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Abstract

In 1981, Erdés and Hajnal asked whether the sum of the reciprocals of the odd cycle lengths
in a graph with infinite chromatic number is necessarily infinite. Let C(G) be the set of cycle
lengths in a graph G and let Coqq(G) be the set of odd numbers in C(G). We prove that, if
G has chromatic number k, then » ;.o )1/ > (1/2 — o(1)) logk. This solves Erdés and
Hajnal’s odd cycle problem, and, furthermore, this bound is asymptotically optimal.

In 1984, Erdés asked whether there is some d such that each graph with chromatic number
at least d (or perhaps even only average degree at least d) has a cycle whose length is a power
of 2. We show that an average degree condition is sufficient for this problem, solving it with
methods that apply to a wide range of sequences in addition to the powers of 2.

Finally, we use our methods to show that, for every k, there is some d so that every graph
with average degree at least d has a subdivision of the complete graph K in which each edge
is subdivided the same number of times. This confirms a conjecture of Thomassen from 1984.

1 Introduction

Does the chromatic number or the average degree imply anything about the cycle lengths of a
graph? For any fixed k, we can never infer the presence of a cycle with length k, as a graph may
have arbitrarily high chromatic number yet no such cycle (as Erdds famously showed in 1959 [1]).
Can we, however, say something about the density of cycle lengths or infer the existence of a cycle
with length in some given infinite set of integers?

We will consider these two questions for both the even cycles and the odd cycles of a graph.
From an average degree condition, we can only say something about the even cycles of a graph, as,
of course, a graph with high average degree may have no odd cycles. The natural corresponding
condition to impose for odd cycles is one on the chromatic number (see, for example, the survey
by Verstraéte [24]).

In this paper, we give the first constructions for even cycles with precise lengths using only an
average degree condition. We then develop our methods further to find many odd cycle lengths
in graphs with a chromatic number condition. This development, while itself novel, relies on the
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strength of our results on even cycles and cannot be done using the previous results guaranteeing
different even cycle lengths.

We now discuss further, and state our results on, even cycles in graphs with an average de-
gree condition (in Section and odd cycles in graphs with a chromatic number condition (in
Section . We then give a further application of our work which confirms a conjecture of
Thomassen [20] on subdivisions (in Section . For questions on cycle lengths in graphs un-
der additional conditions, and the background on them, we refer the reader to the comprehensive
survey by Verstraéte [24].

1.1 Average degree and even cycle lengths

In 1966, Erdds and Hajnal [8] suggested the harmonic sum of the cycle lengths in a graph as a
measure of the density of its cycle lengths. In particular, letting C(G) be the set of cycle lengths
in a graph G, Erd6s and Hajnal [§] asked whether

Z %—M)o as  X(G) — oo, (1)
LeC(@G)

where x(G) is the chromatic number of G. As Erdés later wrote [4], they felt that should even
hold under the weaker condition d(G) — oo, where d(G) is the average degree of the graph G. In
1984, Gyarfas, Komlds and Szemerédi [10] confirmed this stronger conjecture by proving that any
graph G with average degree d has EZEC(G) 1/¢ = Qq4(logd). If G is a complete balanced bipartite
graph with average degree d, then 3 /co) 1/¢ = (1/2+04(1))log d, so this lower bound is tight up
to the implicit constant. Here and throughout the paper, we write log for the natural logarithm.
Erdés [4] had previously stated, in 1975, that it was likely that (1/2 + 04(1))logd is the correct
asymptotic lower bound, over all graphs G with d(G) > d, and this remained an open problem.

We say an increasing sequence o1, 09,03, ... of integers is unavoidable with high average degree
if there is some d such that any graph with average degree at least d has a cycle with length in
01,02,03,.... In 1977, Bollobds [2] confirmed a conjecture of Burr and Erdés by showing that,
if o; forms an arithmetic progression containing even numbers, then ¢; is unavoidable with high
average degree. Solving a problem of Erdés, in 2005 Verstraéte [23] showed that some unavoidable
sequence with density 0 must exist, without giving an explicit sequence.

In 2008, Sudakov and Verstraéte [18] showed that many increasing sequences of integers are
unavoidable in all but (potentially) exceptionally sparse graphs. In particular, they showed that,
for any exponentially bounded increasing sequence of even integers o; (that is, where g;41 < Co;
for each i € N and some fixed C' > 1), any n-vertex graph G with o; ¢ C(G) for each ¢ € N must
have average degree at most e©(°8" ™) where log* n is the iterated logarithm function. In 1984,
Erd6s [6] had asked whether the powers of 2 are unavoidable with high average degree, but, despite
the results quoted here, there remained no explicit sequence with density 0 which was known to be
unavoidable with high average degree (or even unavoidable with high chromatic number, as defined
analogously in Section .

In this paper, we introduce new techniques for constructing even cycles while controlling their
length. This allows us to find, in any graph G, a long interval of consecutive even numbers in C(G),
as follows.



Theorem 1.1. There is dg > 0 such that the following holds. If G is a graph with average degree
d > dy, then, there is some ¢ > d/(10log'?d) such that C(G) contains every even integer in
[log® ¢, 1].

From the density of the even numbers in the interval [10g8 ¢, 0] as £ increases, we get immediately
the following improvement of the result of Gyarfas, Komlés and Szemerédi [10], which confirms the
asymptotically correct lower bound on the harmonic sum of C(G), as conjectured by Erdds [4].

Corollary 1.2. If a graph G has average degree d, then

> % > G - od(1)> log d.

1eC(G)

By Theorem any avoidable sequence of cycle lengths must continue to avoid some intervals
og®l,l] as { — oo. us, many increasing sequences of even integers are unavoidable wi ig
log® ¢, €] as ¢ Th i i f int idable with high

average degree, as follows.

Corollary 1.3. There is some dy > 0 such that the following holds. Given any infinite sequence
oi, © € N, of increasing even integers with o;11 < exp(ail/w) for each i € N, any graph G with

average degree at least max{dy,o?} has some i € N with o; € C(G).

In particular, this answers the question of Erdés [6] mentioned above by showing that the
powers of 2 are unavoidable with high average degree, as, furthermore, is any exponentially bounded
sequence of increasing even numbers. This latter implication answers a question of Sudakov and
Verstraéte [18]; for further questions on specific sequences answered by Corollary we refer the
readers to [7].

On the other hand, the sequence defined by o1 = 1 and ;41 = 2(i+1)? for each ¢ € N is known
to be avoidable (see [I§]). Corollary is thus optimal up to the fraction 1/10 in the exponent,
though it may hold with 1/10 replaced by 1—0;(1). We have not optimised our methods to maximise
the fraction 1/10, but note that doing so could not increase it beyond 1/3 (see Section [2.4.4)).

1.2 Chromatic number and odd cycle lengths

Consider the set of odd cycle lengths in G, by letting Coqq(G) = {¢ € C(G) : £ is odd}. As noted
above, a natural condition to impose in search of odd cycles is one on the chromatic number rather
than the average degree, and, for example, Gyérfas [9] proved in 1992 that a graph with chromatic
number at least 2k + 1 must have |Coqq(G)| > k. In 1981, Erdds and Hajnal [5] asked whether
Z %—>oo as x(G) — oo. (2)
£€Coaa(G)

As Erdds noted [6], this gives a ‘much deeper question’ than the corresponding question for all
cycle lengths and chromatic number that we considered in Section Indeed, the only relevant
result towards this has been by Sudakov and Verstraéte [19], who showed that > _,cc () 1/¢ — o0
if the independence ratio of G is not extremely small compared to its number of vertices. Here,
the independence ratio of G is sup XCV(@) %, where «a(X) is the independence number of the
subgraph of GG induced on X and the supremum is taken over all non-empty vertex subsets.
Building on our methods for even cycles, we use the precision of these techniques to construct

a large interval of cycle lengths using a high chromatic number, as follows.



Theorem 1.4. For each € > 0, there is some kg € N such that the following holds for each k > k.
If G is a graph with chromatic number k, then, for some £ € N, C(G) contains every odd integer in
(0,0 k=],

As the harmonic sum of the odd integers in [¢, £ - k'=¢] diverges as k — oo (for all values of /),
this solves Erd6s and Hajnal’s odd cycle problem by confirming . Furthermore, in combination
with Theorem we get the following immediate lower bound for the harmonic sum of the cycle
lengths of any specific residue, which answers another question of Erdés [6].

Corollary 1.5. Let a,b € N, and let Co,(G) = {¢ € C(G) : £ = a mod b}. If G has chromatic

number k, then
1 1
E > ( — ok(1)> log k.
l b
LeCq 1 (G)

We say an increasing sequence o1,092,03,... of integers is unavoidable with high chromatic
number if there is some k such that any graph with chromatic number at least k has a cycle with
length in o1,09,03,.... There have previously been no non-trivial sequences of increasing odd
integers which were known to be unavoidable with high chromatic number, but, similarly to in
Section Theorem immediately implies that many such sequences are unavoidable with high
chromatic number, as follows.

Corollary 1.6. Given C' € N, there exists kg € N such that the following holds. Let o1,09,... be
an infinite increasing sequence of odd integers such that ;41 < Co; for each i € N. Then, every
graph G with chromatic number at least max{ko, o3} has some i € N with o; € C(G).

We remark that our proof in fact shows that Theorem M (and hence also Corollaries
and holds with the weaker hypothesis that the graph G is ‘not too close’ to being bipartite.
That is, as seen in Section [5.1.1] we use only the condition that, after removing the edge-set of any
bipartite graph from G, there is still a subgraph with average degree Q(k).

1.3 Balanced subdivisions

A subdivision of a graph G is obtained by replacing each edge of G by a path, such that the new
paths are internally vertex disjoint. This notion has played a central role in topological graph
theory since the seminal result of Kuratowski in 1930 that a graph is planar if and only if it does
not contain a subdivision of the complete graph with five vertices or a subdivision of the complete
bipartite graph with three vertices on each side [14].

In 1967, Mader [16] proved that, for each k € N, there is some d = d(k) such that every graph
with average degree at least d contains a subdivision of the complete graph Kj. After improved
bounds on d(k) by Mader [17], and Komlds and Szemerédi [12], Bollobas and Thomason [3] proved
that, optimally, we may take d(k) = O(k?). Komlés and Szemerédi [13] later improved their own
methods to give an independent proof of this, and the graph expansion methods they introduced
(see Section form the basis for many constructions in sparse graphs both here and elsewhere
(see, for example, [11], [15]).

Our constructive approach to controlling the length of cycles also allows us to control the
length of paths, and thus construct subdivisions in which each edge is replaced by a path of the

same length. For integers ¢, k € N, denote by TK,(f) a subdivision of a complete graph K} in which

each edge is replaced by a path with length ¢. We say that TKg) is a balanced subdivision of K.
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In 1984, Thomassen [20] (see also [21I], [22]) conjectured that, for each & € N, high average
degree in a graph is sufficient to guarantee a balanced subdivision of Kj. This was open even for
k = 4. We confirm Thomassen’s conjecture, as follows.

Theorem 1.7. For each k € N, there exists d such that every graph with average degree at least d
contains a TK,(f) for some £ € N.

We note that it is conceivable that there is some € > 0 such that any graph with average degree

at least d in fact contains a TKg)/g, which would be optimal up to the value of . Furthermore,

this may be provable using appropriate extensions of our methods (in particular along the lines of
the techniques in [15]). However, though the balanced subdivision problem was the original focus
of our work, we do not push these techniques further at the expense of a clear presentation of the
new cycle construction techniques.

2 Structure and proof sketches

After describing our notation in Section [2.I] in Section we recall the graph expansion concepts
introduced by Komlds and Szemerédi in [12] [I3]. This allows us to give our main theorem, Theo-
rem in Section [2.3] and derive Theorem [I.1] while noting how we use similar methods to prove
Theorem [I.7] We then sketch the proof of Theorem [2.7]in Section 2.4l The proof of Theorem [I.4]
is sketched in Section [2.5] Finally, in Section we highlight one particular innovation for our
constructions in expanders, which may prove useful elsewhere.

2.1 Notation

Let G be a graph, let v € V(G) be a vertex and let W C V(G) be a set of vertices. We write
|G| = |V(G)] for the order of the graph. Let §(G),d(G) and A(G) be the minimum, average and
maximum degree of G respectively, and let Ng(v) be the set of neighbours of v in G. Denote by
Ng(v, W) the set of neighbours of v in W, and denote by dg(v, W) = |Ng(v, W)| the degree of
v into W in G. Denote the (external) neighbourhood of W by Ng(W) = (Upyew N (v)) \ W. Let
G[W] C G be the induced subgraph of G with vertex set W. Denote by G—W the induced subgraph
GIV(G) \ W]. We write NS(W) = W, and, for each integer k > 1, let N&(W) = Ng(Né_l(W))
be the set of vertices a graph distance k from W, and let BE(W) = UggjgkNé(W) be the ball of
radius k around W in G. We let B(W) = BY(W).

Given graphs G and H, the graph GUH has vertex set V(G)UV (H) and edge set E(G)UE(H).
Denote by G\ H the graph with vertex set V(G) and edge set E(G) \ E(H). For a collection P of
graphs, denote by |P| the number of graphs in P and write V(P) = UgepV (G).

For a path P, let its length be ¢(P). Where we say P is a path from a vertex set A to a disjoint
vertex set B, we mean that P has one endvertex in each of A and B, and no internal vertices in
AUB. For each £ € N and k > 0, TK,(f) is a subdivision of a complete graph K ;) in which each
edge is replaced by a path with length 2.

Many of our results that build to the theorems stated in Section [I] state that for each e1,e9 > 0
(and perhaps each k € N), there is some dy(e1,e2) (or do(e1, €2, k)) such that some property holds
for n > d > dy. For brevity, we do not calculate the function do(e1,e2) (or do(e1, €2, k)) and assume
implicitly in our proofs that n and d are as large as needed, depending on €1 and €2 (and perhaps k)
— where it may help the reader we recall this at various points in the proofs. The results from now



on in this paper are stated and proved in order, so that these functions could be chosen sequentially
through the paper.

We omit the subscript G when the underlying graph G is clear. When it is not essential, we
omit the floors and ceilings. All logarithms are natural.

2.2 Komlés-Szemerédi graph expansion

An expansion property in a graph G is typically one in which every set X C V(@) satisfies
|ING(X)| > ¢|X| for some function ¢ depending on the size of X. Expansion is key to all of
our constructions. Our expansion must therefore exist in some subgraph of any graph. Following
Komlés and Szemerédi [12), [13], effectively we use the strongest expansion that can be found in
some subgraph of any graph, based on its average degree.

Definition 2.1. For each £; > 0 and k£ > 0, a graph G is an (e, k)-ezpander if
IN(X)| = e(|X],e1, k) - | X]
for all X C V(G) with k/2 < |X| < |G|/2, where

[0 if x < k/5,
e(x,e1,k) = { e1/log?(15z/k)  if x > k/5. ®)

Whenever the choices of €1, k are clear, we omit them and write e(x) for e(x,e1, k).

If an n-vertex graph G is an (g1, k)-expander and X C V(G) has size at least k/2, then
BL,(X) increases as i increases, until the set contains at least n/2 vertices. The rate of expansion,
|Na(B4(X))|/|B&(X)| > e(|BS(X)], 1, k) guaranteed by the expansion condition decreases as i
increases (see, for example, [I3]). That is, e(x,e1,k) decreases as x > k/2 increases. However,
e(z,e1,k) - x increases as z does, so the lower bound from expansion we have for |Ng(BS(X))|
increases as ¢ increases.

As Komlés and Szemerédi [13] showed, every graph G contains an expander with comparable
average degree to G, as follows.

Theorem 2.2 ([I3]). There exists some €1 > 0 such that the following holds for every k > 0. Every
graph G has an (€1, k)-expander subgraph H with d(H) > d(G)/2 and §(H) > d(H)/2.

Note that, in Theorem the expander subgraph H can be much smaller than the original
graph G in size. Indeed, G could be the disjoint union of many copies of such a graph H.

We use expansion to expand and connect vertex sets, creating paths to construct cycles of
varying lengths. A typical use is the following result of Komlés and Szemerédi, though we use the
comparable Lemma [3.4]

Lemma 2.3 ([13]). Let e1,k > 0. If G is an n-vertex (€1, k)-expander, then any two vertex sets,
each of size at least x > k, are of distance at most % log3(15n/k) apart. This remains true even
after deleting x - £(x)/4 arbitrary vertices from G.

It is convenient to work in a bipartite graph; to do this we use the following simple and well
known result.

Proposition 2.4. Within any graph G there is a bipartite subgraph H with d(H) > d(G)/2.
Combining this with Theorem we get the following immediate corollary.

Corollary 2.5. There exists some €1 > 0 such that the following holds for every eo > 0 and d € N.
Every graph G with d(G) > 8d has a bipartite (1,e2d)-expander subgraph H with 6(H) >d. [



2.3 A stronger version of Theorem (1.1

We will prove Theorem in the slightly stronger form of Theorem below, which applies to an
expander. Combining this with Corollary easily gives Theorem as shown below. We use
Theorem to prove Theorem [1.4] as outlined in Section [2.5] Theorem is proved using very
similar methods to Theorem and we comment on this below.

In order to state Theorem we use the following definition, which records whether there will
be even or odd length paths between two vertices u and v in a connected bipartite graph H.

Definition 2.6. For any connected bipartite graph H and u,v € V(H), let

0 ifu=w,
m(u,v, H) = ¢ 1 if u and v are in different vertex classes in the (unique) bipartition of H,
2 if w and v are in the same vertex class and u # v.

Note that, for example by Lemma any (e1, k)-expander subgraph with minimum degree at least
k is connected, and this will allow us to use this definition for the bipartite expanders we use.

In common with many of our results in the rest of this paper, Theorem applies only to
TK§2)—free graphs for some ¢ (often ¢ = d/2). A subdivision of the complete graph on ¢ vertices,
with each edge subdivided into a path of length 2, has many different even cycle lengths, and many
different path lengths between pairs of vertices. As our aim in applying Theorem is to find
only some subgraph with this property (see, for example, the proof of Corollary , we need look
no further than such a subdivision. Why our constructions require the graph to be TK?)—free is
commented on in Section B.7.

Theorem 2.7. There exists e1 > 0, such that, for each 0 < g9 < 1/5, there exists dy = do(e1,€2)
such that the following holds for each n > d > dy. Suppose that H is a TK22/)2—free bipartite n-vertex
(e1,€e2d)-expander with 6(H) > d. Let x,y € V(H) be distinct, and let

¢ € [log” n,n/log'* n)

satisfy m(x,y, H) = ¢ mod 2.
Then, H contains an x,y-path with length £.

Theorem [I.1] follows from Theorem [2.7] and Corollary as follows.

Proof of Theorem[1.. Let €1 > 0 be such that the condition in Corollary [2.5] applies, and let
g9 = 1/100. Let dy be large (see Section , and in particular large enough that the property in
Theorem holds for €; and e}, = 89, for each d > dy/8.

Let G be a graph with average degree d > dg and let d = d/8. By the property from Corol-
lary G contains a bipartite (g1, ead)-expander subgraph H with §(H) > d. As d = d/8, H is
an (1, 8ead)-expander. If H contains a TK((;/)Q, then H contains every even cycle length between 6
and d. As d = d/8 is large, the property in the theorem holds with ¢ = d as log®d > 6.

Assume then that H is TKEZQ/)Q—free. As 6(H) > d > 0, we can pick distinct vertices z,y € V(H)

such that 2y € E(H). Note that n(x,y, H) = 1. Let n = |H| and £ = n/log'?n > d/log'?d >
d/(10log'? d), as d = d/8 is large.

For every even ¢ € [log®¢, /], (' — 1) is an odd number in [log’ n,n/log'?n]. Then, by the
property from Theorem applied with z and y, there is an x, y-path with length ¢ —1 in H, and
therefore a cycle with length ¢ in H. O



For Theorem essentially, we find a copy of TK(Z), for some ¢ € N, by first taking an expander
subgraph and k distinct vertices within it to be the core vertices. Core vertices in a Kp-subdivision
are the vertices which are not interior vertices of a path which replaces an edge. Using the same
construction as for Theorem multiple times, we then find internally vertex disjoint paths with
the same length between each pair of core vertices. This is done in Section [4.4]

2.4 Proof sketch for Theorem 2.7

To discuss the proof of Theorem let H be a TKEIQ/)Q—free bipartite n-vertex (e1,e2d)-expander,
with 0 < e1,e2 < 1, such that §(H) > d, and let z,y € V(H) be distinct.

Our aim is to find a sequence of x,y-paths in H whose lengths increase by 2 each time. In
Section we describe how one cycle can be used to find two paths with the same endvertices
and lengths differing by 2, and how a connected sequence of cycles can create a longer sequence of
paths with lengths increasing by 2 each time. In Section we discuss how a sequence of cycles
can be connected, and introduce the concept of an adjuster. In Section [2.4.3] we describe how a
polylogarithmic number of adjusters can be used to find long paths with the lengths required by

Theorem In Section we discuss the natural limitations of these methods.

2.4.1 Creating a little adjustment with small cycles

Our proof of Theorem is based on the following simple idea. Suppose we can find in H a short
cycle C, with length 2¢ say, which does not contain = or y. Take two vertices v; and vy a distance
£—1 apart on C. Then, C' contains one vy, vo-path with length ¢ — 1 and another with length ¢+ 1.
If we can find, using new internal vertices, disjoint paths from z to v; and from y to vo, then we
have two z, y-paths whose lengths differ by 2 (see Figure [Ifa)).

If we can chain together many cycles between x and ¥y in this fashion, then, by choosing the
length of the path we take around each cycle, we can vary the length of the path between x and y
in increments of 2 (see Figure [If(c)).

P2 P2
P1 Pl

(a) x,y-paths with lengths differing by 2. (b) An adjuster

T Y
(¢) z,y-paths with varying lengths depending on the paths taken through the cycles.

Figure 1: Creating x, y-paths of different lengths using cycles.



2.4.2 Connecting the cycles

In the situation above, if C' is a shortest cycle in H, then it is not too difficult to connect x to v; and
y to vy (relabelling v; and ve if necessary). Indeed, for each i > 0 and v € V(H), any neighbours
of the ball Bg_V(C)JrU(v) in V(C) must be within distance 2i 4+ 2 of each other on the cycle C,
for otherwise H contains a shorter cycle than C. Given our expansion conditions, this will mean
that Béfv(c) o, (v1) and Bé,fv(c) (z) will both expand as i increases (see Section . Expanding
these sets until they intersect allows us to find a short path from v; to 2 while avoiding V(C')\ {v1 }.
Roughly speaking, setting aside a shortest path P from {v;} to {x,y} which avoids V(C) \ {v1},
we then expand around ve and the vertex left in {z,y} \ V(P) while avoiding (V(P)UV(C))\ {v2}
to find the second path described above.

Connecting multiple cycles is more difficult, simply as there are more vertices to avoid. Due to
this, instead of cycles, we will find structures we call simple adjusters. These correspond to the cycle
C, vertices v; and vy, as well as vertex disjoint subgraphs F1, F» C H such that V(F)NV(C) = {v;}
and V(F) N V(C) = {va} (see Figure [I{b) and Definition [{.1). The graph F} (and analogously
F5>) has the property that every vertex is a distance O, (log® n) away from vy in Fy, and therefore
a path leading into F} can be extended with a few additional vertices from V' (F7) to one ending
with v1. Furthermore, |Fj| will be comfortably larger than C so that F; can be expanded and
connected while avoiding V' (C) \ {v1}. The distance O, (log®n) here comes from an application of
Lemma 3.4

The heart of our paper is the robust construction of these simple adjusters — that is, having
some set of vertices U which is not too large, we find an adjuster in H — U. More discussion of
this construction we defer till Section 4l but we will highlight the key innovation that allows this
in Section

2.4.3 Increasing the size of the interval of path lengths

In an n-vertex (£1,ead)-expander H, any two vertices z,y are a distance at most m = O, (log®n)
apart (see Lemma [3.4). Using fairly straightforward methods (see those in Section , we can use
the expansion conditions to find, for any 20m < ¢ < n/ log!® n, a path with length between ¢ — 20m
and ¢ between x and y (see Corollary . If we can find such a path which contains 10m simple
adjusters, then, as long as ¢ = 7w(z,y, H) mod 2, we can use these adjusters to increase the path
by length 2 until it has length exactly ¢ (see Section .

2.4.4 The limitations of our methods

Our methods are limited by the length of the paths we find between vertex pairs using the
Komlds-Szemerédi graph expansion. Here, we can only guarantee a path with length at most
m = O, (log®n). Therefore the lower bound of the interval of path/cycle lengths in Theorem
and Theorem cannot be reduced below Q(log®n) while using connection methods with this
graph expansion. Correspondingly, optimising our methods cannot increase the fraction 1/10 in
Corollary (1.3 beyond 1/3.

For simplicity, we connect together around m = O, (log3 n) cycles which can each be used to
adjust the length of the paths we find by 2. We note that, by using different cycles to adjust
the length by different amounts, we could use perhaps O(logm) = O, (loglogn) cycles instead of
around m cycles. However, this saving does not reach a plausible optimal bound as we cannot
guarantee our connecting paths are any shorter.



2.5 Outline of the proof of Theorem (1.4

Note that in a graph H which is a copy of TK((f), if d > 3, then every edge between two vertices u, v

can be replaced with a path with any odd length in [5,2d — 1]. If d is large, then this includes paths
with any odd length in [log8 d,d]. Using Corollary and Theorem then, in any graph with
average degree at least 16d, we can find a bipartite subgraph H satisfying the following property.

P There is some ¢y > d/ log!2 d such that each edge uv in H can be replaced with a path with
any odd length in [log® (57, £].

Now, suppose GG has chromatic number at least 300d and find in G a maximal collection H
of edge disjoint bipartite subgraphs H satisfying [P] with some integer ;7. We can show that the
chromatic number of the union of these graphs Upgey H is at least 3, for otherwise G \ (UgenH)
has high enough degree that some other bipartite subgraph satisfying [P] must exist, contradicting
the maximality of #. Therefore, Ugey H contains some odd cycle, C' say. Our aim is to use [P] to
take many edges e of C, and, where H, € H is such that e € E(H,), replace e with odd paths in
H, with many different lengths. This would allow us to transform C' into odd cycles of different
lengths. The challenge is to do this so that all of the paths replacing these edges are vertex disjoint.
This is possible by taking a certain minimal odd cycle C' and replacing edges e corresponding to
vertex disjoint graphs H. € H. This is discussed in more detail at the start of Section [5 before
Theorem [1.4] is then proved.

2.6 A new construction method: Robust construction of gadgets.

Here, we will highlight an innovation for constructions using Komlés-Szemerédi expansion. Roughly
speaking, this technique overcomes the sublinear property of the expansion we work with. For
more details, see Section Recall from that in an expander H, any vertex set A C V(G)
of suitable size has neighbourhood with size Q(|A|/log?|A|), expanding with at least a factor of
£(1A]) = ©(1/ log? | A]).

Our aim is to find some special subgraph — let us call it here a gadget — in an expander H while
avoiding a vertex set W. Roughly speaking, it is natural to pick a vertex v in H — W and try to
construct a gadget locally in H around v using the expansion property. If this fails there will then
be some vertex set A, containing v which does not expand in H — W, not even by a reduced factor
of e(|Ay|)/10. If we fail repeatedly, then we find many disjoint sets A4,, say for the vertices v € V,
which do not expand in H — W by a factor of (| 4,])/10. Eventually, U,ev A, will be much larger
than W, so it expands in H — W by a factor of at least (| Uyey Ay|)/2. However, as the expansion
function in Section is sublinear in z, it is not a contradiction that U,cy A, expands, yet no set
A, does even if the expansion factor required is reduced by a factor of 5.

Instead, we reach a contradiction by exploiting our particular circumstance. We will have that
W is polylogarithmic size (in n), that |[V| > n'/2, and the TK((i2/)2—free condition will allow us to
have that | Ny (A,, W)| < |A,|? for each v € V. Note that, as, for each v € V, A, does not expand
in H — W by a factor of (|A4,|)/10, the set A, must have size at most |W|log®n.

Now, firstly, if many of the sets A,, v € V, have size at least (logn)'/?, then we find a set
V' C V indexing some of these vertices so that [W|log®n < | Uyeyr Ay < 2|W|log®n. Then,
A = Uyeyr Ay is large enough to expand past W, and hence expand in H — W with a factor of least
e(JA])/2. As, for each v € V', log |A,| = loglogn = log | A|, the expansion function e for these sets
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is essentially the same — near enough that we can get a contradiction from each set A,, v € V’, not
expanding in H — W by a factor of at least (|Ay|)/10 yet A = Upyeyr Ay expanding in H — W by a
factor of at least ¢(|A|)/2.

Thus, we can assume that most of the sets A,, v € V, have size at most (logn)'/3. This gives
us, for such v € V, that |[Ng(A,, W)| < |A,> < (log n)2/3. As W is polylogarithmic in size,
we have at most |VV](1°g")2/3 = n°(1) subsets of W with size at most (logn)?/3. Thus, for some
r < (logn)/3, there must be at least 72 vertices v € V — say those in V" — such that |A4,| = r for
each v € V" and, over v € V", Ny (A,, W) is the same set, W' C W say. Let A = U,ecyr Ay, so that
W' = UveVuNH(AU,W) Ny (A, W), and, for each v € V", |A,| = r, and |W'| < |A,]? = r2. As
|A| = r|V"| = 73, and [Ny (A, W)| = [W'| < r?, A does not expand well into W in H, and hence
must expand in H W by a factor of at least €(|A\) /2. Again, we have that A, does not expand
in H — W by a factor of at least €(]4,])/10 and log|A,| ~ log|A|, for each v € V". As before, this
gives a contradiction.

3 Preliminary expansion results

In this section we cover the preliminary results on expansion that we use in Section [} The
main results of this section are Lemmas 3.11] [3.12] and [3.14] which we prove in Sec-

tions 3.1} 3:2] B-3] [3-4] [3-5] and [3.6] respectively.

3.1 Expanding while avoiding sets

In an expander H, we often want to expand a vertex set A, while avoiding another set X. We can
do this if the set satisfies one of three conditions (matching the conditions in Lemma 3.2)).

1. Firstly, if X is much smaller than A.

2. Secondly, if X is far enough (in graph distance) from A in H that A expands to become much
larger than X before it encounters X.

3. Finally, if X does not intersect too much with each sphere around A during the expansion.
That is, if Ng(By_x(A)) does not intersect too much with X for each ¢ > 0.

For the last condition above, if BY (A) grows with i, then we can permit the intersection
of Ng(Bj_x(A)) with X to increase as i increases. This condition is formally captured in the
following notion, before we give our main lemma expanding a vertex set A while avoiding some
other vertex sets.

Definition 3.1. A vertex set A has k-limited contact with a vertex set X in a graph H if, for each
1 €N, .
Nar (B (A) N X| < ki

Lemma 3.2. Let 0 < €1,e2 < 1 and k € N. There is some dy = dy(e1, €2, k) for which the following
holds for each n > d > dg.

Suppose H is an n-vertex (e1,e2d)-expander. Let m = 16 log n and ly = (loglogn)®. Let
A CV(H) with |A| > e2d/2 and let X, Y, Z CV(H)\ A be such that the following hold.

Al | X[ < [Ale(|A])/4.

11



A2 BY o (A)NY =& and [Y| <m0k,
A3 A has k-limited contact with Z in H.
Then,

(i) 1B x_y_z(A)] >m®%, and

(ii) [Bi_x_y_z(A)| >n/2.

Proof. We first prove Note that, by we have B@_X_Y_Z(A) = BfJO_X_Z(A). Let F =
H— X — Z, and suppose that |Bﬁ9 (A)| < mA9% for otherwise|(i)| holds. We will show the following
claim.

Claim 3.3. For each 0 <r </{y—1,
T 1 ' T
INF(Bp(A))l 2 7|1Br(A)] - e(|1Bp(A)))- (4)
Given Claim we reach a contradiction as follows, and thusmust hold. For each 0 < r < {p,
we have |BJ(A)| < |Bi9 (A)| < m*% and hence, as n > d > do(e1, €2, k) is large,

4
B > 400k _ €1 > .
(|Bp(A)]) = e(m™™) log? (15mA400k /ey d) ~— (loglogn)?

Therefore, for each 0 < r < £y, by Claim

B ) = 1850+ 1N = (14 D) = (14 s ) B

4 (loglogn)3
Therefore,
1 fo Lo (loglogn)?
B> (14— Al > 0 )= VO 08 1) ) 400k
B2 (14 o ) ALz e (gt ) = o (25 omi ), (3)

which contradicts our assumption that does not hold as n > dy(e1, €2, k) is large. For it is
left then to prove Claim

Proof of claim. We prove this by induction on r. For the base case r = 0, as = - () increases in
x > e9d/2, we have
gad g1e9d
Ale(|A]) > = -e(e9d/2) = —————— > 4k,
where we have used that d > do(e1, €2, k) is large. In combination with we have [Ng(A)NZ| <
k <|A|e(]A|)/4. Thus, from the expansion of H and we have
1 1 1

Ne()] 2 Nu(A)] = INa(A) 0 X] = INa()0 2] > (1= § = ] ) 1412014 > J1AI(4D,

Suppose then that » > 1 and that holds with r replaced by 7’ for each 0 < 7’ < r. Then,
similarly to (),

B = ] (14 LD 0
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Now, let a be defined by |Bj(A)| = aead/15. As |BR(A)| > |A] > e2d/2, a > 15/2, and thus
e(|B%(A)|) = e1/log? a < 1/2. Therefore, from (6]), we have

[BE(4)] < €1 )T ( err )
o> > (14 >exp | —— ),
- A T 4log’>a) ~ P 8log? o

which gives r < 8log? afer. As a > 15/2, we have log® a/a <100, so that

1600a 1600« - £(|B%L(A)]) 1600 - 15
1<2r< = = - |B%(A BL(A)]). 7
rtlsrs g a7 BRAE(BEA)) (7)

As d > dy(e1, €9, k) is large, by we have

. @ 1600-15 |, ; 1, ;
N (Byr—z(A) N 2) < k(r+ 1) < k- 0= - [BR(A)|e(|BF(A)]) < 7IBF(A)[e(IBR(A)])- (8)
1
As z - e(x) increases with x > e2d/2, by we have |X| < |Ale(|A])/4 < |BR(A)|e(|BR(A)])/4.
Therefore, using the expansion of H, we have

INe(BF(A))l = [Nu(Bp(A))| = |Nu(BF(A)) N X)| = [Nu(By—z(A)) N Z)|

[N (BE(A)| = [X] = [Na(By—z(A)) N Z)| i\B}%(A)\ -e(|BR(A)));

A\

and hence holds for r. [ |

We now prove Suppose, for contradiction, that N7}y ,(A)] < n/2. Let F' = H —
X —Y — Z, and for each {p <r <m —1, let A, = B}, (A), so that, by we have |A,| > m200k,
Now, as n > do(e1, €2, k) is large,

e(|As]) > e(n) > e1/log?n > 1/m, (9)
and thus |A,|e(|A,])/4 > m*0%=1/4 > km300%  Therefore, by |Arle(|Ar])/4 > |Y] and, by
(N (Ar) N Z| < [Nu(Bp-z(A)) N Z| < k(r+1) < km < [Ar]e(|Ar]) /4.

As |A;| > |A| and z - e(x) increases with z > £2d/2, we have, by [A1] that [A,|e(J4,])/4 > |X|. In
total, then,

3
[ X+ Y]+ [Nu(Ar) N Z] < 2| Arle(|Ar])- (10)
Thus, using the expansion of H, we have
1 @ 1A,
INe (A 2 Wa(A)] ~ X UY] - Wa(4) D) 2 J1a <) 2 2151

As this holds for all » with £g <7 <m — 1, we have

Bp) > (14— ) s (10— )"
- 4log?n - 4log®n

etm
> e ———— | = exp(logn) > n/2,
> xp<1610g2n> xp(logn) > n/

a contradiction. O
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3.2 Connecting sets with paths

Lemma allows us to find paths between sets A and B in an expander, as follows.

Lemma 3.4. For each 0 < £1,e9 < 1, there exists dy = do(€1,€2) such that the following holds for
eachmn >d > dy and x > 1. Let G be an n-vertex (e1,e2d)-expander with 6(G) > d — 1.

Let A, B C V(G) with |A|,|B| > x, and let W C V(G)\ (AU B) satisfy [W|log®n < 10z. Then,
there is a path from A to B in G — W with length at most g log3 n.

Proof. If © > e2d/2, then, as n > d > dy(e1, e2) is large, we have

e(x) 1T 1T 1T 102

= > |[W|. 11
4 41og?(15z/ead) ~— 4log?(15n) ~ 8log?n ~ log®n — W] (1)

Therefore, letting m = g log® n, by Lemma applied with X = W and Y = Z = @, we have
|BE_w(A)], |BE_y (B)| > n/2. Thus, there is a path from A to B in G — W with length at most
2m < g—? log® n.

Suppose then that z < e2d/2 < d/2. Let 2/ = min{|AUNg_w (A)|, | BUNg_w (B)|}. Asx < d/2
and A, B # @, we have 2’ > §(G) — |[W| >d—1—10d/log®n > d/2 > €2d/2, as n > d > dy(e1,€2)
is large. Therefore, as above, there is a path from AU Ng_w (A) to BU Ng_w(B) in G — W with
length at most 2m, and hence a path with length at most 2m + 2 < i‘—? log® n between A and B in
G — W, as required. O

3.3 Expansion of sets of lower degree vertices

The following lemma is the key new technicality that allows our constructions, as discussed in
Section We then develop it for convenience of use to get Lemma

Lemma 3.5. For any 0 < 1,69 < 1, there exists dy = do(e1,€2) such that the following holds for
each n > d > dy. Suppose that G is an n-vertex bipartite (g1, e2d)-expander with §(G) > d.

Let U C V(G) satisfy |U| < exp((loglogn)?), and let K = G — U. Let I be any set and
Vi CV(K), i € I, be pairwise disjoint sets such that, for eachi € I,

B1 e2d < |Vi] < exp((loglogn)?),

B2 | N (Vi) < 1og51|ov’j‘w and

B3 dg(v,U) < d/2 for each v € V.
Then, | Uies Vi| < nl/8

Proof. Suppose to the contrary that | Uicr Vi| > n'/8 and let D = exp((loglogn)?). Let I} = {i €
I:|Vi| > (logn)/1%} and I, = I'\ 1.

First, suppose that | Ujcy, Vi| > n'/8/2. Then, as |V;| < D for each i € I, |I;| > n'/? > D2
Let Iy C I; be a subset of I of size D?, and let W = U;cs,Vi. Now, for each i € Iy, log|V;| >
(loglogn)/10, while |W| < |Io|D < D3, so that log |[W| < 3(loglogn)?. Thus, we have

5|V;
NG| < U] + [Nk Uien ¥l < D+ Y2 INk(V) 2 D4+ 32

FRSSTNT
i€lp i€ly Og ’V|
5(10) Vi 5(10)19wW| e1|W|
<D+ =D < whHiw
Z (loglogn)10 + (loglogn)10 = log® |W| — < e(Whiwl,

i€lp
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as |[W| > D?, log |W| < 3(loglogn)? and n > do(e1,£2) is large. As |[W| < D3, this contradicts the
fact that G is an (g1, ead)-expander. Thus, we have | Ujer, Vi| < n'/8/2.

Therefore, we have | Ujer, Vi| > n1/8/2. Thus, Iy # @, and hence by definition, taking any
i € I, we have eod < |Vi| < (logn)Y/10 so that d < (logn)'/10/e,. Furthermore, by the pigeonhole
principle there must be some r € N with eod < r < (log n)l/ 10 for which there are at least
|I5|/(log )10 > | User, Vil/((logn)Y/10)2 > n'/? indices i € I with |V;| = . Taking such an r, let
Iy ={i€I:|V;| =r}, so that |I3] > n'/°.

Now, for each i € I3, as dg(v,U) < d < r/es for each v € V;, we have |Ng(V;) NU| < 1?/eq <
(logn)/*, as n > dy(e1, e2) is large. As |U| < D, the number of sets of size at most (logn)Y/* in U

is at most
(logn)'/4

> () < togmnten < explitogn) ),
2
=0

Therefore, there must be at least n'/?/ exp((logn)'/?) > n'/10 indices i € I3 for which Ng(V;) N U
is the same set, Z say. Taking any i € I3, note that, by |Z| = |[Ng(V;) NU| < dr <7?/ey. Let
I, be a set of 2 < (logn)'/® indices i € I3 for which Ng(V;)NU = Z.

Let Y = Ui, Vi, so that Ng(Y)NU = Z and |Y| = r|I4| = r3. Then, as d > dy(e1,¢e2) is large
and r > eod, we have

ET‘Q 57“3 617“3 61|Y|
Ne(Y)| < |2+ S INk(V)| < — + < = < (Y)Y,
NG < 121+ L INK(DIS 2+ i < 50 = oy < YDV
contradicting that G is an (e1, e2d)-expander. O

Lemma is used three times, each in a similar situation, so for its application, we prove
Lemma below. In this lemma, with 7 = n!'/3, we have sets A;, i € [r], and wish to find some set
A; which expands while avoiding some set B; U C; which depends on j, as well as avoiding some
large common set U. To find such an A;, we assume for contradiction that no such set A; exists,
before recording as V; the first ball around A; which does not expand nicely. Applying Lemma [3.5
to the sets Vj, i € [r], will then reach a contradiction.

To prove the lemma, we will also use the following very simple proposition.

Proposition 3.6. For each i,{ > 1, we have 2" — (¢ — 1)2_i < g

Proof. Not that this is true for any ¢ with equality if ¢ = 0. Assume then for induction that ¢ > 0
and it is true for ¢ with ¢ replaced with ¢ — 1. We have

e (A e (e (O Ve (A (S Ve N S (AR (A Ve
and therefore (2 — (£ —1)27" < ¢=1+2707V=27" — p=1427" 4q required. O

Lemma 3.7. For each0 <e1 <1,0<e2 <1/5 and k € N, there exists dy = dy(e1, €2, k) such that
the following holds for each n > d > dy. Suppose that G is an n-vertex bipartite (¢1,eod)-expander
with §(G) > d. Let U C V(G) satisfy |U| < exp((loglogn)?). Let r = n'/® and £y = (loglogn)®.
Suppose (Ai, B, C;), i € [r], are such that the following hold for each i € [r].

C1 |A;| > dy.
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C2 B;UC; and A; are disjoint sets in V(G) \ U, with |B;| < |A;]/log | A;].

C3 A; has 4-limited contact with C; in G — U — B;.

C4 FEach vertex in BéO—U—BZ-—Ci (A;) has at most d/2 neighbours in U.

C5 Foreach j € [r]\{i}, A; and A; are at least a distance 2¢y apart in G—U — B; —C; — B; — C}.
Then, for some i € [r], ‘Bé)—U—B,-—Ci (Ag)| > logh n.

Proof. Suppose, for contradiction, that |B@_U_Bi_ci(A7;)| < logFn for each i € [r]. Let a = 1/16,
and note that exp(£) = exp((loglogn)'?) > logfn, as n > do(e1,e2,k) is large, and hence
‘Bg)—U—Bi—Ci (A;)] < exp(€f) for each i € [r]. Therefore, for each i € [r|, we can let ¢; be the
smallest ¢ € [{p] such that

|BG—v—p,—c,(Ai)] < exp(£?). (12)

For each i € [r], let V; = Bg:lljfBFCi (A;). By the definition of ¢;, we have that

Vil =z exp((6i = 1)) and  |Bg-v-pB;—c;(Vi)| < exp(67). (13)
Claim 3.8. For each i € [r], we have |[Ng_y(V;)| < 10g51|("/1‘V'|'

Proof of claim. Fixi € [r]. By Proposition we have €2 —(£;—1)® < ;1% < (¢9)71%, Note that,
as d > do(e1, €2, k) is large, we have that ¢; > log dy is large by [C1]and (12). Asexp(l/z)—1<2/x
for large x > 0, we thus have

exp(£f — (6 —1)%) — 1 < exp((67) 1) — 1 < 2/(6)". (14)

Then,

Ba_v_-B.—c.(V;
Ne-v-5,-0.(V)| < |Bo-vr— (V)| — Vi] = (‘ G-u-5.-¢,(Vi)l —1) Vi

Vil

@ [ e 2|Vi| 2|Vi|
S oo — ey L)Vl = e S 0n (15)
exp((£; — 1)) (£) log™ |V}
Now, due to we have
Vi
Nom-m, (V)1 <t = 4log!® V] +1) < (g oo (16)
0g i

as, by [C1] |V;| > |4;| > do(e1,2,k) is large. Therefore, as
|Ne-v(Vi)l < INg-v-B,~c;(Vi)| + |Bil + [Na-v-5;(Vi) N Cil,

the claim follows from (15), (16), |4;| < |V;| and [C2] [

We now check the conditions to appy Lemma[3.5|to the sets V;, i € [r]. By[CB5] the sets V;, i € [r],
are pairwise disjoint. Note that |V;| > |Bg_v—B,—c,(A:)| > ea2d. Indeed, if |A;| > ead, this holds
clearly; if |A;| < e2d, then by [C2] and [C4] |Ba_v—-B,—c,(Ai)| = 6(G) — |Bi| — 4 — d/2 > ead.
Thus, for each i € [r], ead < |Vi| < logFn < exp((loglogn)?). By Claim it K =G-U,
then |Ng(V;)| < 5|V;|/1log!® |Vj| for each i € [r]. By for each 7 € [r] and v € Vj, we have
dg(v,U) < d/2. Therefore, by Lemma we have r < | Ujep Vil < n'/8, a contradiction. O
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3.4 Disjoint vertex expansions

In order to connect structures together in an expander, we typically find the structures we want
with an extra subgraph attached to the vertex, v say, we wish to make connections from. This
extra subgraph, F' say, should have enough vertices that either Lemma or Lemma (3.4] can be
used to connect V(F') to another vertex set while avoiding some structures that we have already
found. The graph F' should also have a short path from v to any other vertex in F, so that a
path to V(F') can be extended to one to v without many additional vertices. This motivates the
following definition.

Definition 3.9. Given a vertex v in a graph F, F'is a (D, m)-expansion of v if |F| = D and v is
a distance at most m in F' from any other vertex of F'.

Before we find vertex expansions, we first prove the following simple proposition which finds a
smaller expansion within any expansion.

Proposition 3.10. Let D,m € N and1 < D' < D. Then, any graph F which is a (D, m)-expansion
of v contains a subgraph which is a (D', m)-expansion of v.

Proof. We prove this for each 1 < D’ < D by induction on D’ for D' = D,D —1,...,1. Note
that ' demonstrates this is true for D’ = D. Suppose then it is true for D’ > 2, and let F’ with
|F'| = D’ be a (D', m)-expansion of v. Let w € V(F') maximise the graph distance from v to w in
F'. As D' > 2, v # w. Noting that F' —w is a (D’ — 1, m)-expansion of v completes the proof of
the inductive step, and hence the proposition. O

We now give our lemma which finds vertex expansions. Its proof is different according to
whether there are many vertices in the graph of high degree (Case I) or not (Case II). We will
construct structures using short cycles later, so for the application of this lemma we need to find
vertex expansions while avoiding a short cycle as much as possible.

Lemma 3.11. For each k € N and any 0 < 1,69 < 1, there exists dy = do(e1,€2, k) such that the
following holds for each n > d > dy.

Suppose that G is an n-vertex bipartite (€1, ead)-expander with 6(G) > d—1. Let m = i—? log® n.
Let C be a shortest cycle in G, and let z1,...,xy be distinct vertices in G. For each i,j € [k], let
D; ; € [1,1og° n].

Then, there are graphs F; ; C G, i,j € [k], such that the following hold.

e For each i,j € k], F;; is a (D;;,5m)-expansion around x; which contains no vertices other
than x; in V(C)U{z1,..., 21}

o The sets V(F; ;)\ {zi}, i, € [k], are pairwise disjoint.

Proof. Note first that, as 6(G) > d — 1, |C| < 2logn/log(d — 1). Let D = log®*n. By Propo-
sition we can assume that D;; = D for all i,j € [k]. Let r = k% and let L be the set of

vertices in G with degree at least A = D?. We will split into two cases depending on whether
|L\ V(C)| > 2r or not.

Case I: First suppose that there are 2r vertices vy,...,ve, € L\ V(C). Assume, by relabelling if
necessary, that V := {vy,...,v,.} is disjoint from X := {z1,..., 2}
Let P be a maximal collection of paths in G from X to V such that
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e cach path in P has length at most 3m and internal vertices in V(G) \ (V(C)U X U V),
e the paths in P are vertex disjoint outside of X, and
e there are at most k paths containing each vertex in X.

Subject to |P| being maximal, suppose that » p.p ¢(P) is minimised. Note that, as there are at
most k paths containing each vertex in X, |P| < k2.

Now, suppose for contradiction that there is some x € X which is in fewer than k paths in P,
and so |P| < k% Let U = (VUX UV (P)UV(C))\ {x}. For each path P € P and ¢ € N, at most
¢+ 1 vertices in Ng(B5 Y, (x)) can lie on P, otherwise we can find a shorter path than P from =
to V(P)NV in G— (U \ V(P)). Swapping P for this shorter path contradicts the minimality of
> prep U(P"). Therefore, for each £ € N,

INa(B& !y (@) N V(P) < > [Na(Bgy(@)nV(P)| < ((+ D[P < (C+ DK (17)
PeP

Furthermore, for any vertex v and any integer ¢ € N, at most 2¢ 4+ 1 vertices in Bé(v) can lie on
C, as C'is a shortest cycle in GG. Therefore,

[Na(Bg_y(2)) NUI < [V U X| + [Na(Bg_y (2)) N V(P)| + INa(Bg 1, (€) N V(O)]
i)

< 2K+ (0+ 1)E> + |BS(2) N V(C)| < (L4 3)k® + (20 +1) < 1002

Thus, {x} has 10k2-limited contact with U in G, so that Bg_y /() has 20k%-limited contact with U
in G. We also have |Bg_y(z)| > 6(G) — 10k% > d/2 > e2d/2. Therefore, applying Lemmawith
(A, X,Y, Z, kg = (Ba-v(z), 9,2, U, 20k?), we get that |BAT} (x)| = |BE_(Bg-v(z))| > n/2.

Note that, by the choice of P, each P € P has a distinct vertex in V. As |P| < k2, we can
choose a vertex v € V' \ V(P). Note that |U| < 2k? + k% - (3m + 1) + 2logn/log(d — 1) < log?n.
As dg(v) > A =log'% n > |U|log®n/10 and | Bt (x)] > n/2 > |U|log®n/10, using Lemma
we can connect B (x) and Ng(v) with a path of length at most m in G — U, which extends in
BEH(x) U {v} to an z,v-path in G — U with length at most 3m, contradicting the maximality
of P.

Therefore, each vertex in X is in exactly k paths in P. Label the paths in P as P, ;, i,j € [k],
so that x; is an endvertex of F; ;, and let v; ; be the endvertex of P;; in V. Greedily, using that
INg(vi;) \ (VUXUV(C)UV(P))| > A —log*n > k2D for each 4,5 € [k], pick disjoint sets
Ai,j - Ng(vi’j) \ (V UXUu V(C) U V(P)), 1,7 € [k‘], with size D — |PZ’]| Then FiJ = G[Al’]] U Pi,j,
i,7 € [k], are easily seen to be the (D, 5m)-expansions we require.

Case II: Suppose then that |L\ V(C)| < 2r. Relabelling if necessary, let 0 < k¥’ < k be such that
{1,...,;p )\ L={21,...,2p}. Let ' =G—L, X = {x1,...,2p}, 7 = K’k and £y = 2(loglogn)®.
Let s < r' be the largest integer for which there are vertices wy, ..., ws € V(G’) such that

e the sets ng,o (w;), i € [s], X and V(C) \ L are all pairwise disjoint.

Suppose s < r/. Then, we must have V(G’) = BIGQZO(({wl, L ws b UXUV(C))\ L). However,
as A(G') < A = D? and |C| < 2logn/log(d — 1) < 2logn,

|G’ = ]BIGQEO(({wl, L wsJUXUV(CN\L)| < 2-(r' + K +2logn)- A% < exp((loglogn)”) < n/2,

18



contradicting |G'| > n — |L\ V(C)| — |C| > n — 2r — 2logn > n/2. Therefore, s = r’.
Now, fixing an arbitrary ¢ € [r'], similarly to before, for each £ € N at most 2¢ + 1 vertices in
Bé(wi) can lie on C, otherwise there is a shorter cycle in G than C. Thus,

|Bar—v(cy(wi)| 2 0(G) = [L\V(C)| =3 = 6(G) —2r =3 > d/2, (18)
and, for each ¢ € N,
INa(B ¢y (Bor—viey(wi) N V(C)] < [BS™ (w)) N V(C)] < 20+ 3 < 5.

Therefore, Begr_y(c)(w;) has 5-limited contact with V(C) in G. Let z = |Bg_y(c)(w;)|, and
note that, as |L \ V(C)| < 2r = 2k? and, by (18), z > d/2 > do(e1,e2,k)/2 is large, we have
that |L \ V(C)| < e(2)z/4. Thus, by Lemma with (A, X,Y, Z, k)gz = (Ba—vc)(wi), L\
V(C),2,V(C),k+5) we get that |Bg),tlv(c)(wi)| > D? = A. Hence, by Proposition [3.10[ we can
pick a subgraph F; C G’ induced on a subset of Bé)/_v(c)(wi) which is a (A, 2¢p)-expansion of w;.
Now, let P be a maximal collection of paths in G’ from X to V := U,V (F;) such that

e cach path in P has length at most 3m and internal vertices in V(G’) \ (V(C)U X UV),
e the paths in P are vertex disjoint outside of X,

e at most one path in P has a vertex in V(F}), for each i € [r'], and

e there are at most k paths containing each vertex in X.

Subject to |P| being maximal, suppose that >, p £(P) is minimised.
Suppose again there is some z € X in fewer than k paths in P and let U = (LU X UV (P)U
V(C))\ {z}. Asin Case I, by the minimality of ) p .5 £(P’), for each path P € P and £ € N, at

most £ + 1 vertices in Ng(Bé__lU(iL')) can lie on P. Therefore, for each ¢ € N,

INa(BGy(2)) N V(P)| < Y [Na(Be 'y () nV(P)| < (£+ 1P| < (£+ 1)k,
PeP

Again, for any integer £ € N, at most 2£+ 1 vertices in Bg(m) can lie on C, as C' is a shortest cycle
in G. Thus,
NG (Bg ly(x)) N U| < |X U(L\ V(O))| + [N (Bg ly(x)) N V(P)| + |Bg () N V(O]
<Ek42r 4+ (04 1)k? + (20 + 1) < 100k2.

Therefore, {z} has 10k*limited contact with U in G, and so Bg_y/(z) has 20k*limited contact
with U in GG. Furthermore, by the choice of the w;, Bé)_U(CC) NV = @, thus

|Bo_v_v(z)| = |Bg_v(x)| > d — 10k* > d/2.

We also have that |[V| < k2A = k? log'®* n. Therefore, by Lemma with (A4, X,Y, Z, k)gg =
(Bo-u/(2), 2, V.U, 20%), | By (@) > /2.

By the choice of P, each P € P has exactly one vertex in V(F;) for some i € [r/]. As |P| <
K'k = r', there is some j € [r'] such that V(P) has no vertex in V(Fj). Now, the vertices wj,
i € [r'], are pairwise at least 10¢yp-far in G’, and F; is a (A, fy)-expansion around w;. Therefore,
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the subgraphs F;, ¢ € [r/], are pairwise at least 8¢p-far from each other in G’, so that F} is at least
8lp-far from V' \ V(F}).

Now, as [U| < |X|+ |[L\ V(C)| + |C] + [V(P)| < k+ 2r 4+ 2logn + (3m + 1)r < log*n, we
have [Fj| = A > m|U|. As L # V(G), we have A > §(G) > ead, so that |Fj| > ead. Therefore, by
Lemma [3.2| with (A, X,Y, Z, kg = (V(F}), U,V \ V(F}),d, k), we have

1 B&_u— vy (VE)) > n/2.

Thus, as |BATL (z)] > n/2, there is a path from {z} to V(F}) in G’ with length at most 3m
which is internally disjoint from V(C) U X U V. This contradicts the maximality of P.

Therefore, each vertex in X is in exactly k paths in P. Label the paths in P with P; j, ¢ € [K']
and j € [k], and graphs Fy, i’ € [r'], as F};, i € [K] and j € [k], so that, for each i € [K'] and
Jj € [k], P;j is a path from z; to Fi/,j- Recall that, for a path P, we write ¢(P) for its length. Note
that P ; UF] ; is a (| P;; UF] |, (P ;) + 2{p)-expansion of x;, for each i € [k] and j € [k]. For each
i € [K'] and j € [k], apply Proposition to obtain a (D, 5m)-expansion [ ; C P;; U F} ; around
ZTj.

Lastly, for each ¥’ +1 < i < k and j € [k], as x; € L we can greedily pick pairwise disjoint
(D, 1)-expansions Fj ; induced on a subset of Ng(z;) \ (V(C) U (Uyepjrem)V (Firjr)))- O

3.5 Enmlarging vertex expansions

In this section, we take up to 4 disjoint vertex expansions, and expand them disjointly to get larger
vertex expansions around the same vertices (see Lemma . This enlargement allows us to later
connect vertex expansions with very long paths, as our path lengths need to be smaller than the
expansions (see Section .

We first show for Lemma that we can always find a linear size vertex set with polyloga-
rithmic diameter in G' while avoiding an arbitrary set of up to ©(n/log?n) vertices. This is used
for Lemma [3.13] and Lemma [3.14] as well as later in Section [4.2

Lemma 3.12. For any 0 < e1,e2 < 1, there exists dyg = do(e1,€2) such that the following holds for
each n > d > dy. Suppose that G is an n-vertex bipartite (e1,e2d)-expander with §(G) > d and let
_ @1 3
m = 2’ log”n.
For any set W C V(G) with |[W| < e1n/100log®n, there is a set B C G — W with size at
least n/25 and diameter at most 2m, and such that G[B] is a (D, m)-expansion around some vertex
v € B for D = |B|.

Proof. Let £y = % log? n. Suppose that G and W C V(G) satisfy the conditions in the lemma and
let G’ = G —W. Take the largest integer r < logn such that there is a set of at most 1+n/(10-4")
vertices V C V(G') with \Bé),T(V)] > n/25. Note that such a set of vertices exists for r = 0, as
|G’ > n — e1n/100log?n > n/25 and n > do(e1,e9) is large. Suppose, for contradiction, that
|[V| > 1, and hence, that » < logn — 1.

Let A = Bg’,T(V). As |W| < e1n/1001og? n < e1|A|/4log® n, for each ¢ with |BS,(A)| < n/2,
we have, by the expansion property of G, and as £(|B&, (A)|) > e(n) > &1/ log?n,

1 e1]|4| €1

log?n

[Ner (Ber(A))] > [N (Bgi (A))] = [W] > - |BG (4)]

a 4log?>n ~ 2log n
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so that ]Bg,rl(A)| > (14 ¢1/2log®n)|B%,(A)]. I \Bé),(A)] < n/2, then

Lo
o ) Al> Sl s

BY%(A)| > 1+ Al
B H( 2log%n ~ 2log®n 25 T

a contradiction. Therefore, we have
Lo(r+1 Y4
BE (V)] = [BE(A)] = n/2.

Consequently, by averaging, there exists a set of at most [|V|/12] vertices V' C V such that
| BT (1) > [BETTY (V)] /12 > n/25. Noting that, as |V > 2,

[V]/12] <1+ (V]| =1)/12 <1+ n/(10-4"1),

this contradicts the maximality of r.

Therefore, we have |V| = 1. That is, there is some vertex v € V(G’) with |Bé9/r(v)| > n/25.
Letting B = Bé’,r(v), we have that |B| > n/25 and B has diameter at most 2{yr < % log®n = 2m,
as required, noting that G[B] is a (D, m)-expansion around v for D = |B|. O

The large vertex sets with small diameter found in Lemma [3.12] are large vertex expansions
around some vertex. To find large vertex expansions around particular vertices, which themselves
sit in smaller vertex expansions, we take disjointly many large vertex expansions, then expand and
connect the smaller vertex expansions to the larger ones, for the following lemma.

Lemma 3.13. For any 0 < e1,e9 < 1, there exists dy = do(e1,€2) such that the following holds for
each n > d > dy. Suppose that G is an n-vertex bipartite (g1, e2d)-expander with §(G) > d.

Let log"n < D < n/log!®n and m = %Olog‘gn. Let A C V(G) satisfy |A] < D/log®n. Let
Fi,...,Fy C G— A be vertex disjoint subgraphs and vy, . ..,vs be vertices such that, for each i € [4],
F; is a (D,m)-expansion of v;. Then, G — A contains vertex disjoint subgraphs Fy,..., F; such
that, for each i € [4], F] is an (n/m?,3m)-expansion of v;.

Proof. Let W = V(Fy)U...UV(Fy) UA so that [W| < 5D < 5n/log'®n. Applying Lemma
iteratively 32m times, we can find disjoint sets Bi,..., B3oy, in G — W such that each B; has
size n/m? and diameter at most m. Note that this is possible, as after we have found B;, where
i € [32m], we have W U (U3 Bj) < 5n/ log'®n + 32m - n/m? < e1n/100log?n, as n > do(e1, €2)
is large. Lemma and Proposition then shows that G — W U (U;¢[; B;) contains a set with
n/m? vertices and diameter at most m.

Next, take a maximal set I C [4] such that there are paths P; ;, with ¢ € I and j € [8m], and
distinct k; ; € [32m], satisfying the following.

D1 P, is a path from v; to By, ; of length at most 2m.
D2 The sets V(P ;) \ V(F;) are vertex disjoint across ¢ € I and j € [8m].

D3 There is an ordering o on I such that V(P; ;) is disjoint from Uy V' (Fir), where I' = {i’ €
I: o) <o(i)}.
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Suppose, for contradiction, that J := [4] \ I # @, and let ¢ : I — [|I|] be an ordering for which
holds. Let W' = AU(Ujer jesm)V (Pi))- Take a maximal set K C [32m]\{k;; :i € I,j € [8m]}
for which there are paths Py, k € K, with length at most m from U;c;V (F;) to By, which avoid
W' and which are vertex disjoint. Suppose, to contradict the maximality of K, that there is some
J € [32m]\ {kij : i € I,j € [8m]}. Note that | Ujc; V(F;)| > D and |Bj/| = n/m? > D. Noting
that |W' U (UpexV (Pr))| < D/log3n 4 32m(2m + 1) < 2D/log3n, by Lemma there is a path
between U;c sV (F;) and Bj with length at most m which avoids W’ U (Uperx'V (FPy)), contradicting
the maximality of K.

Therefore, we have K = [32m]\ {k;; : i € I,j € [8m]}, and hence |K| = 32m — 8m|I| = 8m/|J|.
Consequently, for some 7' € J, there are at least 8m values of k € K for which P, has a vertex
in V(Fy). Taking ki 1,..., ki sm to be distinct such values of k, for each j € [8m], as Fy is a
(D, m)-expansion of vy, we can find a path Py ; C Py, U Fy from vy to Bki’,j with length at most
2m. The paths P, ;, i € TU{i'} and j € [8m)], satisfy (the last with the ordering o extended
by setting o(i') = |I| 4+ 1), contradicting the maximality of I.

Thus, we have I = [4]. By relabelling if necessary, assume from that V(P; ;) is disjoint
from V(Fy) for each ¢/ > i and j € [8m]. Now, for each 1 < i < 4, greedily select r; € [8m] in
turn such that V(P ,,) U Bk, ,. has no vertices in Ui/<iPi/7Ti,. Note that this is possible as, for each
i € [4], Up<iV(Py ) contains at most 3(2m+ 1) vertices, none of which are in V(F;), and the sets
V(P;j)U By, ;, j € [8m] are disjoint outside of V (F}).

For each i € [4], let F]' = P,,, UG[DBy,, ]. Note that the subgraphs F/', i € [4], are vertex
disjoint, and, as each set B;, i € [32m], has diameter at most m, for each i € [4], F/ is a (D;, 3m)-
expansion of v; for some D; > n/m?. For each i € [4], using Proposition let F/ C F! be an
(n/m?, 3m)-expansion of v;, completing the proof. O

3.6 Long paths between vertex expansions

Our goal now is, given some desired path length, to connect two vertices with an initial path with
close to this desired length. Section [f] then makes the fine adjustment to this path so that it has
exactly the desired length. Given vertex expansions around the vertices to be connected, we find
such an initial path, as follows.

Lemma 3.14. For any 0 < e1,e9 < 1, there exists dy = do(e1,€2) such that the following holds for
each n > d > dy. Suppose that G is an n-vertex bipartite (g1, ead)-expander with §(G) > d.

Let log®n < D < n/ log*n and % log®n < m < 3log*n. Suppose Fi,Fy are vertex disjoint
(D, m)-expansions of vertices vi,va € V(G) respectively. Suppose W C V(G) \ (V(F1) U V(Fy))
satisfies |W| < D/log3n. Then, for any £ < D/log®n, there is a v1,vo-path in G — W with length
between £ and ¢ + 5m.

Proof. Let (P1,vs, F3, Py, vy, Fy) be such that ¢(P;) + ¢(P») is maximised subject to the following
properties.

E1 For each i € [2], P; is a v;, vjyo-path in G — W.
E2 E(Pl) =+ f(PQ) </{+2m.
E3 For each i € {3,4}, F; is a (D, m)-expansion of v; in G — W with V(F;) N V(Pi_2) = {v;}.

E4 V(P UF3) and V(P2 U Fy) are vertex disjoint.
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Note that P = G[{Ug}], vy = v, Fy = Fi, P, = G[{U4}], v4 = Vo, Fy = F satisfy and
therefore such a sextuple (P, vs, F3, Py, vy, Fy) exists.

We claim that ¢(P;) 4 ¢(P2) > £. Suppose for contradiction that ¢(P;) + ¢(P) < ¢. Note that
WUV (F3UF,UP,UPy)| < 3D+ < n/log®n. By Lemmal3.12 then, G —W —V(F3UF,UP,UP,)
contains a set, B say, with size at least D and diameter at most m. Note furthermore that
WUV (P)UV(P)| < D/log®n + £+ 2 < 10D/log®n. By Lemma there is a path, Q' say,
from B to V(F3) UV (Fy) which avoids (W UV (P1) UV (P2)) \ {vs,vs} and has length at most m.
Say without loss of generality that Q" has endvertices v§ € V(F3) and v§ € B. By and we
can extend Q' in F3 to a vs,vi-path @ with length at most 2m which is vertex disjoint from P,
and Pl — V3.

Using Proposition let F§ C G[B] be a (D, m)-expansion around v4. Let P| = P; U Q and
note that, as vj € B and ¢(Q) < 2m, this is a vy, vs-path with length at least ¢(P;) + 1 and at
most £(Py) + 2m. Then, P[,v5, F3, Py, vy, Fy satisfy with P{,v4, F§ in place of Pj,vs, F3,
and ¢(P]) + ((Py) > £(P1) 4+ ¢(P,), a contradiction. Therefore, ¢(P;) + {(P2) > .

Now, as |[W U V(P) UV (P,)| < 10D/log®n, by Lemma there is a path, R say, from some
r1 € V(F3) to some ry € V(Fy) avoiding (W U V(P1) UV (P2)) \ {vs,vs} with length at most
m. For each ¢ € [2], let Q; be a path from v;;9 to r; in Fj o with length at most m. Then,
PiUQ1URUQ2U P, is a vy, ve-path in G — W with length at least £(P;) 4+ ¢(P) > ¢ and at most,
by [E2] ¢ + 2m + 3m < £+ 5m. O

Combining Lemma([3.14] with our result on extending vertex expansions, we now convert Lemma[3.14]
into the precise form we apply later. The following corollary finds not one but two paths, whose
combined length is close to some desired length. We later apply it so that these two paths connect
two vertices with a string of simple adjusters in the middle.

Corollary 3.15. For any 0 < €1,e9 < 1, there exists dy = dy(e1,€2) such that the following holds
for each n > d > dy. Suppose that G is an n-vertex bipartite (€1, e2d)-expander with 6(G) > d.

Let log'®n < D < n/log'¥n, 15—010 log®?n < m <log*n and £ < n/log?n. Let A C V(G) satisfy
|A| < D/log®n. Let Fy,...,Fy C G— A be vertex disjoint subgraphs and vy, ..., vy be vertices such
that, for each i € [4], F; is a (D, m)-expansion of v;.

Then, G — A contains vertezx disjoint paths P and Q with { < {(P)+£(Q) < £+ 22m such that
both P and @ connect {vi,va} to {vs,v4}.

Proof. By Lemma G — A contains disjoint subgraphs FY,. .., Fj such that, for each i € [4], F}
is an (n/m?, 3m)-expansion of v;. By Lemma there is a path P’ C G — A from V(F]) UV (F})
to V(F3) UV (Fy) with length at most m. Note that we can assume, without loss of generality, that
P’ goes from V(F{) to V(F}). Using that F] and F} are (n/m?, 3m)-vertex expansions of v; and
vs, respectively, let P be a vy, v3-path with length at most 7m in F] U P’ U Fj.

Let W = AU V(P), noting that |W| < D/log®>n + 7m + 1 < n/m?log®n. Note that 0 <
(—0(P)+7m < 2n/log'? n < n/m?log® n. Therefore, by Lemmawith (Fy, Foy, Dym, W O)g1g =
(F}, Fj,n/m?2,3m, W,{—{(P)+7m), there is a path Q in G — W from vy to v4 with length between
0 —L(P)+Tm and £ — £(P) + 22m. As £ < {(P)+¢(Q) < £+ 22m, the paths P and @ satisfy the
property in the corollary. O
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3.7 Subdivisions in skewed bipartite graphs

As commented on before Theorem we often work in graphs without a subdivision of a certain
size clique with each edge divided once, that is, in a TK?)—free graph for some ¢. This is because
we often construct structures in a graph G while avoiding a vertex set, say W, for which we need
many edges in G — W. For the sizes of W and values of ¢ that we use, if the graph G is TKEQ)—free,
then the following simple proposition shows that there cannot be too many edges between W and

V(G) \ W. In our implementation this will imply that G — W contains many edges.

Proposition 3.16. Let d € N and let G be a graph containing disjoint vertex sets U and W such
that |[U| > |W1|? and every verter in U has at least d neighbours in W. Then, G contains a TKEIQ).

Proof. Take a maximal set I C W2 for which there is a set of distinct vertices Vizgys 12,9} € 1,
in U such that x,y € N(vg,,y) for each {x,y} € I. Now, as [U] > [W|* > |W )|, there is some
u € U\ A{vizyy i {7y} € I}. Let A= N(u,W), so that |A| > d. In the choice of I, the vertex u is

a good candidate for vy, ,y for each {z,y} € A® . Thus, by the maximality of I, we have A C T.
Taking the TK((f) with vertex set AU {vg,,y @ {7,y} € AP} and edge set {700 g1 YVfa )
{x,y} € AP}, then gives a TK&2) in G, as required. O

4 Proof of Theorem 2.7

In this section, we prove Theorem As discussed in Section the basic mechanism we use to
adjust the length of a path is an adjuster, which we formally define as follows (see Figure (b) for
an illustration).

Definition 4.1. A (D, m,k)-adjuster A = (vy, F1,vq, F», A) in a graph G consists of vertices
v1,v2 € V(G), graphs F1, F» C G and a vertex set A C V(G) such that the following hold for some
¢ e N.

F1 A, V(F1) and V(F3) are pairwise disjoint.

F2 For each i € [2], F; is a (D, m)-expansion around v;.

F3 |A| < 10mk.

F4 For each i € {0,1,...,k}, there is a vy, vo-path in G[A U {v1,va}] with length ¢ + 2i.

We call the smallest such ¢ for which these properties hold the length of the adjuster and denote it
¢(A). Note that it immediately follows that £(A) < |A|+1 < 10mk+1. We call a (D, m, 1)-adjuster
a simple adjuster. We refer to the subgraphs F; and F, of an adjuster A = (vq, F1, va, Fy, A) as the
ends of the adjuster, and let V(A) = V(F;) UV (F3) U A.

In this section, we start by finding one simple adjuster in an expander for Lemma [4.2] in
Section We then find such an adjuster despite the removal of any medium-sized vertex set
from the expander, giving Lemma in Section In Section we chain simple adjusters
together for Lemma [£.7] before using this to join vertex expansions by paths with precise lengths
for Lemma [4.8] Finally, we prove Theorem [I.7]in Section [£.4] and Theorem [2.7] in Section
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4.1 Finding one simple adjuster

Here, we find one simple adjuster, proving Lemma The adjuster (vq, F1,ve, Fy, A) is found for
prespecified vertices v1 and vy, as required by one of the applications of Lemma

Lemma 4.2. For any0<e; <1,0<ey<1/5 and k € N, there exists dy = dy(e1, €2, k) such that
the following is true for each n > d > dy. Suppose that G is an n-vertex bipartite (¢1,e2d)-expander
with 6(G) > d — 1.

Let C be a shortest cycle in G and let x1,xo be distinct vertices in V(G) \ V(C). Let m =
25%0 log®n and D < log™ n.

Then, G contains a (D, m,1)-adjuster (vy, Fy,va, Fo, A) with vi = x1, vo2 = x2 and V(C) C A.

Proof. Noting that, as G is bipartite, C' has even length, let £y be such that 2¢; is the length of C.
Since §(G) > d — 1, we must have ¢y < logn/log(d — 1) < m, as n > do(e1, €2, k) is large. Pick
vertices z3, 24 € V(C) which are distance ¢y — 1 apart on C and let the paths separating them in
C be Ry and Ry, where Ry is the shorter path.

Let D171 = D271 =D, D172 = D371 = ng, D272 = D471 = sz, and note that m3D < logl5k n.
Using any arbitrary vertices s, s, ..., 215, and D;; = D for any 4, j € [15k] not already chosen,
apply Lemmato x1, %2, ..., 15, and C with (k, m)ggg = (15k, m/5) to get graphs F; j, i, j € [2]
and F3 1, Fy 1, for which the following hold.

e Foreach i,j € [2] ori € {3,4} and j =1, F;; is a (D; j, m)-expansion around z; in G which
contains no vertices other than z; in {x,...,24} UV(C).

e The sets V(F; ;) \ {i}, 1,5 € [2] or i € {3,4} and j = 1, are pairwise disjoint.

Now, we have |[V(C) U V(F11 U Fo1 UFyoUFyu1) < m+ 2D + 2m2D < 1Om3’D/log3 n.
Therefore, as |F1 2| = |F31] = m3D, by Lemma we can find a path P’ with length at most m
from V(Flyg) to V(F&l) with no vertices in (V(C) @] V(Fl,l U F2,1 U FQ}Q U F471)) \ {331,333}. As,
Fy 9 is a (D12, m)-expansion of z1, and F3 1 is a (D31, m)-expansion of z3, we can extend P’ using
vertices from V' (Fi2 U F3) to get an x1,z3-path, say P, with length at most 3m, which has no
vertices in (V(C) U V(Fl,l U F2,1 U FQ,Q U F4’1)) \ {:El, $3}.

Next, observe that [V (C)UV(P)UV (F11) UV (Fp1)| < m+3m+ 142D < 10m?D/log®n.
Therefore, as |Faa| = |F11] = m?D, by Lemma we can find a path @’ with length at most m
from V(F55) and V(Fy 1) which has no vertices in (V(C)U V(P) UV (F11) UV (Fa1)) \ {z2,z4}.
As, Fy9 is a (Dg 2, m)-expansion of zo, and Fy; is a (D41, m)-expansion of x4, we can extend Q'
using vertices from V(Fg,g U Fy1) to get an x, z4-path, say @, with length at most 3m and no
vertices in (V(C)UV(P)UV(F11) UV (Fa1)) \ {z2, z4}.

Set now v1 = x1, v9 = Ty, F1 = F1’1, Fy = F271 and A = V(PU QURU RQ) \ {’1)1,’[)2}.
Then, |A] < 2(3m + 1) + 2{y < 10m and note that A is disjoint from V(F;) U V(Fy). Letting
¢ ={¢(PUR;UQ), note that PUR; UQ and P U Ry U Q are vy, ve-paths in G[A U {vy,va}] with
length ¢ and ¢ + 2 respectively. Thus, (v, F1,ve, Fa, A) is a (D, m, 1)-adjuster, as desired. O

4.2 Finding simple adjusters robustly

In this section, we prove Lemma [4.3] a key component of our proof. This finds a simple adjuster
robustly in an expander G — that is, given any subset U C V(G) with moderate size, we construct
an adjuster in G — U.
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Lemma 4.3. There exists some €1 > 0 such that, for every 0 < ea < 1 and k € N, there exists
do = do(e1,€2,k) such that the following is true for each n > d > dy. Suppose that G is a TK;Q/)z—

free n-vertex bipartite (e1,ead)-expander with 6(G) > d. Let m = % log®n and D < log®n. Let
U C V(QG) satisfy |U| < 10D.
Then, G — U contains a (D,2m,1)-adjuster.

The following proof sketch is illustrated in Figure[2 Essentially, we find an expander subgraph
in H C G—U and apply Lemma to find a simple adjuster in H. However, H may be much
smaller than G, so this simple adjuster may be far too small to satisfy Lemma We thus find
many of these simple adjusters and use Lemma to expand the ends of one of them to make
them large enough to satisfy Lemma [4.3]

More precisely, to prove Lemma we assume no such adjuster exists, before collecting the
high degree vertices in a set L. We take a maximal set of adjusters Ag in G — U so that their ends
(the sets V(F1) and V(F3) in an adjuster (vy, Fi,v2, Fa, A)) are in G — L, and furthermore the ends
of different adjusters in Ay are far apart in G — L. The adjusters in Ay will each not have large
enough ends to be a (D, m,1)-adjuster, so we wish to expand the ends of some adjuster to make
them larger. The challenge is to do this while avoiding U'.

We first show that Ay contains many adjusters (see Claim . If this is not the case, then,
collecting together U with the adjusters in Ag and any vertices near their ends in G — L, we remove
them and show that there must be an expander subgraph H in what remains. Applying Lemma [4.2
to (essentially) H, we get an adjuster that either satisfies the lemma (a contradiction) or should
have belonged in Ay (another contradiction).

If many adjusters in Ay have an end with a short path to L \ U, then applying Lemma
shows that in one of these adjusters the other end must expand while avoiding the short path to
L\ U. Larger ends can then be chosen for this adjuster respectively from the expansion and from
the short path to L \ U and the neighbourhood of its endvertex in L \ U. This gives an adjuster
satisfying the lemma (a contradiction). Thus, many adjusters in Ay have no short path to L \ U
(see Claim — we collect such adjusters in A; C Ay.

We then find a large set Z in G — L with small diameter using Lemma[3.12)— destined to provide
a large expansion for the end of an adjuster. If many adjusters in A; have an end with a short path
to Z, then applying Lemma [3.7| shows that, for one of these adjusters, the other end must expand
while avoiding the short path to Z. Larger ends can then be chosen for this adjuster respectively
from the expansion and from the short path to Z and Z itself. This gives an adjuster satisfying
the lemma (a contradiction). Thus, many adjusters in A; have no short path to Z (see Claim
— we collect such adjusters in Ay C Aj.

However, by Lemma [3.7] the ends of the adjusters in Ay must expand while avoiding U. There-
fore, by Lemma one of them must connect to Z, giving the final contradiction which completes
the proof.

Proof of Lemma[{.3 Let 0 < 1 < 1 be small enough that the property in Corollary holds.
Suppose, for contradiction, that G — U contains no (D, 2m, 1)-adjuster. Let A =200mD, L = {v €
V(G) :dg(v) > A} and G’ = G — L, so that A(G') < A.

Set o = (loglogn)?. Let Uy = {v € V(G) \ U : dg(v,U) > d/2}. Note that if |Ug| > 100D? >
|U|?, then by Proposition [3.16( with (U, W)g1g = (Up,U), G contains a TK((JZQ/)27
Therefore, we can assume that |Up| < 100D?, and hence, as §(G) > d and n > do(e1,¢e9,k) is

a contradiction.
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Figure 2: An illustration of the proof of Lemma We find Ay, a large set of adjusters in G — U,
before discarding those with a short path to L\ U, and then those with a short path to Z. Showing
that many adjusters still remain, in the set Ao, leads to a contradiction.

large, G — U contains at least (n — |U| — |Up|) - (d/2)/2 > nd/8 edges. Let Uy = U U Uy, so that
|U1| < 200D? < 2001og?* n.
Take a maximal collection A of adjusters in G — U, such that the following hold.

G1 The sets V(Fy U Fy), (v1, F1,v2, Fo, A) € Ay, are subsets of V(G') and are all at least a
distance 104y apart from each other and from U; \ L in G'.

G2 For each A € Ay, for some m 4 with log®dy < my < m, A is an (mi, m 4, 1)-adjuster.
Claim 4.4. |Ag| > n'/4

Proof of claim. Suppose, for contradiction, that |Ag| < n'/%. Let W = (U U (Usca,V(A)) \ L.
For each A = (v, Fi,v9, Fa, A) € Ag, |[V(A)| = |Fi| + |Fa| + |A] < 2m% + 10m4 < 3m?, and
therefore |W| < n'/*. 3m3 4 2001og?* n < n'/3. Let W' = Bg?fo (W), so, as A(G') < A, we have
that [W'| < 2|W|- A0 < nl/2,

Now, there are at most |[W/|A < An'/? < nd/16 edges in G with some vertex in W’. Let
d = d/64. As G —U contains at least nd/8 edges, G —U — W' contains at least nd/16 edges, so that
d(G —U —W') > d/8 = 8d. Then, by Corollary. 2.50 G — U — W’ contains an (1, e2d)-expander
H with 6(H) > d. Let C be a shortest cycle in H. We will consider two cases, depending on how
many vertices of L there are in V/(H) \ V(C).

Case I: (V(H)\V(C))NL|<1. Let H =H— (V(H)\V(C))NL, so that §(H') > d— 1. Note
that, for each X C V(H') with e2d/2 < |X| < |H'|/2 < |H|/2, we have

[N (X)] > [N (X)| = 1> |X] (| X],e1,62d) — 1

1 - d _ _
> S1X] - 2(1X 21 e2d) + ‘%  e(e2d)2, 61, e2d) — 1

Ezcj €1

> |X|-e(|X],e1/2,e2d) + —  ———

—1>|X| e(|X|,e1/2, e2d),

where the last inequality follows as d > do(e1,e2,k)/64 is large. Therefore, H' is a (£1/2, e2d)-
expander with 6(H’) > d — 1. Note that C is a shortest cycle in H'.
Let mpy = 200log® |H'|/e; < m, and note that, as |H'| > 6(H') +1 > d > dy/64, and

do = d0(€1,€2,k) is large, my > log®dy. Picking arbitrary vertices x,zs € V( "\ V(C) and
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noting that d > do(e1,¢e9,k)/64 is large, by Lemma with (k, D)z = (10,m%,), H' contains
an (m2,, myr,1)-adjuster (v1, Fy,ve, Fy, A) with V(C) C A. As A is disjoint from V(Fy U Fy),
V(C) C Aand (V(H)\V(C))NL =@, we have that V(F, U F3) is disjoint from L, and hence lies
in V(G’). Together with V(Fy U Fy) C V(H’) being disjoint from W' and so 10¢p-far in G’ from the
ends of the adjusters in Ay and from U; \ L, this violates the maximality of Ay, a contradiction.

Case II: |(V(H)\V(C))NL| > 2. Let z1,22 € (V(H) \ V(C)) N L be distinct and let mpy =
2001og® |H'|/e; < m. By Lemma with (k, D)gg = (1,1), H contains a (1, mgr,1)-adjuster
(v1, F1,v2, Fo, A) with v1 = z1 and vy = x9. Using that |A| < 10mpy < 10m, |U] < 10D, and
da(z1),dg(x2) > A = 200mD, pick disjointly sets X1 C Ng(z1)\(UUAU{z2}) and X2 C Ng(z2)\
(UUAU{z1}) with | X1| = |X2| = D — 1. Letting F} = G[{z;} U X;] for each i € [2], and noting
|A| < 20m, we have that (z1, F{, 2, F5, A) is a (D, 2m, 1)-adjuster in G — U, a contradiction. W

Now, let A; C Ay be the set of adjusters (vy, F1,ve, Fo, A) € Ay for which there is no path
with length at most ¢y from V(Fy) UV (F3) to L\ U in G —U — A.

Claim 4.5. |A;| > n'/4/2.

Proof of claim. Let r = n'/8. Suppose, for contradiction, that we can label distinct A1, ..., A, €
Ay \ A;. Say, for each i € [r], that A; = (v; 1, Fy1,vi2, Fi2, A;) and let P! be a shortest path with
length at most £ from V(F; 1)UV (F;2) to L\ U in G — U — A;. Relabelling, if necessary, for each
i € [r] suppose the endvertex of P/ in V(F;; U F;2) is in V(F;1), and let Q; be a path from this
endvertex of P/ to v;1 in Fj; with length at most m 4.

For each ¢ € [r], let z; be the endpoint of P/ in L\ U, and let P; = P/ — z;. We shall apply
Lemma by setting, for each i € [r], A; = V(Fi2), B; = A; UV (Q;) U {x;} and C; = V(P).
Firstly, as |4;] = mi\i > log® dy by and dy = do(e1,€9,k) is large, we have that |A;| > d%:z‘,
where d!é:.ZI is the function in Lemma (3.7 so that holds.

As V(F;2) CV(G) =V (G)\ L by and V (F;2) is disjoint from V(F; ;) and A; by we
have that A; and B;UC; are disjoint. Furthermore, | B;| < |A;|+|Q;|+1 < 20m 4, < mill/ log " (mi‘z)
as my, > log®(do(e1,€2,k)) is large, and thus holds.

Now, as P/ is a shortest path from V(F;1) UV(F;3) to L\ U in G — U — A;, which has an

endvertex in V(Fj1), and A; = V(F;2), we have, for each ¢ € N, that Bé‘—U—/L(Ai) has at most
¢+ 1 vertices in P/, and hence P,;. Therefore, A; has 4-limited contact with C; in G — U — A;, and
hence in G — U — B;, and thus holds.

Suppose there is a path, R; say, with length at most 104y from A; to L\ (UU{z;}) in G- U —
B; —C;. Then, there is a path R, C R;UF; 5 from v; 5 to some vertex y; € L\ (UU{z;}) with length
at most 106y + my, < 2m — 1, and the path Q; U P/ is a path from v;; to x; with length at most
ma; +0lo <2m—1in G —U — A; with vertices in B;UC;. Then, as |[UUA; UV (R)UV(Q;UP/)| <
10D + 10m 4, + 4m < 10D + 15m, as x;,y; € L both have degree at least A = 200mD, we
can comfortably choose X; C Ng(z;) and Y; C Ng(y;) which are disjoint from each other and
from U U A; UV(R,) UV (Q; UP/) and have size D — |P/ U Q;| and D — |R}| respectively. Then,
(i1, GIX;UV(PHUV(Q))], vi2, GIY;UV(R))], 4;) is a (D, 2m, 1)-adjuster in G—U, a contradiction.
Therefore, there is no such path R;. Consequently, recalling that A; = V(Fj ), we have

‘ l
BéJ—U—Bi—Ci(Ai) = BC?’—U—Bi—Ci(Ai)’

which, by is disjoint from U;. By the choice of Uy C U;, we have that holds.
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Now, similarly, for any j € [r] \ {i}, we have that BG U—B,—C, (Aj) = Bé),_U_Bj_Cj (4;), so
that, by |G1 Bé?_U_Bj_CJ_(Aj) and Bg)—U—B,-—Ci (A;) are disjoint. In particular, A; and A; are a
distance at least 2¢y apart in G — U — B; — C; — B; — C}, and therefore holds.

, . . ¢

Thus, by Lemma there is some j € [r] for which ‘BGO—U—BJ-—C]- (A;)] > log"n > D. As
Fjo is an (mij,mAj)—expansion of vjo in G — U — Bj — C}, ma;, < m and A; = V(Fj2), we
have that ]B%m_U_Bj_CJ_ (vj2)] > D as £y < m. Therefore, by Proposition we can pick a
(D,2m)-expansion, I, say, of vj2 in G —U — B; — Cj.

As z; € L, we can then pick a set U’ of neighbours of z; disjoint from UUV (Fj ,) UA;uV(Q;)U
V(P}) with [U'| = D — [V(P]UQy)|. Let Fj; = G[U"UV(P}) UV (Qj)]. Note that F, is then a
(D, 2m)-expansion of vj 1 as Q; UP{ is a vj1, zj-path with length at most m 4, +£fo < 2m—1. Finally,
note that (vj, 1,Fj 1>V}, Q,Fﬂ,A ) is a (D,2m,1)-adjuster in G — U, a contradiction. Therefore,
|Ag\ Ai| <7 =n!/% and so by Clalm. we have |A1| > n'/* — 7 >nl/4/2. [ |

Let A} C A satisfy |A}| = n'/4/2. Then, |Usea, V(A < n'/4.3m? < nl/3 by Therefore,
U U B (Uaear (V(A)\ L))| < 10D +n'/3 . 2A% < pl/2,

Thus, by Lemma there is a set Z C V(G) \ U which has diameter at most m/2 and size
10m?D, and is a distance at least ¢y in G’ from V(A) \ L for each A € A].

Let Ay C A/ be the set of adjusters (vi, Fi,va, Fa, A) € A for which there is no path with
length at most m/2 from V(F1) UV (Fy) to Z in G —U — A.

Claim 4.6. |A,| > nl'/*/4.

Proof of claim. Let r = n'/8. Suppose, for contradiction, we can label distinct Ai,..., A, €
A\ As. Say, for each i € [r], that A; = (vi1, Fi1,vi2, Fi2, A;) and let P; be a shortest path with
length at most m/2 from V(F;1) UV (F;2) to Z in G — U — A;. Relabelling, if necessary, for each
i € [r] suppose the endvertex of P;in V(F;1 U F2) is in V(Fj 1), and let Q; be a path from this
endvertex of V(F;) to v; 1 in F;; with length at most m 4,.

We will apply Lemmato A; = V(F;2), B; = A;UV(Q;) and C; = V(P,), for each i € [r]. For
each i € [r], similarly to the proof of Claim |4.5| . we have that |C1] -—- (C3|hold. By the choice of Ay, for
each i € [r], there is no path of length at most ¢y from A; to L\U in G—U — B; — C;. Therefore, the
sets Bé)—U—Bi—C-(Ai) and Bé)'foBFCi(Ai) are the same set, and thus, by this set is disjoint
from U;. Thus, holds by the definition of U;. It similarly follows that Bfo B,—C; (A;) and
Bé)_U_ B,—C, (A;) are vertex disjoint for each j € [r] \ {i}, and thus |C5|holds.

Thus, by Lemma there is some j € [r| for which ‘Bg)uUfijc (Aj)| = |BG U-B,—C; (Aj)] >
D. Thus, as Fjj 2 is an (mi\j,mAj)—expansion of vjoin G' —U — B; — C; by|G1 and and A; =
V(Fj2), by Proposition3.10} there is a (D, 2m)-expansion, Fj , say, of vj 2 in BG, U—B,—C, (V(Fj2))-
As Z was chosen to have a distance at least £y in G’ from V( ;)\ L, we have that V(Fc ) is disjoint
from Z.

Now, as Z has diameter at most m/2 in G, Q; U P; U G[Z] is an expansion of ’U] 1 with radius
at most £(Q;) +£(P;) +m/2 < 2m and size at least D. Therefore by Proposition we can find

within Q; U P; U G[ ] a (D, 2m)-expansion, F, say, of v;1, which then must be Vertex—dlspmt
from A; and from V(F,) C Bé),_U_Bj_Cj(V(Fj’Q)). Thus, we have that (vj1, I} 1,52, I o, Aj) is

a (D, 2m, 1)-adjuster in G — U, a contradiction. Thus, |Ag| > |A{| —r > n'/4/4, by Clalm- [ |
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Let r = n!/®. Using Claim label distinct Ay, ..., A, € Ao, and say, for each i € [r], that
A; = (Ui,la Fi,1, V3,2, Fi,g, Az) We shall apply Lemmato A; = V(Fi,l UFi’g), B, =A;and C; = 9.
Similarly as in the proof of Claim the only difference being that holds trivially as C; = @
and A; is slightly larger, we have that hold.

. . . Lo R — Lo .

Thus, by Lemma there is some j € [r] with ‘BGfoBer (45| = |BG7UfB]~ (4] >
10m?D > 10log®n|U U Bj|. Therefore, by Lemma there is a path in G — U — B, from
Bé)foBj(Aj) to Z Yvith length at most m/4. Then, as A; = V(Fj; U F}2) and Bj = A;, there is
a path in G — U — A; from V(Fj1 U F}2) to Z with length at most m/2, contradicting A; € As,
and completing the proof. ]

4.3 Connecting simple adjusters for paths with specific lengths

Using Lemma we can find many vertex disjoint simple adjusters. We now connect them together
into a larger adjuster, for Lemma before using these to construct paths with specific lengths
for Lemma [£.8

Lemma 4.7. There exists some €1 > 0 such that, for any 0 < ey < 1/5 and k > 10, there exists
do = do(e1,€2, k) such that the following holds for each n > d > dy. Suppose that G is an n-vertex

TK;Q/)Q—free bipartite (1, ead)-expander with §(G) > d.
Let m = % log®n. Suppose log!'®n < D <loghn, 1 <r < 30m and U C V(G) with |U| < D.
Then, there is a (D, m,r)-adjuster in G — U.

Proof. Let €1 > 0 be such that the property in Lemma holds. By this property, as d >
do(e1, €2, k) is large, for every set V C V(G) with |V| < log® n, G — V contains a (D,m/2,1)-
adjuster. By Lemma as d > do(e1,¢e9, k) is large, for any sets X and Y with size at least 2D,
and any set V C V(G) \ (X UY) with size at most 20D/ log®n, there is a path from X to Y in
G — V with length at most m.

We now prove the property in the lemma by induction on r. Note that, we already have
this property for r = 1 as |[U| < D < log?*n, and a (D,m/2,1)-adjuster is also a (D, m,1)-
adjuster. Suppose then, for some r with 1 < r < 30m, G — U contains a (D, m,r)-adjuster,
(v1, F1,v9, Fy, A7) say. Let U' = U U Ay UV (F}) UV (F), so that |U'] <4D < log?* n. Therefore,
G — U’ contains a (D, m/2,1)-adjuster, (vs, F5,v4, Fy, Ag) say. As |Fy U Fy| = |F5 U Fy| = 2D,
and |A; U As| < 20rm < 600m? < D/ log® n, there is a path, P say, with length at most m, from
V(Fl) @] V(FQ) to V(Fg) @] V(F4) avoiding A; U As.

Note that, without loss of generality, we can assume that P is a path from V' (F}) to V(F3). Using
that F; and F3 are (D, m)-expansions of v; and vs respectively, take a v1, v3-path @ C Fy UPU F3
with length at most 5m. Then, we claim (ve, Fa,v4, Fy, A1 U A2 UV (Q)) is a (D, m, r + 1)-adjuster.
Indeed, we easily have that and hold, and |A; U Ay UV (Q)| < 5m +10- (m/2) + 10mr =
10(r + 1)m, so that holds.

Finally, let ¢ = 6((2]1,F1,U2,F2,A1)), by = E((Ug,Fg,U4,F4,A2)) and £ = 01 + 0o + K(Q) If
i1 €{0,1,...,r+ 1}, then there is some i; € {0,1,...,7} and iz € {0,1} with ¢ = 41 +i2. Let P; be
a v9, v1-path in G[A; U{v1,va}] with length ¢; + 2i; and let P; be a vs, vg-path with length fo + 2i9
in G[As U{vs,v4}]. Then, PLUQU P, is a vg, vg-path in G[A; U Ao UV (Q)] with length ¢+ 24, and
thus ¢ satisfies [F4l O

Combining Lemma [4.7] with Corollary we can finally find paths with exactly some desired
length, as follows.
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Lemma 4.8. There exists some €1 > 0 such that, for any 0 < 9 < 1/5 and k > 10, there exists
do = do(e1,€2, k) such that the following holds for each n > d > dy. Suppose that G is an n-vertex
TK;2/)2—free bipartite (1, ead)-expander with §(G) > d.

Suppose log'®n < D < loghn, and U C V(G) with |U| < D/2log>n, and let m = %log?’ n.
Suppose F1, Fy C G—U are vertex disjoint such that F; is a (D, m)-expansion of v;, for each i € [2].
Let log" n < ¢ < n/log'?n be such that £ = (vy,v2,G) mod 2.

Then, there is a v1,vo-path with length ¢ in G — U.

Proof. By Lemma there is a (D, m,22m)-adjuster, A = (vs, F3,v4, Fy, A) say, in G — U with
length ¢(A) < |A| 4+ 1 < 500m2. Let £ = £ — 22m — £(A), so that 0 < ¢ < n/log'®n. As
|AUU| < 500m?+D/2log®n < D/log®n, by Corollary there are paths Pand Q inG—-U — A
which are vertex disjoint, both connect {v1,v2} to {vs,v4} and so that £ < £(P) + £(Q) < £+ 22m.
Note that we can assume, without loss of generality, that P is a v, vs-path and @ is a vs, v4-path.

Now, 0 < £ —4(P) —4(Q) — ¢(A) < 22m. As A is a (D, m,22m)-adjuster there is a vs, v4-
path in G[A U {v3,v4}] with length ¢(A), and therefore ¢(A) = 7(v3,v4,G) mod 2. Then, as
(P) =m(v1,v3,G) mod 2, £(Q) = 7(vg,v4,G) mod 2, £ = 7(v1,v2,G) mod 2 and 7(vy, v, G) =
m(v1,v3, G) + m(v3,v4, G) + 7(v4,v2, G) mod 2, we have £ — {(P) —£(Q) — ¢(A) =0 mod 2. That
is, there is some ¢ € N with 2i = ¢ — {(P) — £(Q) — ¢(A), where i < 11m.

Therefore, by the property of the adjuster, there is a v3, v4-path, R say, with length ¢(A) 4+ 2i =
¢ —4(P)—¢(Q) in G[AU{v3,v4}]. Then, PURUQ is a vy, ve-path with length /in G- U. O

4.4 Proof of Theorem

We can now prove Theorem We take some core vertices vy, ..., v, in an expander, find expan-
sions around them using Lemma, and then connect each pair of core vertices using Lemma

Proof of Theorem[1.7]. Let €1 > 0 be such that the properties in Corollary [2.5| and Lemma [£.§ hold.
Let eg = 1/10. Let dy = do(e1,€2, k) be large, and let d = 8dy. Let G be a graph with d(G) > d.

By Corollary we can find a bipartite (e1,e2d)-expander H C G with 6(H) > dp. Let
K = (g), n = |H| > dy, m = %log:sn and ¢ = log"n. Take k distinct vertices in the same
partition in H, say vi,...,vs. As do(e1,¢e9,k) is large and m!9% < log30k2 n, by Lemma with
kg1n = 30k% (and Oz an arbitrary shortest cycle in H, which will not play a role here), we can
find, for each i,j € [k] an (m!%% m)-expansion F;; C H of v; so that the sets V(F; ;) \ {v;} are
pairwise disjoint over i, j € [k].

Let f: [K] — [k]® be a bijection and let g, h : [K] — [k] be such that f(i) = {g(i), h(i)} for
each i € [K]. For each i € [K], using Proposition let Hi1 C Fy(),n(:) be such that H; 1 is an
(m!OE+1=1) m)-expansion of vy(;) and let H; o C Fj() (i) be such that H; o is an (mMOE+1=1) ).
expansion of vp;).

We shall connect pairs of core vertices, in the order given by f. For each i € [K], the expansions
H;, and H; 2 will be used to connect vy;y and vy,(;). We will make sure that the expansions that
are not yet used are protected. More precisely, we will find paths Py, ..., Pk, each with length ¢,
so that the following hold.

H1 For each i € [K], P; is a vy(;), vp(;)-path with length £.
H2 For each i € [K], V(F;) is disjoint from
Ui == ({vj 1 j € [K]} U (Uj»i(V(Hjp) UV (Hj2)) U (Uj<iV(P5))) \ {vg(iy, vniy }-

31



This is sufficient to prove the theorem. Indeed, by foreach 1 <i < j < K, as V(P;) \
({vg(i)» vn ) N {vg()s vny}) € Uj, we have that P; and P; are internally disjoint. Therefore,
Uier) P is a copy of TK,(f).

Suppose then that 1 < i < K, and we have found paths Py, ..., P, 1 satisfying and
Note that
m!OUHD . Ha | |Hig)

U] < b+ 2m 0T £ N < g a0 4 j2m® < — — o

7>t 7<t

Therefore, by Lemma with (v, F1,v2, F2, U)ag = (v, Hi1, Vi), Hig2, Ui), there is a path P;
with length ¢ between vy(;y and vy(;) which does not intersect U;. This completes the proof. O

4.5 Proof of Theorem
Finally, we combine Lemmas and [£.8] to prove Theorem

Proof of Theorem [2.7. Let 1 > 0 be such that the property in Lemma [4.§ holds. Let k = 10, let
do = do(e1,e2) be large and let n > d > dy. Suppose then that H is a TKd2/2—
(e1, e2d)-expander with §(H) > d and let x,y € V(H) be distinct. Let £ € [log” n,n/ log'? n] satisfy
¢ =n(z,y, H) mod 2. We will show that H contains an z,y path with length /.

Let m = %log?’n and D = log!®n. Then, by Lemma (applied with C' taken to be an
arbitrary shortest cycle in H), there are vertex disjoint graphs Fy, F;, C H so that Fj is a (D, m)-
expansion of z and F, is a (D, m)-expansion of y. Then, by Lemma with U = @, there is a
x,y-path with length ¢ in H, as required. O

free bipartite n-vertex

5 Proof of Theorem [1.4

We will now prove Theorem using Theorem For convenience, before we discuss the proof
further, we will prove the following corollary of Theorem [2.7]

Corollary 5.1. For each € > 0, there is some dy such that the following holds for each d > dy.
If a graph G has d(G) > 8d, then it contains a connected bipartite subgraph H for which there is
some positive integer £ such that the following holds.

I For any u,v € V(H) with u # v and t € [(,£ - d*~¢] with t = w(u,v, H) mod 2, there is a
w, v-path in H with length t.

Proof. Let 1 > 0 be such that the properties in Theorem and Corollary hold, and let
g9 = 1/10. Let dy = dp(g,€1,e2) be large. Suppose then that the graph G has d(G) > 8d.

If possible, let H C G be a copy of TKEf/)Q, and let £ = 6. Then, as d > dy(e,e1,e2) is large, for
any two distinct vertices u,v in H and any integer t € [(,£-d'~¢] C [6,d — 8] with t = 7(u,v, H)
mod 2, it is easy to see that there is a u,v-path in H with length ¢.

Assume then that G is TKEIQ/)Q—free. By Corollary G contains a bipartite (g1, ead)-expander
H with §(H) > d(G)/8 > d. Let ¢ = log" |H|. Note that |[H| > 6(H) +1 > d + 1, and
d > dy = do(g,e1,€2) is large, so that |H|/log'? |H| > ¢-d'™5. As n > d > do(c,e1,e9) is
large, by Theorem for any two distinct vertices u,v in H and any integer t € [(,/ - d'~¢] C
log” |H|, |H|/log'? |H|] with t = w(u,v, H) mod 2, there is a u, v-path in H with length t. O
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The following sketch is illustrated in Figure ] For Theorem [I.4] we have a graph G with
X(G) = k and wish to find a long interval in the set of odd cycle lengths in G. Letting d ~ k/30,
we first find a maximal collection H;, i € [s], of edge disjoint bipartite graphs and corresponding
integers ¢;, i € [s], which satisfy Il As x(G) = k =~ 30d is large, it will follow from the maximality
of this collection and Corollary that U;c( H; has high enough chromatic number that it must
contain some odd cycle.

Now, say each bipartite H; has vertex classes A; and B;, and consider the auxilliary graph K
formed from Uj¢ [y H; by including any missing edges between A; and B; for each i € [s]. As U;eq H;
has an odd cycle, so does K. Consider a shortest odd cycle C in K. Each edge in C, say the edge
e between A;) and B (), can be replaced with a path with any odd length in [£;(), ;) - ko)
by [l Roughly speaking, doing this for each edge in C creates cycles with all possible odd lengths
in 0,0 KW, with £ =3 pioy e

Figure 3: An illustration of the proof of Theorem As seen on the left, we find a collection
of edge disjoint bipartite expander graphs, here Hi, ..., Hs, so that H; intersects with H; 1 and
H;;q on at least one vertex each (working mod 5 in the indices), and any cycle around the ‘cycle
of subgraphs’ is odd.

We then form different length odd cycles by choosing short paths between the intersecting vertices in
some of the expanders H;, while varying the length of the paths between a vertex disjoint collection
of the expanders (here, Hs and Hs).

The main complication omitted in this sketch is that the paths replacing the edges in C need
to be internally vertex disjoint from each other and V(C). To ensure this, we only replace some of
the edges with paths of varying length, only doing so for a suitable large collection of the edges on
C. If two edges on C are far apart, yet their containing bipartite graphs H; intersect, then we can
find a shorter odd cycle in K than C, a contradiction. Therefore, we choose a subset E C E(C) of
edges which are pairwise nicely separated on C' (and which maximises ) . ;) subject to this).
We replace each edge in E by an odd length path with length from [&(e),@(e)kl_o(l)], while we
(essentially) replace each edge in E(C) \ E with some minimal path between the same vertices in
the corresponding graph H;, in order to connect the paths corresponding to E into a cycle.

Recalling Definition we use the following simple proposition.

Proposition 5.2. Given any connected bipartite graph H containing three distinct vertices ay,as
and az, we have

m(ay,as, H) + w(az, a3, H) — w(a1, a2, H) € {0,2}. (19)
Furthermore, for any (not necessarily distinct) vertices ai,ay and as, we have
m(a1,a3, H) + m(az, a3, H) = (a1, a2, H) mod 2 (20)
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Proof. First, suppose that a1, a2 and ag are distinct. Let the vertex classes of H be A and B, and
assume without loss of generality that ag € A. If a1,a9 € A, then 7(aq, a3, H) + 7(ag,a3, H) —
m(ay, a2, H) =242—-2 = 2. If a1,a2 € B, then w(ay,as, H)+n(az,as, H)—m(ai,a2, H) = 1+1-2 =
0. We may then assume that a; € A and ag € B, and so 7(a1, a3, H) +7(az, a3, H) —m(a1,a2, H) =
2 +1—1 = 2. Therefore, whenever aq,as and ag are distinct, holds, and furthermore
holds in this case as well.

Now, note that if a; = ag = a, then holds as 27 (a, a3, H) = 0= m(a,a, H) mod 2, while if
a; = ag = a, then 0 + w(ag,a, H) = 7(a,a2, H) mod 2, and, similarly, holds if as = a3. This
completes the remaining cases when aj,as and as are not necessarily distinct. O

We are now ready to prove Theorem which we do throughout Section [5.1

5.1 Proof of Theorem [1.4]

Let e > 0. To prove Theorem [I.4] we will show that there is some ko € N such that the following
holds for each k > ko. If G is a graph with chromatic number k, then, for some ¢ € N, C(G)
contains every odd integer in [(, ¢ - k'~¢].

Let then dy be large enough that d'=5/4 > (30(d + 1))'~%/2 holds for each d > dy and the
property in Corollary holds for dy with g5 = /4. Let kg = 30dy. Suppose k > ko and that
the graph G has x(G) = k. Let d = |k/30].

As outlined at the beginning of this section, using the high chromatic number of G, we first
find a minimal ‘cycle of subgraphs’ that could potentially offer many distinct odd cycle lengths
(in Section [5.1.1)). We then prove that non-consecutive subgraphs in this cycle are vertex disjoint
(in Section [5.1.2)). We then choose some of these non-consecutive subgraphs in which to vary the
path lengths (in Section . Finally, we take different path lengths in the chosen subgraphs and
connect them up into a cycle, getting many odd cycles (in Section .

5.1.1 A minimal ‘cycle of subgraphs’

Let Hy,...,Hs be a maximal collection of edge disjoint connected bipartite subgraphs of G such
that, for each i € [s], there is a positive integer ¢; for which the following holds.

J For any two distinct vertices u,v in H; and any integer t € [¢;, £; - k'=/?] with t = 7(u, v, H;)
mod 2, there is a u, v-path in H; with length ¢.

Let H = UjcjgH;. Let G' =G\ H. As d'=&/* > (30(d + 1))'7%/2 > k'=¢/2 by the maximality of
the collection Hi, ..., Hs and Corollary G’ has no subgraph with average degree at least 8d.
Therefore, every subgraph of G’ has a vertex with degree in that subgraph less than 8d, and hence,
as is well known, chromatic number less than 8d.

We will now show that x(H) > 3. Indeed, suppose to the contrary that y(H) < 3. Let
c1: V(G') — [8d] be a proper colouring of G' and let ¢3 : V(H) — [2] be a proper colouring of H.
Then, ¢ : V(G) — [8d] x [2] defined by ¢(v) = (¢1(v), c2(v)) is easily seen to be a proper colouring
of G. Therefore, x(G) < 16d < k, a contradiction. Thus, we have that x(H) > 3.

Therefore, we can choose an odd cycle C'in H. Say that C has length ' and vertices a; ... a1
where a; = a,v11. We now take a certain minimal sequence, where C' will demonstrate that such a
sequence exists. That is, we take a sequence

S =01 F1baFabs .. by Frbyg
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such that, setting 7(S) = r, we have

K1 by,...,b, are distinct vertices and by = by41,

K2 for each i € [r], F; € {Hx,...,Hs} and b;,bi11 € V(F),

K3 7(8S) := >, m(b;, biy1, F;) is odd, and

K4 subject to m(S) 4+ r(S) is minimised.
Indeed, such a sequence exists as the sequence S’ = a1G1a2G2as . .. aGrramyy satisfies
where for each ¢ € [r], G; = Hj for the j € [s] with a;a;11 € E(H; ), and we have that 7(S") =
E:lzl m(a;, a;41,G;) = r' is odd.

Note that we must have » > 2. Indeed, if r = 1, then implies that w(by,ba, F1) =

7(b1, b1, Fi) = 0, violating [K3]

5.1.2 Non-consecutive subgraphs are vertex disjoint

We will now use the minimality of S (that is, [K4]) to infer two key properties. These are (roughly)
that non-consecutive graphs in Fi, ..., F,. are vertex disjoint (Claim and that each graph is a
different graph in {Hj,..., Hs} (Claim [5.4).

Claim 5.3. For each i,j € [r] with i # j and i # j+1 mod r, F; and Fj are vertex disjoint.

Proof of claim. Suppose, for contradiction, we have some distinct 4,5 € [r] with ¢ # j+1 mod r
(and thus 7 > 4) and that F; and Fj are not vertex disjoint. We consider separately the case
when Fj and Fj share some vertex not in {b1,...,b.} (Case I) and when they share some vertex in
{b1,...,b;} (Case II).

Case 1. Suppose then that F; and Fj share some vertex a ¢ {b1,...,b.}. Assume, without loss of
generality, that 7 < j. As depicted in Figure [4] consider the two sequences

Sl == blFle e biFiaF}‘bj+1 e brFrbr+1 and 82 == bi+1Fi+1bi+2Fi+2 e bj.FjCLFibi_i_l.

We will show that one of these sequences satisfies in place of S and contradicts the min-

imality of S in That each sequence &1 and S» satisfies the corresponding version of and

follows immediately from and and as a ¢ {b1,...,b,} is in both V(F;) and V (Fj).
Define 7(S1) and 7(8Sz) similarly to 7(S) in that is, let

7T(81): Z ﬂ-(bilabiurl’Fi/)+7r(bi7a7Fi)+7r(a7bj+17Fj)+ Z ﬂ-(biUbiUer:i’)v

1<i'<4 j<i'<r
and
7'('(82) = Z Tr(bi/? bi’+17 E’) + 7T(bj, a, Ej) + 7'['(&7 bi+17 E)
i<i'<j
Then,
7(S1) + 7(S2) — 7(S) (21)

= m(bi, a, Fy) +m(a, bjy1, ) + 7(bj, a, Fj) + m(a, biv1, Fi) — m(bi, biy1, Fi) — w(bi, bjy1, F).
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By and as a ¢ {by,...,b.}, a, b; and b;;1 are distinct. Thus, by Proposition (b, a, F;) +
7T(b1'+1, a, FZ) —7I‘(b7;, bi+1, FZ) € {0, 2}. Similarly, W(bj, a, Fj)+7r(bj+1, a, Fj) —TI'(bj, bj+1, Fj) S {0, 2}.
Therefore, implies that 7(S1) + 7(S2) — 7(S) € {0, 2,4}.

Now, as i # j+1 mod r, both 7(S1) and 7(S2) are sums of at least three numbers from {1,2}.
Therefore, if 7(S1) or m(S2) is even, they must be at least 4. As w(S) is odd, if 7(S) is even, then
m(S2) <4+ 7(S) —7(S1) < 7(S) and 7(Ss2) is odd. Similarly, if 7(S2) is even, then 7(S1) < 7(S)
and 7(81) is odd. Therefore, one of 7(S;), i € [2], is odd.

Including the repetition of by = b,1 and b;1 respectively, as i # j =1 mod r, the sequence
Sp contains i + 14 (r+ 1) — 7 < r + 1 vertices and the sequence Sy contains j —i+2 < r+ 1
vertices. Thus, r(S1),7(S2) < r = r(S). Therefore, taking the sequence S; with ¢ € [2] such that
m(Syr) < m(S) is odd (so that the corresponding versions of hold for S;/) contradicts

Case II. Suppose then that F; and Fj share some vertex, say by, in {b1,...,b.}. We first show
that we can assume that b; € V(F;). If ¢/ = j, then this already holds. If ¢ = ¢ then switch ¢ and
Jj to get the previous case of ' = j. If i’ # 4 —1,4,i+1 mod r, then keep i unchanged and relabel
j=4.1fd #3j—1,5,7+1 mod r, then relabel j =i and i = . In each case we then get 7 # j+1
mod 7, i # j and b; € V(F}).

This leaves only the case that ¢/ € {i—1,i+1} mod r and i € {j—1,5+1} mod r. Therefore,
switching ¢ and j if necessary, we have that i +1 =14 = j —1 mod r. We have that by = b;41 is
in V(Fj), and now reverse the sequence S so that, roughly speaking, b;1 and F; are assigned the
same index. That is, consider the sequence S’ created by reversing S, taking that

S' =V, F{byFaby .. . bLEb. . = by Fyby Fy_1by_1 ... byFiby,

where b, = b, o for each j' € [r + 1] and Fj, = F,1_j for each j' € [r]. Then, b ;_; = bi+1 €
V(Fj) = V(F],;_;). Thus, relabelling i =r+1—jand j =7 +1—i we have i #j£1 mod r,
i # j and b € V(F]). Using the corresponding definition for & in ' we have 7(8") = 7(S) and
r(S8") =r =7r(S), so that S’ satisfies its corresponding versions of [K1HK4| Thus, taking &’ instead
of S if necessary, we can always assume that ¢ # j =1 mod r, i # j and b; € V(Fj).

Now we show that we can assume that j > ¢. If j < ¢, then consider the rotated sequence of &

in which the index 7 is shifted to 1, that is,

S" = U/ FvyFyvy .. W/ F'b = biFibiyy .. b Fyby1 Fiby ... by 1F_1b;,

T

Figure 4: The sequence S split into S and Sy on the left and S3 and Sy on the right.
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where b, = bjri;_1 and F}) = bjiy;y for each j' € [r] with addition modulo r in the indices and
bl 1 = bi. Let i =1 and j” = 7+ j —i+ 1, and note that i < j” and i # j” £1 mod r.
Furthermore, b, = b; € V() = V(F;). Similarly to &', §” satisfies its corresponding versions of
and therefore, taking S” instead of S if necessary, we can assume that i < j.

Thus, we have that ¢ < j, i # j+ 1 mod r and b; € V(F;). As depicted in Figure [4] consider
now the sequences

53 = blFleFQ . biFibijijrl - Frerrl and 84 = biji+1E+1bi+2 - ijlbj.

We will show that one of these sequences satisfies in place of S and contradicts the mini-
mality of S in That each sequence S and Sy satisfies the corresponding versions of and

follows immediately from and as b; € V(F}).

Writing
w(Ss) = Y wlbir,birgr, Fi) +m(bi by, Fi) + > w(bir, by, Fy),
1<i’<i J<i'<r
and
77(84) = W(ij bi+1, E) + Z W(bi’a b’i’-f—la Fi’))
i<i'<j

we have

7T(83) + 7T(S4) — 71'(8) = W(bi, bj, Fz) + 7T(bj, bit1, FZ) — W(bi, bi+1, Fl) (22)

By @ and Proposition we have m(b;, bj, F;) +7(bj, biy1, Fi) — w(bs, bit1, F;) € {0,2}. Thus, by
(22)), we have 7(8S3) + m(Ss) — 7(S) € {0,2}.

Now, as i # j =1 mod r, both 7(S3) and 7(S4) are sums of at least two numbers from {1, 2},
and are therefore at least 2. As 7(S) is odd, if 7(8S3) is even then 7(Ss) < 2+ 7(S) — 7(S3) < 7 (S)
and 7(8y) is odd. Similarly, if 7(Sy) is even, then 7(S3) < 7(S) and 7(S3) is odd. Therefore, one
of m(8;), i € {3,4} is odd.

Including the repetition of by = b,41 and b; respectively, the sequence Sz contains i + (7 +
1) —j+1 < r+1 vertices and the sequence Sy contains j — i + 1 < r + 1 vertices. Thus,
7(83),7(S4) < r =r(S). Therefore, taking the sequence Sy with ¢ € {3,4} such that 7(S;/) is odd
(so that the corresponding versions of hold for §;/) contradicts completing the proof
of the claim. |

Using Claim we can show that each graph F; in the minimal sequence S is distinct.
Claim 5.4. Fy,..., F, are distinct graphs in {Hy, ..., Hs}, and thus are pairwise edge disjoint.

Proof of claim. If r = 2 and F; = F5, then implies that >". | 7(b;, b1, F;) = m(by,ba, F1) +
7(bo, by, Fy) = 2m(by,ba, F1) = 0 mod 2, violating Thus, the claim holds for » = 2 by

Now suppose r > 3 and that, for distinct 4,j € [r], F; = F;. Then, by Claim [5.3 it must be
that i = j £ 1 mod r. Say then, without loss of generality, that ¢ = j — 1 mod r. Furthermore,
by relabelling the indices in the sequence S cyclically (as for 8” above), we can assume that i < r,
and hence j = i + 1, so that F; = F;,;. Consider the sequence S’ formed from S by replacing
Fib;r1Fiy1 by F; in S, so that

S = b1 F1boFobs . .. bi_lFi_lbiFibi+2Fi+2 R bTFrbr+17
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and note that S’ satisfies its corresponding versions of and By Proposition [5.2] and as
Fi = Fi+1, we have that ﬂ(bi, bi+1, E) + 7T(bi+1, bi+2, Fi+1) — W(bi, bi+2, Fz) S {0, 2}. Then, deﬁning
7(8’) as in

7(8") = n(S) — w(bs, biy1, Fs) — w(big1, bito, Fiy1) + w(bs, biyo, F;) € {n(S),n(S) — 2}.

As7(8) is odd, 7(S") < m(S) and 7(8’) is odd. Therefore, as r(S’) = r—1, this contradicts[K4 M

5.1.3 The right subgraphs in which to vary path lengths

Using the previous claims in this section, we can now choose a large subcollection of graphs F; in
S, varying the paths in which leads to many odd cycles of distinct lengths. Firstly, by Claim
and relabelling, we can assume that F; = H; for each i € [r]. Recall then that we have positive
integers ¢;, i € [r], such that |J| holds with H; = F;.

Now, partition [r] as Iy U I U I3 and find distinct vertices uy = up41,u2, ..., u, with u;,u;41 €
V (F;) for each i € [r], and paths P;, i € I U I3, such that the following hold.

L2 Any collection of paths containing exactly one wu;,u;11-path in F;, for each ¢ € I;, and
{P;}icr,ur, form a cycle.

L3 The paths P;, ¢ € Is U I3, have total length ¢y < Z’ielgufg (¢; + 1), where ¢y is such that
bo+ ey, ™(uiy iy, Fy) is odd.

We find the partition, vertices and paths differently depending on the length of the sequence S.
If » > 4, then we are in Case 1, if r = 2, then we are in Case 2, and if r = 3 we are in Case 3.

Case 1. Suppose first that » > 4. Partition [r] = I; U Iy U I3 so that, for each j € [3], there
is no solution to x = y +1 mod r with z,y € I;. Thus, by Claim for every j € [3], graphs
in {F; : i € I;} are pairwise vertex disjoint. By averaging, there exists some j € [3] such that
Zielj (i +1) = 3 e(li +1)/3. By relabelling, we may assume that j = 1, and hence holds.

Now, for each i € Io, find a shortest path P; between V(F;_1) and V(F;y1) in F;, and label
vertices so that this is a w;,u;i-path with w; € V(F;_1) and u;11 € V(Fj+1). Note that, by
minimality of P;, all internal vertices of P; lie in V(F;) \ (V(Fi—1) U V(Fi41)). Furthermore, as
r > 4, by Claim we have that u; # u;i1.

For each i € I3, if i — 1,4+ 1 € I, let P; be a shortest u;,u;+1-path in F;. If i —1 € I and
i+ 1¢ Iy, let P; be a shortest path from u; to V(F;11) in F; and label its endpoint in V(F;11) by
Uiy1. fi—1¢ Iy and i+ 1 € Io, let P; be a shortest path from V(F;_1) to w;4; in F; and label its
endpoint in V(F;_1) by w;. Ifi—1,i4+1 ¢ I, let P; be a shortest path between V' (F;_1) and V (Fj41)
in F;, and label vertices so that this is a w;, u;i-path with u; € V(F;_1) and w;41 € V(Fiy1).

Note that we have chosen a vertex w; for each i € [r] with i or ¢ — 1 in I U I3, and, for each
i € IyUIs, apath P;. As there is no solution to x = y+1 mod rin I, {i,i+1:i € I, UI3} = [r].
Thus, we have in fact chosen vertices u; for all ¢ € [r]. To see that vertices u;, @ € [r], are distinct,
note that, for each i € [r], we chose w; € V(F;_1) N V(F;). Therefore, if there is some i # j with
u; = uj, then as u; € V(F;—1) N V(F;) and r > 4, by Claim we must have j =7 —1 mod 7.
However, similarly, as u; € V(F;j—1) NV (F}), we must have i = j — 1 mod 7, a contradiction.
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Let uy41 = u;. For each i € Io U3, P; was a shortest path between two vertices in F;, and thus
by [J] has length at most ¢; + 1. Observe crucially that, by our careful selection of shortest paths,
the paths in {P; : i € I U I3} are pairwise internally disjoint, and furthermore internally disjoint
from any wu;, u;41-path in F; for any ¢ € I. In particular, this, together with the graphs Fj, i € Iy,
being pairwise vertex disjoint, implies that holds. It is left to show that holds. Let £y be
the total length of the paths P;, i € I3 U I3. As, for each i € Is U I3, P; has length at most ¢; + 1,
we have o < >, ;7. (€; + 1), as required in

For the rest of we need to show that ¢y + Zieh (i, uiy1, Fy) is odd. Now, as r > 4, we
have 7(S) > 5 by and hence 7(S) + r(S) > 9. Now, suppose for some i,j € [r] with j =i —1
mod 7, w(u;, b, Fy)+7(u;, b, Fj) is odd. Then, u; # b;, and therefore m(u;, b;, F;) +m(u;, b;, Fj) = 3.
Thus, the sequence &' = u; F;b; Fju; has w(S") 4+ r(S’) = 5 and satisfies its corresponding version of
contradicting Therefore, working mod r in the indices, for each i € [r], we have

ﬂ(ui, buE) + W(ui, b;, Fi—l) =0 mod 2. (23)

Futhermore, for each i € [r], we have by two applications of (the second part of) Proposition
that

(wi, wip1, Fy) = m(ug, b, Fy) +7(bs, wig1, F) = w(wi, by, Fy) +m(bi, bit1, Fy) +m(bit1, wit1, F3) mod 2.

Thus, working mod r in the indices, we have

Z 7T(UZ‘,UZ‘+1,FZ') = Z (UZ,bZ,F + Z bz7bz+17 + Z H_l,uH_l, ) mod 2

i€[r] i€[r] i€][r] i€[r]
= w(bibirr, Fi) + > (w(ui, bi, Fy) + w(ui, bi, Fio1))  mod 2
i€(r] i€(r]
" Z W(bi,bi+1,Fi) mod 2.
i€]r]

For each i € Iy U I3, P; is a u;, u;1-path in F;, and therefore has length equal to m(u;, wit1, F;)
mod 2. Thus, ¢; is equal to Ei612U13 (Ui, uiy1, F;) mod 2. Therefore,

lo+ > m(uiuist, Fr) = Y wlui,uip1, F) = > w(bi, biy, Fy) mod 2.

i€l i€[r] ielr]

Combined with we have that fo + > ;o7 7(ui, uiy1, F;) is odd, completing the proof of

Case 2. Suppose then that » = 2. Assume, by relabelling that ¢; > /5 and let I; = {1}, I» = {2}
and I3 = @. Note that holds. By we have that m(by, by, F1) + (b1, be, F3) is odd. Find
distinct vertices ui,ug € V(F1) NV (F3) and a u, ug-path P in Fy so that ¢(Py) + m(uy, ug, F1) is
odd, and subject to this P» has the shortest possible length. Note that this is possible as taking
up = b1, ug = be and letting P» be any up,ug-path in Fy (which exists due to satisfies these
conditions, and, furthermore, by [J], P» has length at most ¢3 + 1. Therefore, holds for P;.

Now, suppose P, has some internal vertex u in Fj. Then, note u € V(P,) C V(F), and split
Py as a uy,u-path Q1 and a u, ug-path Q2. By Proposition [5.2] we have, working mod 2, that

=UPy) + m(ur,u, F1) = 0(Q1) + m(ur, u, F1) + £(Q2) + m(u,uz, F1) mod 2.
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Therefore, one of ¢(Q1) + m(u1,u, F1) or £(Q2) + m(u, uz, F1) must be odd, contradicting the mini-
mality of P,. Therefore, P, has no internal vertices in F, and hence [L2] holds.

Case 3. Suppose finally that r = 3. Assume, by relabelling, that {1 = max;c,) ¢; and let I; = {1},
I, = {2} and I3 = {3}. Note that holds.

Let us first show that F} U Fy, F» U F3, and Fy U F3 are bipartite. Suppose, for contradiction,
that Fy U F3 is not bipartite, and let A, B and A’, B’ be the bipartitions of F5» and F3, labelled so
that b3 € ANA". As AUA’, BU B’ is not a bipartition of F, U F3, there must be some vertex, u
say, in AN B or A’ N B. Then, 7(bs,u, Fy) + 7(u,bs, F3) = 3. Thus, &’ = byFyuF3b3 satisfies the
corresponding version of [K1}K3| with (S") + 7(S’) = 5. By and m(S) > 3, and therefore
m(S) + r(S) > 6, contradicting Therefore, F, U F3 must be bipartite. Similarly, F; U F5 and
F1 U Fy are bipartite.

As F, U Fj3 is bipartite, we have, by Proposition that

7T(b2, by, Fo U F3) = 7(ba, b3, Fo U F3) + 7(bs, by, Fr U Fg) = 71'(()2, b3,F2) + 7(bs, by, F3) mod 2.

Let @ be a shortest bg, by-path in FoU F3, so that £(Q) = w(ba, bs, FoUF3) mod 2. As Fy and F3
have diameter at most £5 4+ 1 and /3 + 1 respectively by we have (Q) < lo+0l3+2. Asby = b1, Q
is a by, ba-path. Now, find distinct vertices uy, us with ug € V(F1) NV (F3) and ug € V(F1)NV(Fy),
and a u1,ug-path Py in Fy U F3 so that ¢(Ps) 4+ m(u1,ug, F1) is odd, and subject to this ¢(P») has
the shortest possible length. Note that such a shortest path P, indeed exists as the path () satisfies
the other requirements with u; = by and ug = by as €(Q) + w(b1, b, F1) is odd due to Thus,
U(Py) < 4(Q) <l + l3+ 2. Let P3 be the path with only the vertex ug. Therefore, holds for
P2 and P3.

Suppose to the contrary that P» has some internal vertex u in Fj. Then, note u € V(P;) C
V(F3), and split P, as a uj, u-path @1 and a u, us-path Q2. By Proposition we have

1 =4(Py) + m(uy,ug, F1) = (Q1) + 7(u1,u, F1) + 4(Q2) + m(u, uz, F1) mod 2.

Therefore, one of ¢(Q1) + m(u1,u, F1) or £(Q2) + m(u,uz, F1) must be odd, contradicting the mini-
mality of P». Therefore, P> has no internal vertices in Fj, and hence holds.

Now, combining P, with any wuj,ug-path in F} with length equivalent to m(u1,ug, F1) mod 2
gives an odd cycle. Thus, as both F} U F» and F} U F3 are bipartite, P, must have some edge
from F5 and some edge from Fj3, and hence we can pick uz as an arbitrary internal vertex of P, in
V(F3) NV (F3). This completes the partition [3] = I; U I U I3, distinct vertices w1, ug and us, with
uy,ug € V(F1), ug,us € V(Fy) and us,u; € V(F3), and paths P, and P3 such that hold.

5.1.4 Varying paths in the chosen subgraphs

Thus, in each of the three cases, we have a partition [r] = I; U I U I3, distinct vertices u; =
Upg1, Uy - -« Uy With u;, u;4q € V(F;) for each i € [r], and paths P;, i € Iy U I3, for which
hold. Let

6:60—&—2(&—1—1)Z(&—f—l)?i&Z(&—f—l). (24)

i€l i€(r] i€l

Now, if £}, i € I, is a collection of integers satisfying £, € [(;, ; - k'=¢/2] and O = 7(u;, wit1, Fy)
mod 2, for each ¢ € I, then, by taking a u;, u;+1-path in F; with length ¢ by for each ¢ € I, and
combining these paths with the paths P;, i € I U I3, by we get a cycle with length £y + Zz‘ell .
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As, by bo + > seq, (Wi uiv1, Fi) is odd, there are sets of such numbers £}, i € I;, with
lo+ ) e, Ui =t for any odd number ¢ such that

lo+ > (li+1)<t<lo+ Y (|6 k2] —1).

i€l i€l
Now, we have £ = lo + >, (¢i + 1), so, as k2 > d‘é/Q > 8, we have
o+ Y (16K T2 =1) > (6 kT2 —2) > > (86 kT —2) = ) (36i+3) kT S Lo k!TE
i€ly i€ly i€l i€ly

Thus, for each odd integer ¢ € [¢,£ - k%], G contains a cycle with length ¢. This completes the
proof of Theorem

Acknowledgements

We are very grateful to Benny Sudakov, and the referee, for suggestions that improved the presen-
tation of this paper.

References

[1] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, 2004.
[2] B. Bollobds. Cycles modulo k. Bulletin of the London Mathematical Society, 9(1):97-98, 1977.

[3] B. Bollobas and A. Thomason. Proof of a conjecture of Mader, Erdés and Hajnal on topological
complete subgraphs. European Journal of Combinatorics, 19(8):883-887, 1998.

[4] P. Erdés. Some recent progress on extremal problems in graph theory. Congr. Numer, 14:3-14,
1975.

[5] P. Erdés. Problems and results in graph theory. The theory and applications of graphs (Kala-
mazoo, MI, 1980), pages 331-341, 1981.

[6] P. Erd6s. Some new and old problems on chromatic graphs. Combinatorics and applications,
pages 118-126, 1984.

[7] P. Erd6s. Some old and new problems in various branches of combinatorics. Discrete Mathe-
matics, 165:227-231, 1997.

[8] P. Erdds and A. Hajnal. On chromatic number of graphs and set-systems. Acta Mathematica
Hungarica, 17(1-2):61-99, 1966.

[9] A. Gyarfas. Graphs with k& odd cycle lengths. Discrete Mathematics, 103(1):41-48, 1992.

[10] A. Gyérfés, J. Komlds, and E. Szemerédi. On the distribution of cycle lengths in graphs.
Journal of Graph Theory, 8(4):441-462, 1984.

41



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]
[24]

J. Kim, H. Liu, M. Sharifzadeh, and K. Staden. Proof of Komlés’s conjecture on Hamiltonian
subsets. Proceedings of the London Mathematical Society, 115(5):974-1013, 2017.

J. Komlés and E. Szemerédi. Topological cliques in graphs. Combinatorics, Probability and
Computing, 3(2):247-256, 1994.

J. Komloés and E. Szemerédi. Topological cliques in graphs II. Combinatorics, Probability and
Computing, 5(1):79-90, 1996.

K. Kuratowski. Sur le probleme des courbes gauches en topologie. Fund. Math., 16:271-283,
1930.

H. Liu and R. Montgomery. A proof of Mader’s conjecture on large clique subdivisions in
Cy-free graphs. Journal of the London Mathematical Society, 95(1):203-222, 2017.

W. Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. Mathematis-
che Annalen, 174(4):265-268, 1967.

W. Mader. Hinreichende Bedingungen fiir die Existenz von Teilgraphen, die zu einem
vollstdndigen Graphen homéomorph sind. Mathematische Nachrichten, 53(1-6):145-150, 1972.

B. Sudakov and J. Verstraéte. Cycle lengths in sparse graphs. Combinatorica, 28:357-372,
2008.

B. Sudakov and J. Verstraéte. Cycles in graphs with large independence ratio. Journal of
Combinatorics, 2(1):83-102, 2011.

C. Thomassen. Subdivisions of graphs with large minimum degree. Journal of Graph Theory,
8(1):23-28, 1984.

C. Thomassen. Problems 20 and 21. In Graphs, Hypergraphs and Applications. H. Sachs, Ed.:
217. Teubner. Leipzig., 1985.

C. Thomassen. Configurations in graphs of large minimum degree, connectivity, or chromatic
number. In Proceedings of the third international conference on Combinatorial mathematics,
pages 402-412, 1989.

J. Verstraéte. Unavoidable cycle lengths in graphs. J. Graph Theory, 49:151-167, 2005.

J. Verstraéte. Extremal problems for cycles in graphs. In Recent trends in combinatorics,
pages 83-116. Springer, 2016.

42



	Introduction
	Average degree and even cycle lengths
	Chromatic number and odd cycle lengths
	Balanced subdivisions

	Structure and proof sketches
	Notation
	Komlós-Szemerédi graph expansion
	A stronger version of Theorem 1.1
	Proof sketch for Theorem 2.7
	Creating a little adjustment with small cycles
	Connecting the cycles
	Increasing the size of the interval of path lengths
	The limitations of our methods

	Outline of the proof of Theorem 1.4
	A new construction method: Robust construction of gadgets.

	Preliminary expansion results
	Expanding while avoiding sets
	Connecting sets with paths
	Expansion of sets of lower degree vertices
	Disjoint vertex expansions
	Enlarging vertex expansions
	Long paths between vertex expansions
	Subdivisions in skewed bipartite graphs

	Proof of Theorem 2.7
	Finding one simple adjuster
	Finding simple adjusters robustly
	Connecting simple adjusters for paths with specific lengths
	Proof of Theorem 1.7
	Proof of Theorem 2.7

	Proof of Theorem 1.4
	Proof of Theorem 1.4
	A minimal `cycle of subgraphs'
	Non-consecutive subgraphs are vertex disjoint
	The right subgraphs in which to vary path lengths
	Varying paths in the chosen subgraphs



