ni

6

)
= 2 exp

(
−m

6
·
(ni

m

)1/3)
.

(5.2)
Now, as ni ≤ γ2ni−1, we have

εi − εi−1 =

(
m

ni

)1/4

−
(

m

ni−1

)1/4

=

(
m

ni

)1/4
(

1 −
(

ni

ni−1

)1/4
)

≥
(
m

ni

)1/4

(1− γ
1/4
2 ) ≥

(
m

ni

)1/3

, (5.3)

as ni ≥ nℓ ≥ γ1Km and 1/K ≪ γ1, γ2, so that (1 − γ
1/4
2 ) ≥ (1/γ1K)1/12 ≥ (m/ni)

1/12. Furthermore, in
preparation for taking a union bound over all sets U ⊂ Ui−1 with size m, as γ1ni−1 ≤ ni, we have(

ni−1

m

)
· 2 exp

(
−m

6
·
(ni

m

)1/3)
≤
(eni−1

m

)m
· 2 exp

(
−m

6
·
(ni

m

)1/3)
≤ 2 exp

(
m

6
·
(

6 log

(
eni

γ1m

)
−
(ni

m

)1/3))
≤ 2 exp

(
−m

12
·
(ni

m

)1/3)
≤ m

ni
, (5.4)

where the last line of inequalities holds as 1/K ≪ γ1, γ2 and ni/m ≥ nℓ/m ≥ γ1K. Therefore, by (5.2),
(5.3) and (5.4), and by taking a union bound, we have that, with probability more than 1− (m/ni), for each
U ⊂ Ui−1 with |U | = m we have |N(U,Ui)| ≥ (1 − λ− εi)ni.

Hence, we have∑
i∈[ℓ]

P(Ei) ≤
∑
i∈[ℓ]

m

ni
≤
∑
i∈[ℓ]

m

nℓ
· γℓ−i

2 ≤ 1

1 − γ2
· m
nℓ

≤ 2m

nℓ
≤ 2

γ1K
<

1

4
,

as required. ⊡

Proof of Claim 5.6. Let E be the event that |W | ≥ n1−n2

6 . By (5.1), P(E) ≥ 7/8. Note that, if E holds,
then |W | ≥ γ1n/8 ≥ µn + (2γ1D + 2)m, as n1 − n2 ≥ (1 − γ2)γ1n ≥ 7γ1n/8 and µ ≪ 1/D ≪ γ1. Thus, for
every choice of W for which E holds, we can apply Proposition 2.13 to find BW ⊂ V (G) such that |BW | < m
and, for each U ⊂ V (G) \BW with |U | ≤ m, we have |NG(U,W )| ≥ γ1D|U |.

Let E′ be the event that E holds and |NG(U,W ′)| ≥ γ1Dm/100 for every U ⊂ BW with |U | = ⌊m/8⌋
and |NG(U,W )| < γ1Dm/100. Note that, conditioned on any choice of W for which E holds, as G is
a (D,m)-expander, for every set U ⊂ BW with |U | = ⌊m/8⌋ and |NG(U,W )| < γ1Dm/100, we have
|NG(U, V (G) \ W )| ≥ D|U | − γ1Dm/100 ≥ D|U |/2. Thus, by Lemma 2.20 with ε = 1/1000 and a union
bound,

P(E′ does not hold|E holds) ≤
(

m

⌊m/8⌋

)
· 2 exp

(
−γ1Dm

6 · 108

)
<

1

8
,

as 1/m, 1/D ≪ γ1. Therefore, P(E′ holds) ≥ P(E) − P(E′ does not hold|E holds) > 3/4.
We claim that if E′ holds, then, for every subset U ⊂ V (G) with |U | = ⌊m/4⌋, |NG(U,W ∪ W ′)| ≥

γ1Dm/200. Indeed, for a set U ⊂ V (G) with |U | = ⌊m/4⌋, if |U ∩BW | ≥ ⌊m/8⌋, then either |NG(U,W )| ≥
γ1Dm/100 − |U | ≥ γ1Dm/200, or, as E′ holds, |NG(U,W ′)| ≥ γ1Dm/100 − |U | ≥ γ1Dm/200. On the
other hand, if |U ∩ BW | < ⌊m/8⌋, then |U \ BW | ≥ ⌊m/8⌋, and so by the choice of BW , |NG(U) ∩ W | ≥
γ1Dm/8− |U | ≥ γ1Dm/200, as required. Since E′ holds with probability in excess of 3/4, the claim follows.

⊡
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Proof of Claim 5.7. We first show that G[V0] is not (m,λm)-joined with probability less than 1/12. Note
that, for each U ⊂ V (G) with |U | = m we have |V (G) \ (U ∪N(U))| ≤ µn, and therefore

P(U ⊂ V0 and |V0 \ (U ∪N(U))| > λm) ≤ pm0 ·
(
µn

λm

)
pλm0 . (5.5)

Thus, the probability that G[V0] is not (m,λm)-joined is, as p0 = 2nk/n0 = 2nk/n, at most(
n

m

)
pm0 ·

(
µn

λm

)
pλm0 ≤

(ep0n
m

)m
·
(ep0µn

λm

)λm
=

(
2enk

m

)m

·
(

2eµnk

λm

)λm

≤ (2eK0)
m ·
(

2eµK0

λ

)λm

= (2eK0)
(1+λ)m ·

(µ
λ

)λm
≤ K3m

0 ·
(µ
λ

)λm
≤ 1

12
, (5.6)

where the last inequality follows as µ ≪ 1/K0 ≪ λ.
From the proof of Claim 5.4, we have P(|V0| > 4nk) < 1/12. Furthermore, if G[V0] is (m,λm)-joined and

|V0| ≤ 4nk, then, by similar calculations to those in (5.5) and (5.6) and as p1 = 2nℓ−1/nk, nℓ−1 ≤ 2Km/γ1
and nk ≥ γ1K0m, we have that G[V1] is not (λm)-joined with probability at most(

4nk

λm

)
pλm1 ·

(
m

λm

)
pλm1 ≤

(
4ep1nk

λm

)λm

·
(ep1m

λm

)λm
=

(
16e2n2

ℓ−1

λ2mnk

)λm

≤
(

64e2K2

λ2γ3
1K0

)λm

<
1

12
,

where the last inequality holds as 1/K0 ≪ 1/K ≪ λ, γ1 and 1/m ≪ λ.
Altogether then, with probability in excess of 3/4, G[V1] is (λm)-joined. ⊡ □

5.2 Vortex partition

We now use Lemma 5.3 to find a vortex U0 ⊃ U1 ⊃ . . . ⊃ Uℓ and then run a simple ‘cleaning procedure’ to
find disjoint sets V1, V2, . . . , Vℓ for a vortex partition (see Definition 5.1) such that Vi is a subset of Ui \Ui+1

which contains almost all those vertices for each i ∈ [ℓ], before then completing the vortex partition by using
all but at most m/4 of the remaining vertices not in ∪i∈[ℓ]Vi to form V0. This will give us the following
result.

Lemma 5.8. Let
1

m
≪ µ ≪ 1

K
,

1

D
≪ λ ≪ 1

d
≪ γ1, γ2 ≤ 1

16
,

with γ1 < γ2 and let n be such that m ≤ µn. Let G be an n-vertex (m,µn)-joined graph which is a (D,m)-
expander. Let ℓ ∈ N and let n = (n0, n1, . . . , nℓ) be a (γ1, γ2)-descending tuple with n =

∑
i∈[ℓ]0

ni and
γ1Km ≤ nℓ ≤ 2Km.

Then, G contains a subgraph G′ with at least n − ⌊m/4⌋ vertices that has an (n, 2λ, d)-vortex partition
V0 ∪ V1 ∪ . . . ∪ Vℓ such that G[Vℓ−1 ∪ Vℓ] is (λm)-joined.

Proof. Let n′ = (n′
0, n

′
1, . . . , n

′
ℓ) with n′

i =
∑ℓ

j=i ni for each i ∈ [ℓ]0. Note that n′ is (γ1/2, γ2)-descending,
n′
j/2 ≤ nj ≤ n′

j for all j ∈ [ℓ]0, and γ1Km ≤ n′
ℓ ≤ 2Km. Therefore, by Lemma 5.3, G contains an

(n′,m, 2λ)-vortex U0 ⊃ U1 ⊃ . . . ⊃ Uℓ such that G[Uℓ−1] is (λm)-joined and, for every set U ⊂ V (G) with
|U | = ⌊m

4 ⌋, |NG(U,U1 \ U2)| ≥ γ1Dm/200. For each i ∈ [ℓ− 1]0, let V ′
i = Ui \ Ui+1, and let V ′

ℓ = Uℓ. Note
that, for each i ∈ [ℓ]0, |V ′

i | = ni.
Let Wℓ+1 = ∅. Now, for each j = ℓ, ℓ− 1, . . . , 1 in turn, do the following, where Wj+1 is a set chosen (if

j < ℓ) in the previous iteration such that |Wj+1| < m.

G1 Note that, as λ ≪ γ1 and d ≪ K, we have |V ′
j \Wj+1| ≥ nj −m ≥ 2λnj−1 + (2d + 2)m.

G2 Note that, by F2 and V ′
j−1 ∪ V ′

j ⊂ Uj−1, we have that G[V ′
j−1 ∪ (V ′

j \Wj+1)] is (m,λn′
j−1)-joined, and

hence (m, 2λnj−1)-joined.
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G3 Using Proposition 2.13, take Wj ⊂ V ′
j−1 ∪ (V ′

j \ Wj+1) such that |Wj | < m and, for each U ⊂
(V ′

j−1 ∪ V ′
j ) \ (Wj ∪Wj+1) with |U | ≤ m, |NG(U, V ′

j \ (Wj ∪Wj+1))| ≥ d|U |.

G4 Let Vj = V ′
j \ (Wj ∪Wj+1).

Now, for every set U ⊂ V (G) with |U | = ⌊m/4⌋, we have

|NG(U, V1)| ≥ |NG(U, V ′
1)| − |W1 ∪W2| ≥ γ1Dm/200 − 2m ≥ γ1Dm/500,

as 1/D ≪ γ1. Let W0 ⊂ V (G) be a maximal subset subject to |W0| < m/2 and |NG(W0, V1)| ≤ 10d|W0|.
Similarly to the proof of Proposition 2.13 and using d ≪ γ1D, we have |W0| < m/4, and, for each U ⊂ V (G)\
W0 with |U | ≤ m/4, |NG(U, V1)| ≥ 10d|U |. Let V0 = V (G)\(W0∪V1∪ . . .∪Vℓ) and G′ = G[V0∪V1∪ . . .∪Vℓ].

Note that |G′| ≥ n − m/4, and that, as Vℓ−1 ∪ Vℓ ⊂ V ′
ℓ−1 ∪ V ′

ℓ = Uℓ−1, G[Vℓ−1 ∪ Vℓ] is (λm)-joined.
Therefore, to complete the proof it is left only to show that V0 ∪V1 ∪ · · · ∪Vℓ is an (n, 2λ, d)-vortex partition
of G′.

Since V ′
0 \W0 ⊂ V0 ⊂ V ′

0 ∪W1 ∪ . . .∪Wℓ, |W0| ≤ ⌊m/4⌋ and |W1 ∪ . . .∪Wℓ| ≤ ℓm, we have (1− 2λ)n0 ≤
|V0| ≤ (1 + 2λ)n0, proving the j = 0 case of E1. For all j ∈ [ℓ], |V ′

j | = nj , Vj = V ′
j \ (Wj ∪ Wj+1) and

|Wj |, |Wj+1| < m ≤ λnj , so we have |Vj | ≥ nj − 2m ≥ (1 − 2λ)nj and E1 holds. Now let 2 ≤ j ≤ ℓ. Since
Vj−1 ⊂ V ′

j−1 and Vj ⊂ V ′
j \ Wj+1, G[Vj−1 ∪ Vj ] is (m, 2λnj−1)-joined by G2, hence (2λnj−1)-joined, and

thus E2 holds. For E3, let U ⊂ Vj−1 ∪ Vj ⊂ (V ′
j−1 ∪ V ′

j ) \ (Wj ∪Wj+1) satisfy |U | ≤ 4λnj−1. If |U | ≤ m,
we have |N(U, Vj)| ≥ d|U | by G3. If |U | > m, then since G[Vj−1 ∪ Vj ] is (m, 2λnj−1)-joined and dλ ≪ γ1,
we have

|N(U, Vj)| ≥ |Vj | − |U | − 2λnj−1 ≥ (nj − 2m) − 4λnj−1 − 2λnj−1 ≥ 4dλnj−1 ≥ d|U |.

Hence, I(Vj−1) is (d, 2λnj−1)-extendable in G[Vj−1 ∪ Vj ] by Proposition 2.15, and so E3 holds.
For the j = 1 case, E2 holds as G ⊃ G[V0∪V1] is (m,µn)-joined, thus (m, 2λn0)-joined and (2λn0)-joined.

Let U ⊂ V0 ∪ V1 satisfy |U | ≤ 4λn0. If |U | ≤ ⌊m/4⌋, then |N(U, V1)| ≥ 10d|U | ≥ d|U |. If ⌊m/4⌋ < |U | ≤ m,
then let U ′ ⊂ U have size ⌊m/4⌋, and thus

|N(U, V1)| ≥ |N(U ′, V1)| − |U \ U ′| ≥ 10d|U ′| − |U | ≥ 2dm−m ≥ dm ≥ d|U |.

If |U | > m, then, since G[V0 ∪ V1] is (m, 2λn0)-joined, we have

|N(U, V1)| ≥ |V1| − |U | − 2λn0 ≥ n1 − 2m− 6λn0 ≥ 4dλn0 ≥ d|U |.

Thus, we have that I(V0) is (d, 2λn0)-extendable in G[V0∪V1], proving the j = 1 case of E3. This completes
the proof that V0 ∪ V1 ∪ . . . ∪ Vℓ is an (n, d, 2λ)-vortex partition of G′. □

5.3 Proof of Theorem 2.5

Using Lemma 5.8, we can now prove Theorem 2.5 following the outline at the start of this section.

Proof of Theorem 2.5. Let d = 104∆5, γ = 1/10∆ and note that d ≫ ∆3/γ. Let

1

m
≪ µ ≪ 1

K
,

1

D
≪ λ ≪ 1

d
.

Let γ1 = γ/4∆ and γ2 = 2γ, and let T be a tree with n−m+ 1 vertices and ∆(T ) ≤ ∆. Using Lemma 2.11,
we can find some ℓ ∈ N, some n′ = (n′

1, . . . , n
′
ℓ) ∈ Nℓ that is (γ1, γ2)-descending with γKm/3∆ ≤ n′

ℓ ≤ Km,
and an n′-decomposition (T1, . . . , Tℓ) of T . For 1 ≤ i ≤ ℓ − 1, let ti be the leaf of Ti in Ti+1, and let tℓ be
an arbitrary leaf of Tℓ which is not tℓ−1. As every tree with at least 2 vertices has at least 2 leaves, we may
also take a leaf t0 of T1 which is not t1.
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Let n0 = ⌈(1 − γ2)n′
1⌉, let nj =

⌊
γ2n

′
j

⌋
+
⌈
(1 − γ2)n′

j+1

⌉
for each j ∈ [ℓ− 1], and let nℓ = ⌊γ2n′

ℓ⌋+m− 1.
Note that, for each j ∈ [ℓ], nj ≤ n′

j and

ℓ∑
i=j

ni =
⌊
γ2n

′
j

⌋
+

ℓ∑
i=j+1

n′
i + (m− 1), (5.7)

and
ℓ∑

i=0

ni =

ℓ∑
i=1

n′
i + (m− 1) = |T | + (m− 1) = n. (5.8)

Moreover, using n′ is (γ1, γ2)-descending, we can verify that n = (n0, n1, . . . , nℓ) is (γ1/2, 3γ2)-descending.
Let K ′ = K/5∆ and note that nℓ = ⌊γ2n′

ℓ⌋ + m− 1 ≤ 2γ2n
′
ℓ ≤ 2Kγ2m = 2Km/5∆ = 2K ′m as γ2 = 1/5∆,

while nℓ ≥ ⌊γ2n′
ℓ⌋ ≥ γ2 · γKm/6∆ ≥ γ2 · 5γK ′m/6 = γK ′m/6∆ ≥ γ1K

′m/2 as γ1 = γ/4∆. Since
µ ≪ 1/K ′ ≪ λ, using Lemma 5.8, we can take a subgraph G′ of G with at least n − ⌊m/4⌋ vertices which
has an (n, 2λ, d)-vortex partition, V0 ∪ V1 ∪ . . . ∪ Vℓ say, such that G[Vℓ−1 ∪ Vℓ] is (λm)-joined.

For each j ∈ [ℓ]0, say that we have a stage j situation if we have distinct vertices v0, v1, . . . , vj and copies
S1, . . . , Sj of the trees T1, . . . , Tj , respectively, so that the following hold.

H1 If i ∈ [j]0, then vi ∈ Vi.

H2 If i ∈ [j], then ∪i−1
i′=0Vi′ ⊂ ∪i

i′=1V (Si′) ⊂ ∪i
i′=0Vi′ .

H3 For each i ∈ [j], ti−1 is copied to vi−1 in Si and ti is copied to vi in Si.

H4 For each 1 ≤ i < i′ ≤ j, V (Si) ∩ V (Si′) = {vi} ∩ {vi′−1}.

Arbitrarily, pick v0 ∈ V0, and note that this gives us a stage 0 situation as H1 holds and H2–H4 are
vacuous. Furthermore, if we have a stage ℓ situation, with vertices v0, v1, . . . , vℓ and copies S1, . . . , Sℓ of the
trees T1, . . . , Tℓ, respectively, then H3 and H4 imply that ∪i∈[ℓ]Si is a copy of T = ∪i∈[ℓ]Ti in G′, and hence
G has a copy of T , as required. Thus, the lemma is implied by the following claim and induction.

Claim 5.9. For each j ∈ [ℓ], if we have a stage j − 1 situation, then we can create a stage j situation.

Proof of Claim 5.9. Set S0 to be the tree containing only the vertex v0. Fix j ∈ [ℓ] and let Xj = Vj−1 \
V (Sj−1). Now, as Xj ∪ {vj−1} ⊂ Vj−1, and V0 ∪ V1 ∪ . . . ∪ Vℓ is an (n, 2λ, d)-vortex partition, we have the
following by E3.

I I(Xj ∪ {vj−1}) is (d, λnj−1)-extendable in G[Xj ∪ {vj−1} ∪ Vj ].

Then, if j ≤ ℓ− 1,

|Xj∪{vj−1} ∪ Vj | = 1 + |(Vj−1 ∪ Vj) \ V (Sj−1)| H2
= 1 +

∣∣∣(∪j
i=0Vi

)
\
(
∪j−1
i=0V (Si)

)∣∣∣
= 1 + |G′| − | ∪ℓ

i=j+1 Vi| −
(
|T | −

ℓ∑
i=j

n′
i

)
E1
≥ 1 +

(
n−

⌊m
4

⌋)
−

ℓ∑
i=j+1

(1 + λ)ni − |T | +

ℓ∑
i=j

n′
i

(5.7)

≥
(
n + 1 − |T | −

⌊m
4

⌋)
−

ℓ∑
i=j+1

ni − 2λnj+1 +

ℓ∑
i=j

n′
i

(5.7)

≥
(
m−

⌊m
4

⌋)
−
( ⌊

γ2n
′
j+1

⌋
+

ℓ∑
i=j+2

n′
i + m− 1

)
− 2λn′

j+1 +

ℓ∑
i=j

n′
i
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≥ n′
j +

n′
j+1

2
− m

2
≥
(

1 +
γ1
2

)
n′
j −

m

2
.

≥
(

1 +
γ1
2

)
|Tj | −m ≥ |Tj | + 20dm, (5.9)

where the last inequality follows from γ1|Tj | ≥ γ1 · γKm/3∆ ≥ 20dm. Furthermore,

|Xj | = |Vj−1 \ V (Sj−1)| H2
=
∣∣∣(∪j−1

i=0Vi

)
\
(
∪j−1
i=0V (Si)

)∣∣∣
= |G′| − | ∪ℓ

i=j Vi| − (|T | −
ℓ∑

i=j

n′
i)

≤ n−
ℓ∑

i=j

(1 − λ)ni − |T | +

ℓ∑
i=j

n′
i

≤ m + 2λnj −
ℓ∑

i=j

ni +

ℓ∑
i=j

n′
i

≤ n′
j + 2λn′

j −
⌊
γ2n

′
j

⌋
+ 1 ≤

(
1 − γ2

2

)
n′
j

≤
(

1 − γ2
2

)
|Tj | = (1 − γ)|Tj |. (5.10)

Finally, we have |Tj | ≥ n′
j ≥ γ1n

′
j−1 ≥ γ1nj−1 ≥ 2d2λnj−1 and G[Xj ∪{vj−1}∪Vj ] is (λnj−1)-joined by E2.

Therefore, by I, (5.9), (5.10) and Lemma 4.1, we can find a copy Sj of Tj in G[Xj ∪ {vj−1} ∪ Vj ] with tj−1

copied to vj−1, tj copied into Vj , and Xj ⊂ V (Sj). Then, letting vj to be the copy of tj , we have a stage j
situation.

Suppose then that j = ℓ. From I, we have that I(Xℓ∪{vℓ−1}) is (d, λnℓ−1)-extendable in G[Xℓ∪{vℓ−1}∪
Vℓ], and hence (d, λm)-extendable. As Xℓ ∪ {vℓ−1} ∪ Vℓ ⊂ Vℓ−1 ∪ Vℓ, we have that G[Xℓ ∪ {vℓ−1} ∪ Vℓ] is
(λm)-joined. Furthermore,

|Xℓ ∪ {vℓ−1} ∪ Vℓ| = 1 + |(Vℓ−1 ∪ Vℓ) \ V (Sℓ−1)| H2
= 1 +

∣∣(∪ℓ
i=0Vi

)
\
(
∪ℓ−1
i=0V (Si)

)∣∣
≥ 1 + |G′| − (|T | − |Tℓ| + 1) ≥ n−

⌊m
4

⌋
− |T | + |Tℓ|.

≥ |Tℓ| +
m

2
≥ |Tℓ| + 10λdm.

Therefore, by Corollary 2.19, there is a copy Sℓ of Tℓ in G[Xℓ ∪ {vℓ−1} ∪ Vℓ] in which tℓ−1 is copied to vℓ−1.
Let vℓ be the copy of tℓ and note that we have a stage ℓ situation, as required. This completes the proof of
the claim and hence the theorem. ⊡ □

6 Ramsey goodness of bounded degree trees

In this section, we prove Theorem 2.1 by induction from Theorem 2.2. To embed a tree T in a graph G
in the setting of Theorem 2.1, we will again show we can assume some extra expansion condition, before
dividing into 3 (overlapping) cases. Roughly, these cases are the following.

a) T has linearly many leaves.

b) G is not well connected.

c) G is well connected and T does not have linearly many leaves.

In each case the embedding is different, and we sketch these at the start of Sections 6.1–6.3 respectively,
before combining them to prove Theorem 2.1 in Section 6.4.
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6.1 Trees with linearly many leaves

We first show that, in the setting of Theorem 2.1, if T has linearly many leaves and G satisfies a simple
expansion condition (J), then G contains a copy of T . This was shown by Balla, Pokrovskiy, and Sudakov [2],
but for completion we include the full proof, following their method while using the extendability framework.

To embed T , we remove a large set of leaves, and embed the resulting tree into the graph in an extendable
fashion. We then show that the relevant extendability conditions imply that a version of Hall’s matching
criterion holds in the appropriate subgraph to allow unused vertices to be attached to the embedded tree as
leaves in order to create a copy of the original tree.

Lemma 6.1. Let 1/n ≪ µ ≪ 1/∆. Let G be a graph with at least n vertices in which the following holds.

J Every set U ⊂ V (G) with |U | = µn satisfies |U ∪NG(U)| ≥ n.

Then, G contains a copy of every n-vertex tree T with ∆(T ) ≤ ∆ and at least 10∆2µn leaves.

Proof. Let T be an n-vertex tree with ∆(T ) ≤ ∆ and at least 10∆2µn leaves. Let d = 2∆, m = µn and
n0 = |G| − n + 1, so that G is (m,n0)-joined by J, and

|G| = n0 + n− 1 ≥ n0 + (1 − 10∆µ)n + (4d + 2)m. (6.1)

Using Proposition 2.6, we can find W ⊂ V (G) with |W | < m such that G′ = G−W is a (2d,m)-expander.
Arbitrarily, pick v ∈ V (G′). Note that, for each U ⊂ V (G′) with 1 ≤ |U | ≤ m, as G′ is a (2d,m)-

expander, we have |NG′(U)| ≥ 2d|U | ≥ 1 + d|U |. By J, if U ⊂ V (G′) with m ≤ |U | ≤ 2m, we also have
|NG′(U)| ≥ n− 2m ≥ 1 + 2dm ≥ 1 + d|U |. Thus, by Proposition 2.15, I({v}) is (d,m)-extendable in G′.

As T has at least 10∆2µn leaves, we can find a set of leaves L such that |L| = 10∆µn and no pair of
leaves in L has a common neighbour in T . Letting T ′ = T − L, we will now embed T ′ into G′. Note that

1 + |T ′| ≤ 1 + n− 10∆µn
(6.1)

≤ |G′| − (2d + 2)m− n0.

Then, as G, and thus G′, is (m,n0)-joined, by Corollary 2.19 (applied with an arbitrary t ∈ V (T ′)), there is
a (d,m)-extendable subgraph S′ of G′ which is a copy of T ′.

Let A ⊂ V (S′) be the copy in S′ of the set of parents in T of the leaves in L, and let B = V (G) \ V (S′).
Observe that to make S′ into a copy of T , it is sufficient to find a matching in G from A to B and add this
to S′. We will find such a matching by showing that the appropriate Hall’s matching criterion holds.

If U ⊂ A, with |U | ≤ m, then, as S′ is (d,m)-extendable in G′, by (2.1) we have

|NG(U,B)| ≥ |NG′(U) \ V (S′)| = |N ′
G′(U) \ V (S′)|≥(d− 1)|U | − (∆ − 1)|U | ≥ |U |.

On the other hand, if U ⊂ A with |U | ≥ m, then

|NG(U,B)| ≥ |U ∪NG(U)| − |T ′|
J
≥ n− (n− |L|) = |A| ≥ |U |.

Therefore, for each U ⊂ A we have |NG(U,B)| ≥ |U |, and thus, as Hall’s matching criterion holds, G has a
matching from A to B, as required. □

6.2 Non-well-connected graphs

For the next case in the induction step of Theorem 2.1, which we prove as Lemma 6.2 below, we will use
properties that will follow from induction (see K1 below) and our graph G will not be well-connected, in
the sense that it will have a vertex partition V0 ∪ V1 ∪ V2 in which V0 contains at most a small linear (in
n) number of vertices and there are no edges in G between V1 and V2, which are both large sets (see K2).
We will start by, for each i ∈ [2], finding a large subset V ′

i ⊂ Vi, so that G[V ′
i ] has an expansion condition,

for otherwise we will be done by the induction properties. Neither of these properties will be necessarily
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strong enough to embed T . However, if a vertex has ∆ neighbours in both V ′
1 and V ′

2 (this is Case I in
the proof of Lemma 6.2), then this will allow us to embed part of the tree in G[V ′

1 ] and part of the tree
in G[V ′

2 ] in such a way that they can be connected through this vertex to get a copy of T . Thus, we can
then assume that no such vertex exists (Case II in the proof of Lemma 6.2). This will allow us to partition
V (G) \ (V ′

1 ∪V ′
2) as U1 ∪U2 so that there are very few edges between V ′

1 and U2 and very few edges between
V ′
2 and U1. Assuming that G contains no copy of T , we then apply induction to find complete partite graphs

in Gc[V ′
1 ∪ U1] and Gc[V ′

2 ∪ U2] which we can combine (with the deletion of some vertices from the larger
parts) to get a complete k-partite graph in Gc with the class sizes we need.

Lemma 6.2. Let k ≥ 3 and 1/n ≪ λ ≪ µ ≪ 1/∆. Let m ≤ λn and let G be a graph with (k−1)(n−1)+m
vertices. Let T be an n-vertex tree with ∆(T ) ≤ ∆. Suppose the following hold.

K1 For any 2 ≤ k′ ≤ k − 1 and m′ ≤ µn, R(T,Kk′−1
µn ×Kc

m′) = (k′ − 1)(n− 1) + m′.

K2 There is a partition V (G) = V0 ∪ V1 ∪ V2 such that eG(V1, V2) = 0, |V1|, |V2| ≥ m and |V0| ≤ λn.

Then, G contains a copy of T or Gc contains a copy of Kk−1
λn ×Kc

m.

Proof. Assume for a contradiction that G contains no copy of T and Gc contains no copy of Kk−1
λn ×Kc

m.
We start by showing that we have the following property.

K3 For every U ⊂ V (G) with |U | = m, we have |NG(U)| ≥ (1 − 2λ)n.

Indeed, if there is some set U ⊂ V (G) with |U | = m with |NG(U)| < (1− 2λ)n, then |G−NG(U)−U | >
(k − 2)(n− 1) + λn, and thus, by K1, as G−NG(U) − U contains no copy of T , its complement contains a
copy of Kk−1

λn . Adding U as a vertex class, we obtain a copy of Kk−1
λn ×Kc

m in Gc, contradiction. Thus, K3
holds.

Now, let d = 4∆ and consider the partition V (G) = V0 ∪ V1 ∪ V2 given by K2. For each i ∈ [2] and any
U ⊂ Vi with size m, we have NG(U) ⊂ Vi ∪ V0, so that, by K3, |NG(U, Vi)| ≥ (1 − 2λ)n− |V0| ≥ (1 − 3λ)n.
In particular, |Vi| ≥ m + (1 − 3λ)n. For each i ∈ [2], then, letting ni = |Vi| − (1 − 3λ)n, we have that G[Vi]
is (m,ni)-joined and, as λ ≪ 1/∆ and m ≤ λn,

|Vi| = ni + (1 − 3λ)n ≥ ni +

(
1 − 1

4∆

)
n + 1 + (4d + 2)m + 2m. (6.2)

In particular, |Vi| ≥ ni + (4d + 2)m, so, by Proposition 2.6, there is some Wi ⊂ Vi with |Wi| < m such that
G[Vi] −Wi is a (2d,m)-expander. For each i ∈ [2], let V ′

i = Vi \Wi.
We now consider 2 cases, depending on whether there is some v ∈ V (G) \ (V ′

1 ∪ V ′
2) with at least ∆

neighbours both in V ′
1 and in V ′

2 (Case I) or not (Case II). In Case I, we will show that G contains a copy
of T , and in Case II, we will show that Gc contains a copy of Kk−1

λn ×Kc
m, a contradiction either way.

Case I. Suppose then that there is some vertex v ∈ V (G) \ (V ′
1 ∪ V ′

2) with at least ∆ neighbours both in V ′
1

and in V ′
2 . Using Proposition 2.10, we can find two subtrees T1 and T2 of T that share exactly one vertex t

that is a leaf in T1, such that E(T ) = E(T1)∪E(T2) and n/4∆ ≤ |T2| ≤ n/2. Let t0 be the unique vertex in
T1 adjacent to t and let t1, . . . , tr be the neighbours of t in T2. For each i ∈ [r], let T ′

i be the tree in T2 − t
containing ti. Using that v has at least ∆ ≥ r neighbours in V ′

1 and V ′
2 , we can find a neighbour v0 of v in

V ′
1 and r distinct neighbours v1, . . . , vr of v in V ′

2 .
Now, as G[V1] − W1 = G[V ′

1 ] is an (m,n1)-joined (2d,m)-expander, we have that I({v0}) is (d,m)-
extendable in G[V ′

1 ]. Futhermore, as |T1| = n − |T2| + 1 ≤ (1 − 1/4∆)n + 1, by (6.2), we have |V ′
1 | ≥

|T1| + (2d + 2)m + n1. Thus, by Corollary 2.19 there is a copy S1 of T1 − t in G[V ′
1 ] in which t0 is copied to

v0.
Similarly, as G[V2] −W1 = G[V ′

2 ] is an (m,n2)-joined (2d,m)-expander, we have that I({v1, . . . , vr}) is
(d,m)-extendable in G[V ′

2 ] as r ≤ ∆ = d/4. Futhermore, as
∑

i∈[r] |T ′
i | = |T2| − 1 ≤ n/2, by (6.2), we have

|V ′
2 | ≥ r +

∑
i∈[r] |T ′

i | + (2d + 2)m + n2. Thus, by induction and Corollary 2.19, for each j ∈ [r], there are
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vertex-disjoint copies S′
1, . . . , S

′
j of T ′

1, . . . , T
′
j , respectively, such that ti is copied to vi for each i ∈ [j], and

I({v1, . . . , vr})∪(∪i∈[j]Si) is (d,m)-extendable in G[V ′
2 ]. Note that at the end of the induction, S2 = (∪r

i=1S
′
i)

is a copy of T2 − t in G[V ′
2 ]. Hence, S1 ∪ S2 together with the vertex v and edges vv0, . . . , vvr form a copy

of T in G, contradiction.

Case II. Suppose, then, that we can partition V (G) \ (V ′
1 ∪ V ′

2) as U1 ∪ U2 so that every vertex in U1 has
fewer than ∆ neighbours in V ′

2 and every vertex in U2 has fewer than ∆ neighbours in V ′
1 . For each i ∈ [2],

let ki and mi be such that |V ′
i ∪Ui| = ki(n− 1) +mi and 0 ≤ mi < n− 1. Switching the labels if necessary,

we can assume that m1 ≥ m2. Now, as V (G) = V ′
1 ∪ U1 ∪ V ′

2 ∪ U2 is a partition,

(k − 1)(n− 1) + m = (k1 + k2)(n− 1) + (m1 + m2),

and thus, we have that the following hold.

• If m1 + m2 < n− 1 then k − 1 = k1 + k2 and m = m1 + m2.

• If m2 < m, then as (k − 1)(n − 1) + (m − m2) = (k1 + k2)(n − 1) + m1 and m1 < (n − 1), we have
k − 1 = k1 + k2 and m = m1 + m2.

• k1 + k2 ≥ k − 2, so if k1 + k2 ̸= k − 2, then k − 1 = k1 + k2, and hence m = m1 + m2.

Thus, we either have m1 ≥ (n − 1)/2, m2 ≥ m and k1 + k2 = k − 2 (Case II.1) or k − 1 = k1 + k2 and
m = m1 + m2 (Case II.2). Futhermore, as |V ′

i | ≥ |Vi| − m ≥ (1 − 3λ)n for each i ∈ [2], we have that
k1, k2 < k − 1.

Case II.1: m1 ≥ (n−1)/2, m2 ≥ m and k1 +k2 = k−2. As k1 < k−1 and m1 ≥ n/3, by K1, we have that
V ′
1 ∪ U1 contains disjoint sets Y1, . . . , Yk1+1 with |Yi| = µn for each i ∈ [k1 + 1], and there are no edges in G

between any pair Yi and Yj for each 1 ≤ i < j ≤ k1 + 1. Furthermore, as k2 < k − 1 and m2 ≥ m, by K1,
we have that V ′

2 ∪ U2 contains disjoint sets Z1, . . . , Zk2+1 with |Zi| = µn for each i ∈ [k2] and |Zk2+1| = m
so that there are no edges in G between any pair Zi and Zj for 1 ≤ i < j ≤ k2 + 1.

Note that

|U1 ∪ (N(Zk2+1) ∩ V ′
1)| ≤ |V0| + |W1| + |W2| + (∆ − 1)|Zk2+1| ≤ λn + 2m + ∆m ≤ µn/2. (6.3)

Hence, we can find Y ′
i ⊂ Yi \ (U1 ∪ (N(Zk2+1) ∩ V ′

1)) with size λn for each i ∈ [k1 + 1]. Similarly, since
|U2| ≤ |V0| + |W1| + |W2| ≤ λn + 2m ≤ µn/2, we can find Z ′

i ⊂ Zi \ U2 having size λn for each i ∈ [k2]. Let
Z ′
k2+1 = Zk2+1, and observe that there no edges in G between any of the sets

Y ′
1 , Y

′
2 , . . . , Y

′
k1+1, Z

′
1, Z

′
2, . . . , Z

′
k2+1,

and these are k1 + k2 + 1 = k − 1 sets with size λn and 1 set of size m, so that Gc contains a copy of
Kk−1

λn ×Kc
m, contradiction.

Case II.2: m1 + m2 = m and k1 + k2 = k − 1. As k1 < k − 1, by K1, we have that V ′
1 ∪ U1 contains

disjoint sets Y1, . . . , Yk1+1 with |Yi| = µn for each i ∈ [k1], and |Yk1+1| = m1, such that there are no edges in
G between any pair Yi and Yj for each 1 ≤ i < j ≤ k1 + 1. Similarly, by K1, we have that V ′

2 ∪ U2 contains
disjoint sets Z1, . . . , Zk2+1 with |Zi| = µn for each i ∈ [k2] and |Zk2+1| = m2, such that there are no edges
in G between any pair Zi and Zj for each 1 ≤ i < j ≤ k2 + 1. For each i ∈ [k1], using a similar calculation
to (6.3), let Y ′

i ⊂ Yi \ (U1 ∪ (N(Zk2+1) ∩ V ′
1)) have size λn and let Y ′

k1+1 = Yk1+1. For each i ∈ [k2], again
using a similar calculation to (6.3), let Z ′

i ⊂ Zi \ (U2∪ (N(Yk1+1)∩V ′
2)) have size λn, and let Z ′

k2+1 = Zk2+1.
Then, observe that there no edges in G between any of the sets

Y ′
1 , Y

′
2 , . . . , Y

′
k1
, Z ′

1, Z
′
2, . . . , Z

′
k2
, Y ′

k1+1 ∪ Z ′
k2+1,

and these are k1 + k2 = k − 1 sets with size λn and 1 set of size m1 + m2 = m, so that Gc contains a copy
of Kk−1

λn ×Kc
m, a contradiction. □
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6.3 Trees with few leaves in well-connected graphs

For the last case in the induction step for Theorem 2.1, which we prove as Lemma 6.3, we will have that the
graph G is well-connected, in that it has no partition V (G) = V0 ∪ V1 ∪ V2 satisfying K2 (see L1), as well
as an additional expansion condition which will follow from our induction (see L2), and the tree T will have
few leaves. That is, we prove the following lemma.

Lemma 6.3. Let k ≥ 3 and 1/n ≪ ε ≪ λ ≪ 1/∆, 1/k. Let m ≤ εn and let G be a graph with (k−1)(n−1)+m
vertices. Let T be an n-vertex tree with fewer than 10∆2εn leaves satisfying ∆(T ) ≤ ∆. Suppose the following
properties hold.

L1 There is no partition V (G) = V0 ∪ V1 ∪ V2 such that eG(V1, V2) = 0, |V1|, |V2| ≥ m and |V0| ≤ λn.

L2 For every set U ⊂ V (G) with |U | = m, we have |NG(U)| ≥ (1 − λ)n.

Then, G contains a copy of T or Gc contains a copy of Kk−1
εn ×Kc

m.

The property L1 will imply that any two disjoint sets U and U ′ ⊂ V (G), each with size m, will have
many vertex-disjoint short paths between them in G. If we pick a small but linear-sized (in n) random set
Z ⊂ V (G), then for any pair of such sets U and U ′, plenty of these paths all have internal vertices in Z.
This we prove as Proposition 6.5, where we do a little additional work so that the paths we can find all have
the same prescribed length.

In Lemma 6.3, we have that k ≥ 3, so that G contains many more vertices than T . As T has few leaves,
most of T will consist of bare paths (paths whose internal vertices have degree 2 in the tree T ) of some long,
constant, length. We will choose a random partition V (G) = Z ∪ V0 ∪ V1, with |V0| ≥ (1 − o(1)) · 2n/5,
|V1| ≥ 11n/10 and so that Z has the connection property described above. We then embed the tree T
steadily into a large subgraph of G[V0], but, at any available opportunity, try to save vertices from V0 by
embedding a long bare path of T using many vertices in V1 and at most a small number of vertices from Z,
so that only the last vertex embedded is in V0 (see Figure 2). We do this so that the embedded tree remains
extendable in the large subgraph of G[V0] that we use. After this embedding (described precisely in a)–c) of
the proof of Lemma 6.3), we analyse it and show that enough of the long bare paths are embedded outside
of V0 so that we do not run out of room within V0, and thus can successfully embed T . This is shown in
Claims 6.7–6.9, but, roughly speaking, if we had 2m opportunities to embed a long path in T and did not
do so outside of V0, then let U be the set of vertices to which we could have attached a long bare path to
extend the embedding of T , and do the following. We find vertex-disjoint long paths Q1, . . . , Q2m in G using
vertices in V1 which have not yet been used in the embedding, and show that under our embedding rules we
should have embedded one of the paths Qi connected to a vertex in U using the connectivity property of Z.
To find the paths Q1, . . . , Q2m, we only need a loose result for the Ramsey numbers of paths versus general
graphs as the paths have constant length compared to n, but for convenience we will use the following result.

Theorem 6.4 (Pokrovskiy and Sudakov [23]). Let k ≥ 2 and let H be a graph with χ(H) = k. Then, for
all n ≥ 4|H|, R(Pn, H) = (k − 1)(n− 1) + σ(H).

We now prove a result showing that, in the above sketch, the random set Z is likely to have the connectivity
property we want.

Proposition 6.5. Let k ≥ 3 and 1/n ≪ δ ≪ 1/ℓ ≪ λ ≪ 1/k. Let m ≤ δn and let G be a graph with
(k − 1)(n− 1) + m vertices such that L1 holds and Gc contains no Kk

δn. Let Z ⊂ V (G) be a set formed by
including each element independently at random with probability 1/5.

Then, with probability more than 2/3, for any two disjoint sets U,U ′ ⊂ V (G) with size m, there are at
least δn internally vertex-disjoint paths with length ℓ through Z connecting U and U ′ in G.

Proof. First, let U,U ′ ⊂ V (G) be disjoint sets and let Z0 ⊂ V (G) \ (U ∪ U ′) satisfy |U | = |U ′| = m and
|Z0| < λn/2. We will show that there is a path from U to U ′ with interior vertices not in Z0 ∪ U ∪ U ′, and
with length at least 2 and at most ℓ.
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V ′
0

Z

X

V1

v1

Figure 2: The embedding of T in the proof of Lemma 6.3. Starting with the extendable subgraph I(X) in
G[V0], in which a vertex of T is embedded to v1, we steadily embed T into G so that many of the long bare
paths use vertices in V1 along with some vertices in Z to connect the path back into G[V0] (the grey paths
depicted have all their interior vertices in Z), and so that the union of I(X) and the subgraph embedded in
V ′
0 remains extendable.

Let r = ⌊ℓ/2⌋. Let U0 = U and, iteratively, for each 1 ≤ i ≤ r, let Ui = Ui−1 ∪NG−Z0−U ′(Ui−1). Now,
the sets Ui \ Ui−1, i ∈ [r], are disjoint, so there must be some j ∈ [r] with |Uj \ Uj−1| ≤ kn/r < λn/2 −m,
as 1/ℓ ≪ λ, 1/k and m ≤ δn ≤ λn/4. Then, |Z0 ∪ U ′ ∪ (Uj \ Uj−1)| < λn, |Uj−1| ≥ |U0| = m, and there are
no edges in G between Uj−1 and V (G) \ (Z0 ∪U ′ ∪Uj), so by L1 we must have |V (G) \ (Z0 ∪U ′ ∪Uj)| < m.
Thus |Uj | ≥ |G| − |Z0| − 2m ≥ |G| − λn/2 − 2m > |G|/2, and therefore |Ur| ≥ |Uj | > |G|/2.

Similarly, letting U ′
0 = U ′ and iteratively taking U ′

i = U ′
i−1∪NG−Z0−U (U ′

i−1) for each 1 ≤ i ≤ r, we have
that |U ′

r| > |G|/2. Thus, Ur ∩U ′
r ̸= ∅, and therefore there is a path from U to U ′ with length at least 2 and

at most ℓ in G− Z0.
Thus, by taking Z0 to be the internal vertices of a set of maximal internally-vertex-disjoint paths from

U to U ′ in G with length at least 2 and at most ℓ, we see that G contains at least λn/3ℓ internally-vertex-
disjoint paths from U to U ′ with length at most ℓ and at least 2. Let 2 ≤ j ≤ ℓ be maximal subject to
the condition that there are at least rj := λn/3jℓ internally-vertex-disjoint paths from U to U ′ with length

j. Such a j exists as
∑ℓ

j=2 rj < λn/3ℓ. If j < ℓ, then let P1, . . . , Prj be such a set of paths, and, for each
i ∈ [j], let xi be the vertex of the path neighbouring the end-vertex in U (which is not in U ′ as j ≥ 2). Note
that if G[{xi : i ∈ [rj ]}] contains a matching with rj+1 edges, then we can use this matching along with
P1, . . . , Prj to get rj+1 internally-vertex-disjoint paths from U to U ′ in G with length j + 1, a contradiction.
On the other hand, if G[{xi : i ∈ [rj ]}] contains no matching with rj+1 edges, then, removing a maximal
matching shows that Gc[{xi : i ∈ [rj ]}], and hence Gc, contains a copy of Krj−2rj+1

, and hence a copy of
Kk

δn as δ ≪ 1/ℓ, λ, contradiction. Thus, we must have j = ℓ.
Therefore, altogether, we have shown that, for any disjoint sets U,U ′ ⊂ V (G) of size m, there are at least

λn/3ℓℓ internally-vertex-disjoint paths from U to U ′ with length ℓ. For any such path, the probability all
its internal vertices lie in Z is (1/5)ℓ−1. Thus, as δ ≪ λ, ℓ, by Lemma 2.20, the probability that there are
fewer than δn internally vertex-disjoint paths with length ℓ through Z connecting U and U ′ in G is at most
2 exp(−λn/15ℓ+1ℓ). Therefore, the probability there are disjoint sets U,U ′ ⊂ V (G) of size m, with fewer
than δn internally-vertex-disjoint paths from U to U ′ with length ℓ and internal vertices in Z is at most(

kn

m

)2

· 2 exp

(
− λn

15ℓ+1ℓ

)
≤
(
ekn

m

)2m

· 2 exp

(
− λn

15ℓ+1ℓ

)
≤
(
ek

δ

)2δn

· 2 exp

(
− λn

15ℓ+1ℓ

)
< 1/3,

as required, where the last inequality follows as 1/n ≪ δ ≪ ℓ, 1/k. □

Next, we give a simple result to show that, in the sketch above, the set V0 will have the expansion
property in G that we want.
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Proposition 6.6. Let k ≥ 3 and 1/n ≪ λ ≪ 1/k. Let m ≤ λn and let G be a graph with (k− 1)(n− 1) +m
vertices in which L2 holds. Let V0 ⊂ V (G) be a set formed by including each element independently at
random with probability 1/5. Then, with probability more than 2/3, for any set U ⊂ V (G) with |U | = m,
|NG(U, V0)| ≥ n/10.

Proof. For each set U ⊂ V (G) with |U | = m, we have, by L2, that E|NG(U, V0)| ≥ n/6. Thus, by
Lemma 2.20, the probability that there is some set U ⊂ V (G) with |U | = m and |NG(U, V0)| < n/10 is at
most (

kn

m

)
· 2 exp

(
− n

103

)
≤
(
ekn

m

)m

· 2 exp
(
− n

103

)
≤
(
ek

λ

)λn

· 2 exp
(
− n

103

)
<

1

3
,

as required, where we have used that 1/n ≪ λ ≪ 1/k. □

Using Propositions 6.5 and 6.6, we can now prove Lemma 6.3 using the sketch above, as depicted in
Figure 2.

Proof of Lemma 6.3. Let L, δ and ℓ satisfy ε ≪ 1/L ≪ δ ≪ 1/ℓ ≪ λ, and let d = 4∆. Let V (G) =
Z ∪ V0 ∪ V1 be a partition chosen by selecting the set for each v ∈ V (G) independently at random so that
P(v ∈ Z) = P(v ∈ V0) = 1/5 and P(v ∈ V1) = 3/5.

By a simple application of Lemma 2.20, as |G| ≥ 2n− 1 we have that, with probability greater than 2/3,
|V1| ≥ 11n/10. Therefore, by L1 and L2, using Propositions 6.5 and 6.6, we can take a choice of partition
V (G) = W ∪ V0 ∪ V1 for which the following hold.

M1 |V1| ≥ 11n/10.

M2 For every pair of vertex disjoint sets U1, U2 ⊂ V (G) with size m, there are at least δn internally vertex
disjoint paths from U1 to U2 with length ℓ through Z.

M3 For each U ⊂ V (G) with |U | = m, |N(U, V0)| ≥ n/10.

Now, let X0 ⊂ V0 have size n/20 (possible by M3), and note that, by M3, for each U ⊂ V (G) with
|U | = m, |N(U, V0 \X0)| ≥ n/20. Then, similarly to the proof of Proposition 2.13, there is a set W ⊂ V (G)
with |W | < m such that, for each U ⊂ V (G) \ W with |U | ≤ m, |NG(U, V0 \ (X0 ∪ W )| ≥ 3d|U |. Let
V ′
0 = V0 \W and X = X0 \W . Then, by Proposition 2.15, we have that I(X) is (d,m)-extendable in G[V ′

0 ].
Let n0 = |V ′

0 | − n/10, and note that G[V ′
0 ] is (m,n0)-joined by M3 and

|V ′
0 | = n0 + n/10 ≥ n0 + |X| + (2d + 2)m + n/40. (6.4)

Now, take T and arbitrarily select a leaf t1 of T . For each i = 2, . . . , n in turn, if possible let ti be a neighbour
of ti−1 in T which is not in {t1, . . . , ti−2}, and otherwise, let ti be any vertex of T not in {t1, . . . , ti−2} with
a neighbour in {t1, . . . , ti−2}. For each 2 ≤ i ≤ n, let si be the neighbour of ti in T [{t1, . . . , ti−1}]. We will
build the embedding ϕ of T by embedding t1, t2, . . . , tn in this order. To initialise, set Ia = {1}, Ib = ∅ and
ϕ(t1) = v1 for an arbitrary vertex v1 ∈ X. Then, beginning with j = 2, carry out the process whose step j
is as follows.

a) If j ≤ n−L and tj , . . . , tj+L all have degree 2 in T , and there is some vj+L ∈ X \ ϕ({t1, . . . , tj−1}) for
which there is a ϕ(sj), vj+L-path ϕ(sj)vj . . . vj+L in G with internal vertices not in V0∪ϕ({t1, . . . , tj−1})
and at most 2ℓ vertices in Z, then let ϕ(ti) = vi for each j ≤ i ≤ j + L, and add j + L to Ia.

If j + L = n then stop, otherwise proceed to step j + L + 1.

b) Otherwise, if sj satisfies ϕ(sj) ∈ V ′
0 , and there is some vj ∈ V ′

0 \ (X ∪ {t1, . . . , tj−1}) such that
I(X)∪ ϕ(T [{ti : i ∈ Ia ∪ Ib}]) + ϕ(sj)vj is (d,m)-extendable in G[V ′

0 ], then let ϕ(tj) = vj and add j to
Ib.

If j = n, then stop, otherwise proceed to step j + 1.
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c) If neither of these cases occur, then stop.

Assume we are at the start of step j of this process, note the following. If j ≤ n − L and tj , . . . , tj+L all
have degree 2 in T , then by the ordering of the vertices in T , we have that T [{tj , . . . , tj+L}] is a path with
length L. Also, Ia is the set of indices i ∈ [j − 1] such that ϕ(ti) ∈ X, Ib is the set of indices i ∈ [j − 1] such
that ϕ(ti) ∈ V ′

0 \X, and, if i ∈ [j − 1] and ti is adjacent to some tj′ ∈ V (T ) with j′ ≥ j, then ϕ(ti) ∈ V ′
0 and

i ∈ Ia ∪ Ib. We now further analyse this process via the following three claims and show that it will only
stop at a step j if j + L = n or j = n, and that, in either case, this implies that we have embedded a copy
of T in G.

Claim 6.7. If the process stops at step j with j ̸= n and j + L ̸= n, then |Ib| ≥ n/50.

Proof of Claim 6.7. Suppose for a contradiction, that |Ib| < n/50. From the observations above, we have
ϕ(sj) ∈ V ′

0 . Furthermore, using |I(X) ∪ ϕ(T [{ti : i ∈ Ia ∪ Ib}])| = |X| + |Ib| and (6.4), we have

|V ′
0 | ≥ |I(X) ∪ ϕ(T [{ti : i ∈ Ia ∪ Ib}])| + (2d + 2)m + n0 + 1.

As I(X) ∪ ϕ(T [{ti : i ∈ Ia ∪ Ib}]) is (d,m)-extendable in G[V ′
0 ], which is (m,n0)-joined, and the degree of

ϕ(si) is at most ∆−1 in I(X)∪ϕ(T [{ti : i ∈ Ia∪Ib}]), by Lemma 2.16, there is vj ∈ V ′
0 \ (X ∪{t1, . . . , tj−1})

adjacent to ϕ(si), such that I(X) ∪ ϕ(T [{ti : i ∈ Ia ∪ Ib}]) + ϕ(sj)vj is (d,m)-extendable in G[V ′
0 ]. This

contradicts that the process stopped at step j as we could have carried out b). ⊡

Claim 6.8. |X ∩ ϕ({t1, . . . , tj−1})| ≤ n/100 and |Z ∩ ϕ({t1, . . . , tj−1})| < δn/4.

Proof of Claim 6.8. Note that, for each j ≥ 2, ϕ(tj) ∈ X only if step j − L is carried out via part a), and
exactly 1 vertex is embedded into X in this step. Thus, |X ∩ ϕ({t1, . . . , tj−1})| ≤ 1 + (n − 1)/L ≤ n/100.
Similarly, the only vertices embedded into Z are embedded via part a), where at most 2ℓ vertices are used
each step. Thus, |Z ∩ ϕ({t1, . . . , tj−1})| ≤ 2ℓ(n− 1)/L < δn/4. ⊡

Claim 6.9. If |Ib| ≥ n/50, then there are vertex disjoint sets U1, U2 ⊂ V ′
0 with size m such that there is

no path in G from U1 to U2 of length L with internal vertices not in V ′
0 ∪ ϕ({t1, . . . , tj−1}) and at most 2ℓ

vertices in Z.

Proof of Claim 6.9. Suppose |Ib| ≥ n/50. Let J ⊂ Ib be the set of j ∈ Ib such that tj , . . . , tj+L all have degree
2 in T . Suppose for a contradiction that |J | < |Ib|/2. For each j ∈ J \ Ib, there is some j ≤ i ≤ j + L such
that ti either has degree 1 or degree at least 3 in T , so in total there are at least |Ib|/2(L+1) ≥ n/100(L+1)
such indices i. As T has at most 10∆2εn leaves and ε ≪ 1/L, T must then have fewer leaves than vertices
with degree at least 3. However,

2(n− 1) = 2e(T ) =
∑
i∈[n]

dT (ti) ≥ |{i : dT (ti) = 1}| + 2(n− |{i : dT (ti) = 1}|) + |{i : dT (ti) ≥ 3}|,

so it follows that T has at least as many leaves as vertices with degree at least 3, contradiction. Thus,
|J | ≥ |Ib|/2 ≥ n/100 ≥ ∆m.

Let U1 ⊂ ϕ({si : i ∈ J}) have size m, which is possible as |J | ≥ ∆m and let U2 ⊂ X \ ϕ({t1, . . . , tj−1})
have size m (possible by Claim 6.8). Suppose there exists a path in G with length L connecting some
ϕ(si) ∈ U1 with some vertex in U2, such that all its internal vertices are not in V ′

0 ∪ ϕ({t1, . . . , tj−1}) and at
most 2ℓ of them are in Z, then we could have carried out step i with a) to embed ti. But as i ∈ J ⊂ Ib, we
actually carried out step i with b) instead, a contradiction. Hence, such a path does not exist, proving the
claim. ⊡

Now, suppose for a contradiction that |Ib| ≥ n/50. Using Claim 6.9, take vertex-disjoint sets U1, U2 ⊂ V ′
0

with size m such that there is no path in G from U1 to U2 of length L with internal vertices not in
V ′
0 ∪ ϕ({t1, . . . , tj−1}) and at most 2ℓ of them in Z. Let V ′′

1 = V1 \ ϕ({t1, . . . , tj−1}), so that |V ′′
1 | ≥ n/10

by M1. By Theorem 6.4, as Gc, and hence Gc[V ′′
1 ], contains no copy of Kk−1

εn ×Kc
m, there must be a path
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with length 2Lm in G[V ′′
1 ]. On this path, we can find vertex-disjoint paths Q1, . . . , Q2m in G[V ′′

1 ], each with
length L− 2ℓ. For each i ∈ [2m], let xi and yi be the end vertices of Qi.

Let I1 ⊂ [2m] be the set of i ∈ [2m] for which there are at least ℓ vertex-disjoint paths of length ℓ
from xi to U1 with internal vertices in Z \ ϕ({t1, . . . , tj−1}). Then, there are at most ℓ · |[2m] \ I1| < δn/2
vertex-disjoint paths of length ℓ from {xi : i ∈ [2m] \ I1} to U1 with internal vertices in Z \ϕ({t1, . . . , tj−1}).
By Claim 6.8 and M2, we must then have that |[2m]\I1| < m, so that |I1| ≥ m+1. Similarly, if I2 ⊂ [2m] is
the set of i ∈ [2m] for which there are at least ℓ vertex-disjoint paths of length ℓ from yi to U2 with internal
vertices in Z \ ϕ({t1, . . . , tj−1}), then |I2| ≥ m+ 1. Hence, there exists some i ∈ I1 ∩ I2. Let P1 be a path of
length ℓ from xi to U1 with internal vertices in Z \ϕ({t1, . . . , tj−1}). Since there are at least ℓ vertex disjoint
paths of length ℓ from yi to U2 with internal vertices in Z \ ϕ({t1, . . . , tj−1}), we can find one, say P2, that
is disjoint from P1. Then P1, Qi and P2 attached together form a path in G from U1 to U2 of length L with
internal vertices not in V ′

0 ∪ ϕ({t1, . . . , tj−1}) and at most 2ℓ of them in Z, a contradiction.
Thus, we must have that |Ib| < n/50. Therefore, by Claim 6.7, the process stops with j = n or j = n−L,

and in either case the process has then embedded a copy of T . Thus, G contains a copy of T , as required. □

6.4 Proof of Theorem 2.1

Finally, using Lemmas 6.1, 6.2 and 6.3, we can prove Theorem 2.1 from Theorem 2.2 by induction.

Proof of Theorem 2.1. For each ∆, the proof is by induction on k ≥ 2. When k = 2, we have shown that
the required µ∆,2 exists by Theorem 2.2, so let us assume that k ≥ 3 and that the required µ∆,k′ exist for
each 2 ≤ k′ ≤ k− 1. Let µ ≤ min{µ∆,k′ : 2 ≤ k′ ≤ k− 1}, µ ≪ 1/∆, 1/k, and let ε and λ satisfy ε ≪ λ ≪ µ.
Note that we can assume that 1/n ≪ ε, for if we have proved it for all n ≥ n0 with 1/n0 ≪ ε, then we can
reduce ε to 1/n0 to get a result for all n. Note that this choice of µ implies the following property.

N1 For any 2 ≤ k′ ≤ k − 1 and m′ ≤ µn, R(T,Kk′−1
µn ×Kc

m′) = (k′ − 1)(n− 1) + m′.

We will show that we can take µ∆,k = ε.
For this, let m ≤ εn and let T be any n-vertex tree with ∆(T ) ≤ ∆. Let G be a graph on (k−1)(n−1)+m

vertices such that G contains no copy of T and Gc contains no copy of Kk−1
εn ×Kc

m. Similarly to the start
of the proof of Lemma 6.2 (with K3), we can assume we have the following property.

N2 For every U ⊂ V (G) with |U | = m, we have |NG(U)| ≥ (1 − λ)n.

Furthermore, if U ⊂ V (G), |U | = εn and |U∪NG(U)| < n, then we have |G−U−NG(U)| ≥ (k−2)(n−1)+m,
and, thus, as ε ≪ µ, the complement of G−U −NG(U) contains a copy of Kk−2

εn ×Kc
m, which, with all the

edges from this to U , forms a copy of Kk−1
εn ×Kc

m in Gc, a contradiction. Thus, we can assume that,

N3 For every U ⊂ V (G) with |U | = εn, we have |U ∪NG(U)| ≥ n.

Now, if T has more than 10∆2εn leaves, then, by N3 and Lemma 6.1, G contains a copy of T , a contradiction.
Thus, we can assume that T has fewer than 10∆2εn leaves. Therefore, by N1 and Lemma 6.2, there must
be no partition V (G) = V0 ∪ V1 ∪ V2 such that eG(V1, V2) = 0, |V1|, |V2| ≥ m and |V0| ≤ λn. Finally, then,
by N2 and Lemma 6.3, G contains a copy of T or Gc contains a copy of Kk−1

εn ×Kc
m, a contradiction.

Therefore, for every m ≤ εn, every n-vertex tree T with ∆(T ) ≤ ∆, and every graph G with (k− 1)(n−
1) + m vertices, G contains a copy of T or Gc contains a copy of Kk−1

εn × Kc
m, so that setting µ∆,k = ε

completes the proof. □

References

[1] P. Allen, G. Brightwell, and J. Skokan. Ramsey-goodness—and otherwise. Combinatorica, 33(2):125–
160, 2013.

29



[2] I. Balla, A. Pokrovskiy, and B. Sudakov. Ramsey goodness of bounded degree trees. Combinatorics,
Probability and Computing, 27(3):289–309, 2018.
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