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Abstract

We give a simple method to estimate the number of distinct copies of some classes of spanning
subgraphs in hypergraphs with high minimum degree. In particular, for each k ≥ 2 and 1 ≤ ℓ ≤ k − 1,
we show that every k-graph on n vertices with minimum codegree at least

(
1

2
+ o(1)

)
n if (k − ℓ) | k,(

1

⌈ k
k−ℓ

⌉(k − ℓ)
+ o(1)

)
n if (k − ℓ) ∤ k,

contains exp(n logn−Θ(n)) Hamilton ℓ-cycles as long as (k− ℓ) | n. When (k− ℓ) | k this gives a simple
proof of a result of Glock, Gould, Joos, Kühn and Osthus, while, when (k − ℓ) ∤ k this gives a weaker
count than that given by Ferber, Hardiman and Mond or, when ℓ < k/2, by Ferber, Krivelevich and
Sudakov, but one that holds for an asymptotically optimal minimum codegree bound.

1 Introduction

A central problem in extremal graph theory is to find sufficient degree conditions which force the containment
of a given spanning subgraph, and here a classical result of Dirac [10] from 1952 states that every graph
on n ≥ 3 vertices with minimum degree at least n/2 contains a Hamilton cycle. In 1995, Bollobás [4] and
Bondy [5] asked for estimates of the number of distinct Hamilton cycles in graphs satisfying Dirac’s condition.
Sárközy, Selkow, and Szemerédi [32] used the regularity method in 2003 to show that every graph with n ≥ 3
vertices and minimum degree at least n/2 contains at least cnn! Hamilton cycles, for some constant c > 0.
This cannot be improved to any c > 1/2, as for fixed p > 1/2 the typical random graph G(n, p) satisfies
Dirac’s condition and has (1− o(1))npnn! distinct Hamilton cycles (see [16]). In 2009, Cuckler and Kahn [8]
obtained precise estimates of the number of distinct Hamilton cycles in terms of the minimum degree of the
host graph. In particular, they showed that every n-vertex graph with minimum degree at least n/2 contains
at least ( 1

2 − o(1))nn! distinct Hamilton cycles, thus matching the bound given by random graphs.
Our purpose here is to introduce a simple method to bound below the number of copies of many different

spanning subgraphs in graphs and hypergraphs with high minimum degree, and apply this to give new
counting results in dense hypergraphs (Theorems 1.2 to 1.4). However, let us already illustrate this method
as it would apply to Hamilton cycles in an n-vertex graph G with minimum degree δ(G) ≥ ( 1

2 + ε)n with
ε > 0 fixed and n large. Set r = µn with 1/n ≪ µ ≪ ε, and partition V (G) = V1 ∪ . . . ∪ Vr by choosing the
location of each vertex independently and uniformly at random. With probability at least e−n, the minimum
degree of each subgraph G[Vi] will be at least ( 1

2 + ε
2 )|Vi| and there will be a disjoint collection of r edges

in G connecting the sets V1, . . . , Vr in a cycle in order and connecting Vr to V1 (see Figure 1). Applying
classical methods to find a Hamilton path through each subgraph G[Vi] to connect these edges creates a
Hamilton cycle of G which passes through each of the sets V1, . . . , Vr in order. Even though the probability
of success here is small, only at least e−n, for this to be true it is easy to show that G must contain at least
cnn! distinct Hamilton cycles (for some fixed 0 < c ≪ ε).
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V1 V2 V3 Vr−1 Vr

· · ·

Figure 1: A Hamilton cycle passing through the sets V1, V2, . . . , Vr in order.

For each i ∈ [r] in the above argument we should expect δ(G[Vi]) ≥ ( 1
2 + ε

2 )|Vi| with some constant
probability close to 1 (as µ ≪ ε), and so we would expect this to hold for all i ∈ [r] with probability at least
2−r ≥ e−n (say) for n large. Because of the dependencies here, this is not straightforward to prove, but
we do this with an iterative partitioning argument inspired by a technical aspect of the iterative absorption
techniques introduced by Barber, Lo, Kühn and Osthus [2]. The result of this argument in the graph case
for Hamilton cycles is much weaker than what is already known, but this argument can be used easily in
hypergraphs if the subgraph sought can be constructed from pieces like the cycle in Figure 1. This allows
counting results to be inferred from the extremal minimal degree for these pieces applied to each hypergraph
induced on the sets Vi in the partition (with some modification to make the required connections).

Dirac’s theorem has been generalised to give minimum degree conditions implying the containment of
many other spanning subgraphs, including F -factors [15, 25], trees with bounded degree [7, 19, 21], powers
of Hamilton cycles [22, 20], and, more generally, graphs with bounded degree and sublinear bandwith [6] (see
also the excellent surveys [24, 31]). For hypergraphs much less is known, but we will recall the progress made
for Hamilton ℓ-cycles, powers of tight cycles and factors (in Section 1.1), before discussing previous counting
results and our main theorems (in Section 1.2). Our technique may be applicable to other spanning sub-
graphs, and in particular we note that recent work of Gupta, Hamann, Müyesser, Parczyk and Sgueglia [14]
classifies some hypergraphs our techniques may apply to.

1.1 Dirac-type problems in hypergraphs

A k-uniform hypergraph (or k-graph) is a hypergraph where every edge consists of exactly k vertices. For a
k-graph H and a subset of vertices S ⊂ V (H), the degree of S, denoted dH(S), is the number of edges in
H containing S. For 1 ≤ d ≤ k − 1, the minimum d-degree of H, denoted δd(H), is the minimum of dH(S)
over all subsets S ⊆ V (H) with |S| = d. When d = k − 1 this is the minimum codegree, δ(H) = δk−1(H).

The first subgraphs we consider in hypergraphs are the Hamilton ℓ-cycles, a well-studied generalisation
of Hamilton cycles to hypergraphs. For k ≥ 2 and 0 ≤ ℓ ≤ k − 1, say that a k-graph C is an ℓ-cycle if
there is a cyclic ordering v1, . . . , vt of V (C) such that every edge of C consists of k consecutive vertices and
every two consecutive edges intersect in exactly ℓ vertices. If ℓ = k − 1, then C is called a tight cycle, and,
if ℓ = 0, then C is a matching. A k-graph H contains a Hamilton ℓ-cycle if there is an ℓ-cycle C ⊆ H with
V (C) = V (H) (where it can only exist if k − ℓ divides |H|).

The asymptotic minimum codegree required to guarantee a Hamilton ℓ-cycle in an n-vertex k-graph is
known due to Rödl, Ruciński, and Szemerédi [30] if (k − ℓ)|ℓ and to Kühn, Mycroft, and Osthus [23] if
(k − ℓ) ∤ k, whose results together give the following theorem.

Theorem 1.1. For each γ > 0, k ≥ 2, and 1 ≤ ℓ < k, there exists n0 such that the following holds for all
n ≥ n0 with (k − ℓ) | n. If H is an n-vertex k-graph with δ(H) ≥ (δk,ℓ + γ)n, where

δk,ℓ :=


1

2
if (k − ℓ) | k,

1

⌈ k
k−ℓ⌉(k − ℓ)

if (k − ℓ) ∤ k,
(1.1)

then H contains a Hamilton ℓ-cycle.
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Due to Theorem 1.1, we say the minimum codegree threshold for a k-graph to contain a Hamilton ℓ-cycle
is δk,ℓ. Note that a Hamilton tight cycle contains a Hamilton ℓ-cycle for every ℓ with (k− ℓ) | k. The results
in Theorem 1.1 are tight in every case up to the ‘error term’ of γn. For more discussion of this, and the
seemingly much more difficult problem for other degree bounds δd(H), d < k − 1, see the survey by Kühn
and Osthus [26].

We will also consider the powers of Hamilton tight cycles, where, for each t ≥ k ≥ 2, a k-graph C is the
(t−k+1)th power of a tight cycle if there is a cyclic ordering v1, . . . , vs of V (C) so that {vi, . . . , vi+t−1} spans
a k-uniform clique for all i ∈ [s] (working modulo s). When k = 2, this coincides with the usual definition of
powers of cycles in graphs, where for each t ≥ 2 the minimum degree threshold for the containment of the
(t−1)th power of a Hamilton cycle was famously shown to be t−1

t by Komlós, Sárközy, and Szemerédi [22, 20].
In 2020, Bedenknecht and Reiher [3] proved that 3-graphs with minimum codegree at least (4/5 + o(1))n
contain the square of a tight Hamilton cycle (which corresponds to t = k + 1 and k = 3), where it is known
that the constant 4/5 cannot be reduced below 3/4 for all n. This was recently widely extended by Pavez-
Signé, Sanhueza-Matamala and Stein [28], who showed that, with γ > 0 fixed, if an n-vertex k-graph H has
minimum codegree

δ(H) ≥

(
1 − 1(

t−1
k−1

)
+
(
t−2
k−2

) + γ

)
n, (1.2)

then H contains the (t− k + 1)th power of a tight Hamilton cycle, provided that n is sufficiently large. It is
not known whether the bounds given in (1.2) are tight up to γn, though this is true for the cases t ≥ k = 2
and t = k ≥ 2 which were already known [30, 22].

Finally, we will consider factors in hypergraphs. For a k-graph F , a k-graph H contains an F -factor if it
contains a collection of vertex-disjoint copies of F covering every vertex in H. Thus, a necessary condition
for an F -factor in H is that |F | divides |H|. For 1 ≤ d ≤ k − 1, then, let µk,d(F ) be the smallest number
such that for every γ > 0, there is n0 such that if H is an n-vertex graph with n ≥ n0 divisible by |F |
and δd(H) ≥ (µk,d(F ) + γ)

(
n

k−d

)
, then H contains an F -factor. In constrast to the graph case, where the

threshold is known (with moreover a much stronger error term) for all fixed F due to Komlós, Sárközy and
Szemerédi [15] and Kühn and Osthus [25], for most cases we do not have good bounds even in the case
d = k − 1 (see the survey by [33] and references therein).

1.2 Counting spanning hypergraphs

As in Cuckler and Kahn’s work on Hamilton cycles [8], it is reasonable to believe that an n-vertex k-graph
H with δ(H) ≥ δn, for (k − ℓ) | n and δ > δk,ℓ, should contain at least

(1 − o(1))n · Ψk,ℓ(n, δ) (1.3)

distinct Hamilton ℓ-cycles, where Ψk,ℓ(n, δ) denotes the expected number of distinct Hamilton ℓ-cycles in
the binomial random k-graph on n vertices with edge probability δ. In 2016, Ferber, Krivelevich, and
Sudakov [12] showed that the lower bound (1.3) is correct for every δ > 1/2 and 1 ≤ ℓ ≤ k/2, and asked if
this can be extended to 1 ≤ ℓ ≤ k − 1 and δ > δk,ℓ. This was partially answered by Glock, Gould, Joos,
Kühn, and Osthus [13], who showed that for every δ > 1/2 and 1 ≤ ℓ ≤ k − 1, the number of distinct
Hamilton ℓ-cycles is exp(n log n − Θ(n)), which is tight up to the Θ(n) error term in the exponent. This
result was recently improved by Ferber, Hardiman, and Mond [11], who proved that the lower bound (1.3)
holds for every δ > 1/2 and 1 ≤ ℓ ≤ k − 2, thus settling the problem for every 1 ≤ ℓ ≤ k − 2 such that
(k − ℓ) | k. Our contribution is to use the simple method outlined above to get a bound matching that
in [13] that holds for any δ > δk,ℓ (with δk,ℓ as defined in (1.1)), thus giving a new result when (k − ℓ) ∤ k
and ℓ > k/2, as follows.

Theorem 1.2. For each k ≥ 2, 1 ≤ ℓ ≤ k− 1 and γ > 0, there exist n0 and C such that the following holds
for any n ≥ n0 with (k − ℓ) | n. Any n-vertex k-graph H with δ(H) ≥ (δk,ℓ + γ)n (see (1.1)) contains at
least exp(n log n− Cn) distinct Hamilton ℓ-cycles.
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No previous bounds on the count of powers of Hamilton tight cycles in hypergraphs with large codegree
have been shown (including in graphs), and here we use our technique to similarly get a bound tight up to
Θ(n) error term in the exponent, as follows.

Theorem 1.3. For each t ≥ k ≥ 2 and γ > 0, there exist n0 and C such that the following holds for any
n ≥ n0. Any n-vertex k-graph H satisfying (1.2) contains at least exp(n log n − Cn) distinct copies of the
(t− k + 1)th power of a Hamilton tight cycle.

Finally, we consider counting F -factors in dense hypergraphs. When F is a single edge and k|n, the
number of F -factors in a k-graph H with n ≥ 3k vertices is equal to the number of Hamilton 0-cycles
multiplied by a factor of ((n/k) − 1)!/2. Thus, from the results of Ferber, Krivelevich, and Sudakov [12]
described above, if k | n then any n-vertex k-graph H with δ(H) ≥ δn has at least (1−o(1))nΨk,ℓ(n, δ)/(n/k)!
F -factors (with Ψk,ℓ(n, δ) as defined in (1.3)). In each case as part of wider work, for 1 ≤ d ≤ k − 1, Kang,
Kelly, Kühn, Osthus and Pfenninger [18] and Pham, Sah, Sawhney and Simkin [29] showed that if F is again
a single edge, and k | n, then any n-vertex k-graph H with δd(H) ≥ (µk,d(F ) + γ)

(
n

k−d

)
contains at least

c−n exp((1 − 1/k)n log n) F -factors where c ≪ γ is fixed and this result is tight up to the constant c. When
d = k − 1, Kang, Kelly, Kühn, Osthus, and Pfenninger [18] even managed to remove the error term in the
minimum degree condition.

In the graph case (k = 2), Pham, Sah, Sawhney, and Simkin [29] very recently showed that if F = Kt

is the t-vertex complete graph, and t | n, then any n-vertex graph G with δ(G) ≥ (1 − 1/t)n contains
c−n exp((1 − 1/t)n log n) F -factors for some fixed constant c. The degree bound here is the famously tight
Hajnal-Szemerédi bound from [15] and the bound on the number of F -factors is tight up to the constant c.
This proved a recent conjecture of Allen, Böttcher, Corsten, Davies, Jenssen, Morris, Roberts, and Skokan [1].

Here, our contribution again is to apply our methods to easily match these weaker bounds of c−n exp((1−
1/|F |)n log n) under the stronger approximate minimum degree condition, but to do this for F -factors for
any fixed graph F and all degree bounds, as follows.

Theorem 1.4. For each k ≥ 2, 1 ≤ d ≤ k − 1, and each k-graph F on t ≥ k vertices, there exists n0

and C such that the following holds for any n ≥ n0 with t | n. Any n-vertex k-graph H with δd(H) ≥
(µk,d(F ) + γ)

(
n

k−d

)
contains at least exp

(
(1 − 1

t )n log n− Cn
)
distinct F -factors.

2 Proofs

A k-graph H has vertex set V (H) and edge set E(H), and |H| = |V (H)|. For any U, S ⊂ V (H) with
|U | ≤ k − 1, d(U, S) is the degree of U in S, i.e., the number of edges of H containing U whose vertices not
in U are all in S. The hypergraph H[S] induced by S ⊂ V (H) has vertex set S and edge set consisting of
all those edges in H contained in S. For a set X and 1 ≤ ℓ ≤ |X|, let

(
X
ℓ

)
denote the collection of subsets of

X of size ℓ, and let (X)ℓ denote the set of tuples x = (x1, . . . , xℓ) ∈ Xℓ of distinct elements in X. We will
use bold letters to denote elements from (X)ℓ or Xℓ. For a, b ∈ (0, 1], we will write a ≪ b to denote that,
given b, we can choose a sufficiently small so that the subsequent statements hold.

2.1 Our main partitioning lemma

Here we prove our main lemma, showing that in any linear (in |H|) minimum degree hypergraph H there are
many partitions of V (H) into sets with chosen sizes whose induced subgraphs from H have high minimum
degree relative to their sizes (see Lemma 2.3). We need a slightly stronger condition to connect the subgraphs
then found in these induced subgraphs, which motivates the following definition of a good partition.

Definition 2.1. Let k ≥ 2, δ ∈ [0, 1] and n = (n1, . . . , nr) ∈ Nr. For an n-vertex k-graph H, we say that a
partition V (H) = V1 ∪ . . . ∪ Vr is (n, δ)-good if (working modulo r in the indices) we have

P1 |Vi| = ni for each i ∈ [r], and

P2 for each i ∈ [r] and U ⊆ Vi−1 ∪ Vi ∪ Vi+1 with |U | = k − 1, d(U, Vi) ≥ δ|Vi|.
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To find many good partitions, we will choose an appropriate distribution n for the size of the subsets
and partition V (H) = V1 ∪ . . . ∪ Vr uniformly at random subject to P1. We then show (for the parameters
we use, and with n large) that P2 holds with probability at least e−n, a relatively small probability but still
enough to show that many partitions are good. For any fixed i ∈ [r], P2 will hold with constant probability,
and the only difficulty here is to show that (despite many dependencies) this is true for all i ∈ [r] with
probability at least e−n. To do this, we form the random partition iteratively, each time dividing the subsets
in two, and tracking how the minimum degree condition (or more precisely something akin to P2) changes
in the subgraphs induced on the sets. This is inspired by part of the analysis in the work by Barber, Lo,
Kühn and Osthus [2] introducing iterative absorption, and we use some similar calculations to those in [2].

For our analysis, we need the following standard concentration result for hypergeometric random variables
(see, e.g., [17] for the standard definition of such a variable with parameters N , n and m).

Theorem 2.2 (see, e.g., Theorem 2.10 in [17]). Let X be a hypergeometric random variable with parameters
N , n and m. Then, for any t > 0,

P(|X − EX| ≥ t) ≤ 2e−2t2/n.

We can now state and prove our key lemma, as follows.

Lemma 2.3. Let 1 ≤ ℓ < k and let 1/n ≪ 1/m ≪ δ, γ, 1/k satisfy (k − ℓ) | n. Then, there exists a tuple
n = (n1, . . . , nr) with

∑
i∈[r] ni = n and, for each i ∈ [r], m ≤ ni ≤ 5m and (k − ℓ) | ni, such that the

following holds. If H is an n-vertex k-graph with δ(H) ≥ (δ + γ)n, then the number of (n, δ + γ/2)-good
partitions of V (H) is at least e−n

(
n

n1,...,nr

)
.

Proof. Let s satisfy 2m ≤ n/2s < 4m and let r = 2s. Since (k − ℓ) | n, we can choose integers ni, i ∈ [r], so
that m ≤ ni ≤ 5m and (k− ℓ)|ni, for each i ∈ [r],

∑
i∈[r] ni = n, and |ni−nj | ≤ 2k for all 1 ≤ i < j ≤ r. We

will show that the lemma holds with n := (n1, . . . , nr), so let H be any n-vertex k-graph with δ(H) ≥ (δ+γ)n.
We start by iteratively partitioning V (H) in 2 at random. For each 0 ≤ i ≤ s, let ri = 2i, and, for each

0 ≤ i ≤ s and j ∈ [ri], let

mi,j =

j·2s−i∑
i′=(j−1)·2s−i+1

ni′ . (2.1)

Let V0,1 = V (H). Iteratively, do the following for each i ∈ [s]. For each j ∈ [ri−1], uniformly at random
divide Vi−1,j into two sets Vi,2j−1 and Vi,2j so that |Vi,2j−1| = mi,2j−1 and |Vi,2j | = mi,2j , noting that

|Vi−1,j | = mi−1,j =

j·2s−i+1∑
i′=(j−1)·2s−i+1+1

ni′ =

(2j−1)·2s−i+1∑
i′=(2j−2)·2s−i+1

ni′ +

2j·2s−i+1∑
i′=(2j−1)·2s−i+1

ni′ = mi,2j−1 + mi,2j .

Note that this process ends with the partition V (H) = Vs,1 ∪Vs,2 ∪ . . .∪Vs,r with |Vs,i| = ms,i = ni for each
i ∈ [r], whose distribution is that of a partition of V (H) chosen uniformly at random subject to these set
sizes.

Now, for each 0 ≤ i ≤ s and j ∈ [ri], let Ei,j be the event where, for every U ⊂ Vi,j−1 ∪ Vi,j ∪ Vi,j+1

(with, as in later occurrences, addition modulo ri in the second subscript), if |U | = k − 1, then

d(U, Vi,j) ≥
(
δ + γ − 2m

−1/4
i,j

)
mi,j . (2.2)

For each 0 ≤ i ≤ s, let Ei be the event that Ei,j holds for all j ∈ [ri], noting that E0 holds because
δ(H) ≥ (δ + γ)n. We will now show that the lemma is implied by the following claim.

Claim 2.4. For each i ∈ [s], P(Ei|Ei−1) ≥ exp(−ri−1).

Note that if Es holds, then (Vs,1, . . . , Vs,r) is (n, δ + γ/2)-good as ms,i = ni ≥ m for each i ∈ [r] and
1/m ≪ γ. Thus, considering the distribution of the random partition V (H) = Vs,1 ∪ Vs,2 ∪ . . . ∪ Vs,r, the
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number of (n, δ + γ/2)-good partitions of V (H) is at least P(Es) · n!
n1!,...,nr!

, so that the lemma follows from
the claim as

P(Es) ≥
∏
i∈[s]

P(Ei|Ei−1) ≥ exp
(
−
∑
i∈[s]

ri−1

)
≥ exp(−rs) = exp(−2s) ≥ exp(−n/2m) ≥ exp(−n).

Thus, it is only left to prove the claim.

Proof of Claim 2.4. Fix i ∈ [s]. For each j ∈ [ri−1], let Fi−1,j be the event that, for every U ⊂ Vi−1,j−1 ∪
Vi−1,j ∪ Vi−1,j+1 with |U | = k − 1, we have

d(U, Vi,2j−1) ≥ (δ + γ − 2m
−1/3
i,2j−1)mi,2j−1 and d(U, Vi,2j) ≥ (δ + γ − 2m

−1/3
i,2j )mi,2j .

Note that, for each j ∈ [ri−1], as Vi−1,j = Vi,2j−1 ∪ Vi,2j , if Fi−1,j holds, then both Ei,2j−1 and Ei,2j hold.
Furthermore, conditioned on Ei−1, the events Fi−1,j , j ∈ [ri−1], are independent. We will show that, for
each j ∈ [ri−1], P(Fi−1,j |Ei−1) ≥ e−1, so that we then have

P(Ei|Ei−1) ≥
∏

j∈[ri−1]

P(Fi−1,j |Ei−1) ≥ exp(−ri−1),

as required. Thus it is left to show that, for each j ∈ [ri−1], P(Fi−1,j |Ei−1) ≥ e−1.
Fix, then, j ∈ [ri−1], and assume that Ei−1 holds. Let U ⊂ Vi−1,j−1∪Vi−1,j∪Vi−1,j+1 satisfy |U | = k−1.

Note that d(U, Vi,2j−1) has a hypergeometric distribution with parameters N ′ := mi−1,j , n
′ := mi,2j−1 and

m′ := d(U, Vi−1,j). Furthermore, as Ei−1, and hence Ei−1,j holds, we have that

E[d(U, Vi,2j−1)] =
mi,2j−1

mi−1,j
· d(U, Vi−1,j)

(2.2)

≥
(
δ + γ − 2m

−1/4
i−1,j

)
mi,2j−1.

Therefore, by Theorem 2.2, we have

P
(
d(U, Vi,2j−1) ≤

(
δ + γ − 2m

−1/4
i−1,j

)
mi,2j−1 −m

2/3
i,2j−1

)
≤ 2 exp(−2m

1/3
i,2j−1). (2.3)

Now, for each i′, j′ ∈ [s] we have |ni′ −nj′ | ≤ 2k ≤ ni′/10 and hence ni′ ≤ 11nj′/10. Thus, by (2.1) we have
mi,2j−1 ≤ 11mi−1,j/20 and hence

2m
−1/4
i−1,j ·mi,2j−1 + m

2/3
i,2j−1 ≤ ( 11

20 )1/4 · 2m
3/4
i,2j−1 + m

2/3
i,2j−1 ≤ 2m

3/4
i,2j−1, (2.4)

as mi,2j−1 ≥ m and 1/m ≪ 1. In combination, (2.3) and (2.4) give us that

P
(
d(U, Vi,2j−1) ≤

(
δ + γ − 2m

−1/4
i,2j−1

)
mi,2j−1

)
≤ 2 exp

(
− 2m

1/3
i,2j−1

)
.

Similarly, this holds with Vi,2j and mi,2j in place of Vi,2j−1 and mi,2j−1. Furthermore, from (2.1) and that
ni′ ≤ 11nj′/10 for all i′, j′ ∈ [s], it follows that |Vi−1,j−1∪Vi−1,j∪Vi−1,j+1| ≤ 66mi,2j−1/10 and ≤ 66mi,2j/10.
Therefore, using a union bound over all U ⊂ Vi−1,j−1 ∪Vi−1,j ∪Vi−1,j+1 satisfying |U | = k− 1, we have that

P(Fi−1,j |Ei−1) ≥ 1 − (7mi,2j−1)k−1 · 2 exp(−2m
1/3
i,2j−1) − (7mi,2j−1)k−1 · 2 exp(−2m

1/3
i,2j−1) ≥ e−1,

as required, where we have used that mi,2j−1,mi,2j ≥ m and 1/m ≪ 1.

2.2 Counting Hamilton ℓ-cycles

We say that a k-graph P with t vertices is an ℓ-path, where 1 ≤ ℓ < k, if (k − ℓ) | (t − ℓ) and there exists
an ordering v1, . . . , vt of V (P ) such that every edge of P consists of k consecutive vertices and such that
every two consecutive edges intersect in exactly ℓ vertices. We will usually identify an ℓ-path P with a
corresponding ordering v1, . . . , vt. The ends of an ℓ-path P = v1 . . . vt are the tuples v = (v1, . . . , vℓ) and
v′ = (vt−ℓ+1, . . . , vt), in which case we say that v and v′ are ℓ-connected by P . We say that a k-graph H
contains a Hamilton ℓ-path if there is an ℓ-path P in H with V (P ) = V (H).
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Definition 2.5. A k-graph H is Hamilton ℓ-path connected if, for any pair of vertex-disjoint tuples u,v ∈
(V (H))ℓ, there is a Hamilton ℓ-path in H which ℓ-connects u with v.

The next lemma states that k-graphs with large minimum codegree which satisfies the natural divisibility
conditions are Hamilton ℓ-path connected. The proof of Lemma 2.6 is a very straightforward modification
of the original argument of Kühn, Mycroft and Osthus [23] for finding Hamilton ℓ-cycles via the absorption
method (as can be seen in the special case when (k − ℓ) | k, where this was done by Glock, Gould, Joos,
Kühn and Osthus as [13, Lemma 3.7]). For completion, however, we include a proof in an appendix.

Lemma 2.6. Let 1 ≤ ℓ < k and let 1/n ≪ γ, 1/k satisfy (k − ℓ) ∤ (n− ℓ). If H is an n-vertex k-graph with
δ(H) ≥ (δk,ℓ + γ)n (see (1.1)), then H is Hamilton ℓ-path connected.

Now we are ready for the proof of our first main result.

Proof of Theorem 1.2. Let δ = δk,ℓ and let m be such that every k-graph on m′ ≥ m/2 vertices with
minimum codegree at least (δ + γ/4)m′ is Hamilton ℓ-path connected (using Lemma 2.6) and such that
1/m ≪ δ, γ, 1/k. Let n0 and C be such that, for every n ≥ n0, 1/n ≪ 1/C ≪ 1/m. Let H be an n-vertex
k-graph with δ(H) ≥ (δ + γ)n. By Lemma 2.3, there exist a tuple n = (n1, . . . , nr) with

∑
i∈[r] ni = n and,

for each i ∈ [r], m ≤ ni ≤ 5m and (k − ℓ) | ni, such that V (H) has at least e−n
(

n
n1,...,nr

)
partitions that are

(n, δ + γ/2)-good.
Now, given a partition P = (V1, . . . , Vr) of V (H), say that a Hamilton ℓ-cycle Q is P-respecting if, for each

i ∈ [r] (for some direction and working modulo r in the subscript), all the vertices in Vi appear concurrently
on Q, and the interval of vertices in Vi on Q is just before the interval of vertices in Vi+1 on Q. (See Figure 1
for a Hamilton cycle that is (V1, . . . , Vr)-respecting.)

Claim 2.7. For each (n, δ + γ/2)-good partition P = (V1, . . . , Vr), H has a P-respecting Hamilton ℓ-cycle.

Before proving Claim 2.7, let us show how to deduce the theorem from it. Note that any Hamilton
ℓ-cycle in H respects at most 2n partitions (V1, . . . , Vr) of V (H) with |Vi| = ni for each i ∈ [r], as choosing
a direction and the first vertex of V1 specifies the ordered partition. Then, by Claim 2.7 and our bound on
the number of (n, δ + γ/2)-good partitions of V (H), the number of Hamilton ℓ-cycles in H is at least

e−n

2n
·
(

n

n1, . . . , nr

)
=

e−n

2n
· n!∏

i∈[r] ni!
≥ e−n

2n
· n!

(5m)!n/m
≥ exp(n log n− Cn), (2.5)

using Stirling’s formula and that 1/n ≪ 1/C ≪ 1/m.
Therefore, it is left only to prove Claim 2.7.

Proof of Claim 2.7. Let P = (V1, . . . , Vr) be an (n, δ + γ/2)-good partition. For each i ∈ [r], using that
|Vi| ≥ m ≥ ℓ, pick an arbitrary ℓ-tuple vi = (vi,1, vi,2, . . . , vi,ℓ) ∈ (Vi)ℓ. For each i ∈ [r], let Hi =
H[Vi ∪ {vi−1,1, . . . , vi−1,ℓ}] (working modulo r in the indices), so that, as P is (n, δ + γ/2)-good, we have
that δ(Hi) ≥ (δ + γ/2)|Vi| ≥ (δ + γ/4)|Hi|. Moreover, |Hi| − ℓ = ni is divisible by k − ℓ. Therefore, by
Lemma 2.6, there is a Hamilton ℓ-path in Hi with vertex sequence vi−1,1vi−1,2 . . . vi−1,ℓLivi,1 . . . vi,ℓ for some
sequence Li. Then, the ordering L1v1,1 . . . v1,ℓL2v2,1 . . . v2,ℓL3 . . . vr−1,1 . . . vr−1,ℓLrvr,1 . . . vr,ℓ is an ordering
of the vertices of H which gives a Hamilton ℓ-cycle respecting the partition (V1, . . . , Vr), as required.

2.3 Counting powers of tight Hamilton cycles

For Theorem 1.3, we use the following definitions. Let t ≥ k ≥ 2 and let H be a k-graph. The t-clique graph
of H, denoted Kt(H), is the t-graph with vertex set V (Kt(H)) = V (H) where {v1, . . . , vt} is an edge of
Kt(H) if and only if H[{v1, . . . , vt}] is a k-uniform clique in H.

Our proof of Theorem 1.3 is very similar to the proof of Theorem 1.2 so we do not repeat it here and
only state the differences. The main thing is to note that, given

• a partition V (H) = V1 ∪ . . . ∪ Vr and distinct vertices vi,1, . . . , vi,t−1 ∈ Vi, i ∈ [r], such that, for each
i ∈ [r], H[{vi,1, . . . , vi,t−1}] is a (t− 1)-clique, and
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• orderings Li, i ∈ [r], of the vertices in Vi \ {vi,1, . . . , vi,t−1} where vi−1,1, . . . , vi−1,t−1Livi,1, . . . , vi,t−1

is the ordering of a Hamilton tight path in Kt(H[Vi ∪ {vi−1,1, . . . , vi−1,t−1}]) for each i ∈ [r],

the ordering L1v1,1 . . . v1,t−1L2v2,1 . . . v2,t−1L3 . . . vr−1,1 . . . vr−1,t−1Lrvr,1 . . . vr,t−1 is an ordering of the ver-
tices of H which gives a (t− k + 1)th power of a Hamilton tight cycle respecting the partition (V1, . . . , Vr).
Thus, the proof of Theorem 1.3 follows identically to that of Theorem 1.2 using the following proposition
to select the vertices vi,1, . . . , vi,t−1 ∈ Vi, i ∈ [r], in place of the vertices vi,1, . . . , vi,ℓ ∈ Vi, i ∈ [r], and the
following lemma in place of Lemma 2.6.

Proposition 2.8. Let t ≥ k ≥ 2 and let 1/n ≪ γ, 1/t. If H is an n-vertex k-graph satisfying (1.2), then H
contains a t-vertex k-uniform clique.

Lemma 2.9. Let t ≥ k ≥ 2 and let 1/n ≪ γ, 1/t. If H is an n-vertex k-graph satisfying (1.2), then for
every pair of disjoint tuples v,v′ ∈ (V (H))t−1 whose vertices support a (t − 1)-vertex k-uniform clique in
H, there is a Hamilton tight path in Kt(H) with ends v and v′.

Proposition 2.8 can be proved simply by picking the vertices of the clique greedily, where the codegree
bound used is comfortably sufficient for this. The proof of Lemma 2.9 follows the same ideas as the proof of
Lemma 2.6, but using results of Pavez-Signé, Sanhueza-Matamala and Stein [28] in place of those by Kühn,
Mycroft and Osthus [23]. We comment further on this in the appendix.

2.4 Counting F -factors

To count factors, we no longer need to connect the different parts of a good partition, but we do wish to
have conditions for different degrees than just the codegree, motivating the following definition.

Definition 2.10. Let k, d ∈ N satisfy 1 ≤ d ≤ k − 1. Let µ > 0 and n = (n1, . . . , nr) ∈ Nr. For an n-vertex
k-graph H, say that a partition V (H) = V1 ∪ . . . ∪ Vr is (n, d, µ)-good if, for each i ∈ [r], |Vi| = ni and
δd(H[Vi]) ≥ µ

(
ni

k−d

)
.

With only minor modification, including using McDiarmid’s inequality (see Lemma 1.2 in [27]) to bound
similar events to the events Ei,j , the proof of Lemma 2.3 can be adapted to prove the following.

Lemma 2.11. Let 1 ≤ d ≤ k− 1 and let 1/n ≪ 1/m ≪ γ, µ, 1/k, 1/t satisfy t | n. Then, there exists a tuple
(n1, . . . , nr) ∈ Nr, with

∑
i∈[r] ni = n, and m ≤ ni ≤ 5m and t | ni for each i ∈ [r], such that the following

holds. If H is an n-vertex k-graph with δd(H) ≥ (µ + γ)
(

n
k−d

)
, then the number of (n, d, µ + γ/2)-good

partitions in H is at least e−n
(

n
n1,...,nr

)
.

Recalling that µk,d(F ) is defined at the end of Section 1.1, we are now ready for the proof of Theorem 1.4.

Proof of Theorem 1.4. Let 1 ≤ d ≤ k−1 and let F be a fixed k-graph on t vertices. Let m be such that every

k-graph on m′ ≥ m vertices, with t | m′, and minimum d-degree at least (µk,d(F ) + γ/2)
(

m′

k−d

)
, contains an

F -factor (using the definition of µk,d(F )). Let n0 and C be such that, for every n ≥ n0, 1/n ≪ 1/C ≪ 1/m,
and let H be an n-vertex k-graph with δd(H) ≥ (µk,d(F ) + γ)nk−d. By Lemma 2.11, there is a tuple
n = (n1, . . . , nr), with

∑
i∈[r] ni = n, and m ≤ ni ≤ 5m and t | ni for each i ∈ [r], such that the number of

(n, d, µk,d(F ) + γ/2)-good partitions of V (H) is at least e−n
(

n
n1,...,nr

)
.

For each (n, d, µk,d(F )+γ/2)-good partition P = (V1, . . . , Vr), by the definition of m, there is an F -factor
in H[Vi] for each i ∈ [r], and therefore H has an F -factor, G say, where G[Vi] is an F -factor of H[Vi] for
each i ∈ [r]. On the other hand, given an F -factor G, the number of possible partitions P = (V1, . . . , Vr),
such that G[Vi] is an F -factor of H[Vi] and |Vi| = ni for each i ∈ [r] is at most (n/t)n/t ≤ exp((n log n)/t).
Therefore, the number of distinct F -factors in H is (similarly to (2.5)) at least

e−n · exp(−(n/t) log n) ·
(

n

n1, . . . , nr

)
≥ e−n · exp(−(n/t) log n) · n!

(5m)!n/m
≥ exp

(
(1 − 1

t )n log n− Cn
)
,

as required, where we have used Stirling’s formula and that 1/n ≪ 1/C ≪ 1/m.
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A Proof of Lemmas 2.6 and 2.9

Here we provide a proof for Lemma 2.6. The proof is a straightforward modification of the original argument
by Kühn, Mycroft and Osthus [23] for finding Hamilton ℓ-cycles in dense hypergraphs via the absorption
method.

Definition A.1. Let 1 ≤ ℓ < k and let H be a k-graph. Say that an ℓ-path P in H, with ends a,b ∈ (V (H))ℓ,
can absorb a collection of pairwise disjoint (k − ℓ)-sets S1, . . . , St if

(i) P contains no vertex from
⋃

i∈[t] Si, and

(ii) there is an ℓ-path Q with vertex set V (Q) = V (P ) ∪
⋃

i∈[t] Si and with ends a and b.

In this case, we say that P is an absorbing path for S1, . . . , St.

We may use a similar definition of absorbing paths that works for powers of tight cycles (for Lemma 2.9),
in which case the absorbing paths are tight paths in the t-clique graph Kt(H) that can absorb vertices rather
than (k − ℓ)-sets (see Definition 7.1 in [28]).
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Definition A.2. Let 1 ≤ ℓ < k and let H be an n-vertex k-graph. Say that a (k − ℓ)-set S ⊂ V (H)
is (β, t)-good if H contains at least βnt absorbing paths for S, each with exactly t vertices. If S is not
(β, t)-good, we then say that S is (β, t)-bad.

The following result states that most (k − ℓ)-sets are good in k-graphs with linear minimum codegree.

Lemma A.3 (Lemma 6.2 in [23]). Let k ≥ 3 and 1 ≤ ℓ < k satisfy (k−ℓ) ∤ k, and let 1/n ≪ β ≪ θ ≪ µ, 1/k.
There exists a constant t = t(k, ℓ) such that if H is an n-vertex k-graph with δ(H) ≥ µn, then the number
of (β, t)-bad (k − ℓ)-sets in H is at most θnk−ℓ.

The next lemma says that we can find a short path P which can absorb any collection of o(n) pairwise
disjoint good sets and, moreover, every vertex outside P belongs to only few bad sets.

Lemma A.4 (Lemma 6.3 in [23]). Let k ≥ 3 and 1 ≤ ℓ < k satisfy (k− ℓ) ∤ k, and let 1/n ≪ α ≪ β ≪ θ ≪
µ, 1/k. If H is an n-vertex k-graph with δ(H) ≥ µn and t = t(k, ℓ) from Lemma A.3, then H contains an
ℓ-path P on at most µn vertices such that

(i) every vertex of H − V (P ) lies in at most θnk−ℓ−1 (β, t)-bad (k − ℓ)-sets, and

(ii) P can absorb any collection of at most αn disjoint (β, t)-good (k − ℓ)-sets of vertices of H − V (P ).

For proving Lemma 2.9, we can show an analogue result in the spirit of Lemma A.4 for the t-clique graph
Kt(H) using Lemma 7.3 in [28] and Step 1 in the proof of Theorem 1.1 in [28].

Next, we have a lemma for when any two disjoint ordered ℓ-sets can be connected by a short ℓ-path, as
follows.

Lemma A.5 (Corollary 5.4 in [23]). Let k ≥ 3 and 1 ≤ ℓ ≤ k − 1 satisfy (k − ℓ) ∤ k, and let 1/n ≪ µ, 1/k.
If H is an n-vertex k-graph with δ(H) ≥ µn, then for any two disjoint ordered ℓ-sets a,b ∈ (V (H))ℓ there
exists an ℓ-path P with ends a and b that contains at most 8k5 vertices.

We have a similar statement in the vein of Lemma A.5 for the clique graph (see [28, Lemma 4.1]), which
states that any two disjoint (t−1)-sets that support (t−1)-cliques in H can be connected in Kt(H) by many
short tight paths.

The last two ingredients we need are, firstly, that the degree conditions are preserved by taking random
subsets and, secondly, that hypergraphs with large vertex degree have perfect matchings.

Lemma A.6 (Lemma 8.1 in [23]). Let 1 ≤ d < k and let 1/n ≪ α, µ, 1/k. Let H be an n-vertex k-graph
with δd(H) ≥ µ

(
n

k−d

)
, and let R ⊂ V (H) be a random subset of size αn. Then, with probability 1 − o(1), we

have |NH(S) ∩
(

R
k−d

)
| ≥ µ

(
αn
k−d

)
− nk−d− 1

3 for every S ∈
(
V (H)

d

)
.

Theorem A.7 (Perfect matching theorem [9]). Let n, k ≥ 2 such that k | n. If H is an n-vertex k-graph
with δ1(H) ≥ k−1

k (
(
n−1
k−1

)
− 1), then H contains a perfect matching.

Now we are ready for the proof of Lemma 2.6.

Proof of Lemma 2.6. We begin by choosing constants

1/n ≪ α ≪ β ≪ θ ≪ θ′ ≪ γ ≪ µ ≪ 1/k,

and let t = t(k, ℓ) from Lemma A.3. Given disjoint ℓ-tuples a = (a1, . . . , aℓ) and b = (b1, . . . , bℓ) in V (H),
set H ′ = H − {a1, . . . , aℓ, b1, . . . , bℓ} and n′ = |H ′| = n − 2ℓ, and note that δ(H ′) ≥ (δk,ℓ + γ/2)n′ as
1/n ≪ 1/k. Using Lemma A.4, find an absorbing ℓ-path P0 in H ′ with at most γn′/16 vertices which can
absorb any collection of at most 2αn′ pairwise disjoint (β, t)-good (k − ℓ)-sets in V (H ′) (here we have used
that δ(H ′) ≥ γn′/16). Let G be an auxiliary (k − ℓ)-graph with V (G) = V (H ′) and edge set consisting of
all those (k − ℓ)-sets in H ′ which are (β, t)-good. By Lemma A.3, for every v ∈ V (G) \ V (P0) we have

dG(v) ≥
(

n′

k − ℓ− 1

)
− θn′k−ℓ−1 ≥ (1 − θ′)

(
n′

k − ℓ− 1

)
.

Let R ⊂ V (H ′) be a random subset of size αn′. Then, by Lemma A.6, with probability 1 − o(1),
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(i) dG(v,R) ≥ (1 − 2θ′)
( |R|
k−ℓ−1

)
for every v ∈ V (G) \ V (P0), and

(ii) dH(S,R) ≥ (δk,ℓ + γ/4)|R| for every S ∈
(
V (H)
k−1

)
.

Moreover, as E[|R∩V (P0)|] = α|P0|, Lemma 2.2 implies that |R∩V (P0)| ≤ 2α|P0| ≤ αγn′/8 with probability
1 − o(1). Therefore, there is a choice of R such that, letting R′ = R \ V (P0), we have

R1 αn′ ≥ |R′| ≥ (1 − µ)αn′,

R2 dG(v,R′) ≥ (1 − µ)
( |R′|
k−ℓ−1

)
for every v ∈ V (G) \ V (P0), and

R3 dH(S,R′) ≥ (δk,ℓ + γ/8)|R′| for every S ∈
(
V (H)
k−1

)
.

Let V ′ ⊆ V (H ′) \ (R′ ∪ V (P0)) be a subset obtained by removing at most k − ℓ vertices so that |V ′| is
divisible by k− ℓ. We write H ′′ = H[V ′] and note that δ(H ′′) ≥ (δk,ℓ + γ/16)|H ′′|. Use Theorem 1.1 to find
a Hamilton ℓ-cycle in H ′′, and hence H ′′ contains an ℓ-path P with |P | ≥ |H ′′| − 2k. Let x′ = (x′

1, . . . , x
′
ℓ)

and y′ = (y′1, . . . , y
′
ℓ) be the ends of P0, and let x = (x1, . . . , xℓ) and y = (y1, . . . , yℓ) be the ends of P . Using

Lemma A.5 and R3, we find sequences of vertices Lax′ , Ly′x, and Lyb such that

• |Lax′ |, |Ly′x|, |Lyb| ≤ 8k5,

• Lax′ , Ly′x and Lyb are pairwise disjoint and contain vertices only from R′, and

• Pax′ = a1 . . . aℓLax′x′
1 . . . x

′
ℓ, Py′x = y′1 . . . y

′
ℓLy′xx1 . . . xℓ, and Pyb = y1 . . . yℓLybb1 . . . bℓ are ℓ-paths.

Therefore, the sequence
Q = a1 . . . aℓLax′P0Ly′xPLybb1 . . . bℓ

is an ℓ-path in H connecting a with b and using at most 24k5 vertices from R′. Let X = V (H) \ V (Q) and
note that, because of R1 and R2, every vertex v ∈ X satisfies

dG(v,X) ≥ (1 − µ)

(
|R′|

k − ℓ− 1

)
− 25k5 · |X|k−ℓ−2 ≥ (1 − 2µ)

(
|X|

k − ℓ− 1

)
, (A.1)

where we have used that |X \ R′| ≤ 24k5 + 2k + (k − ℓ) ≤ 25k5 and 1/n ≪ 1/k. Then, by (A.1) and
Theorem A.7, G[X] contains a perfect matching S1, . . . , Sj , which is a collection of at most |X| ≤ |R′| +
2k+ (k− ℓ) ≤ 2αn pairwise disjoint (β, t)-good (k− ℓ)-sets. Finally, using Lemma A.4 we can absorb all the
vertices from

⋃
i∈[j] Si which concludes the proof.

The proof of Lemma 2.9 follows a similar strategy. Let us sketch the main steps of the proof here.
Given two disjoint tuples a = (a1, . . . , at−1) and b = (b1, . . . , bt−1) that support (t − 1)-cliques in H, set
H ′ = H − {a1, . . . , at−1, b1, . . . , bt−1}. The proof of Lemma 2.9 consists of the following steps:

• Find a short absorbing path P0 in Kt(H
′) capable of absorbing any collection of o(n) vertices.

• Set aside a reservoir R in H ′ − V (P0) and find a Hamilton tight path in Kt(H
′ − (V (P0) ∪ R)) (this

can be done as H ′ − (V (P0) ∪R) satisfies (1.2) with a slightly worse error term).

• Using a corresponding connecting lemma ([28, Lemma 4.1]) and the properties of the reservoir, find
an almost spanning path Q with ends a and b which contains P0.

• Finish the embedding using the properties of the absorbing path.

The main difference with the proof of Lemma 2.6 is that, in this case, we do not need to use any matching
result in the absorption step as H contains no bad vertices (see [28, Lemma 7.2]).
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