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Abstract

A subgraph of an edge-coloured graph is called rainbow if all its edges have distinct colours. The study of
rainbow subgraphs goes back more than two hundred years to the work of Euler on Latin squares and has been
the focus of extensive research ever since. Euler posed a problem equivalent to finding properly n-edge-coloured
complete bipartite graphs Kn,n which can be decomposed into rainbow perfect matchings. While there are proper
edge-colourings of Kn,n without even a single rainbow perfect matching, the theme of this paper is to show that
with some very weak additional constraints one can find many disjoint rainbow perfect matchings. In particular,
we prove that if some fraction of the colour classes have at most (1−o(1))n edges then one can nearly-decompose
the edges of Kn,n into edge-disjoint perfect rainbow matchings. As an application of this, we establish in a very
strong form a conjecture of Akbari and Alipour and asymptotically prove a conjecture of Barat and Nagy. Both
these conjectures concern rainbow perfect matchings in edge-colourings of Kn,n with quadratically many colours.
The above result also has implications to some conjectures of Snevily about subsquares of multiplication tables
of groups.

Finally, using our techniques, we also prove a number of results on near-decompositions of graphs into other
rainbow structures like Hamiltonian cycles and spanning trees. Most notably, we prove that any properly coloured
complete graph can be nearly-decomposed into spanning rainbow trees. This asymptotically proves the Brualdi-
Hollingsworth and Kaneko-Kano-Suzuki conjectures which predict that a perfect decomposition should exist
under the same assumptions.

1 Introduction

A Latin square of order n is an n× n array filled with n symbols such that each symbol appears once in every row
and column. A partial transversal is a collection of cells of the Latin square which do not share the same row, column
or symbol. A transversal is a partial transversal of order n. Latin squares were introduced by Euler in the 18th
century and are familiar to the layperson in the form of Sudoku puzzles, which, when completed, are Latin squares.
Another well known example of the Latin square is a multiplication table of any finite group. The study of Latin
squares have applications both inside and outside mathematics, with connections to 2-dimensional permutations,
design theory, finite projective planes, and error correcting codes.

Euler was interested in orthogonal Latin squares—a pair of n × n Latin squares S and T with the property
that every pair of symbols (i, j) occurs precisely once in the array. This is equivalent to Latin squares which can
be decomposed into disjoint transversals (see [24, 37]). He conjectured that there exist n × n Latin squares with
a decomposition into disjoint transversals if, and only if, n 6≡ 2 (mod 4). When n 6≡ 2 (mod 4) Euler himself
constructed such Latin squares. The “n = 6” case stood open for over 100 years until it was proved by Tarry in
1901. The remaining cases “n 6≡ 2 (mod 4), n ≥ 10” were resolved in 1959 by Bose, Parker, and Shrikande [14].
Surprisingly, they showed that Euler’s Conjecture was false for these values of n by explicitly constructing Latin
squares with a decomposition into disjoint transversals.

It is a hard problem to determine which Latin squares have transversals. This question is very difficult even in
the case of multiplication tables of finite groups. In 1955 Hall and Paige [33] conjectured that the multiplication
table of a group G has a transversal exactly if the 2-Sylow subgroups of G are trivial or non-cyclic. It took 50
years to establish this conjecture and its proof is based on the classification of finite simple groups (see [49] and the
references therein). The most famous open problem on transversals in general Latin squares is a conjecture of Ryser
and Brualdi-Stein.
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Conjecture 1.1 (Ryser [44], Brualdi-Stein [17, 48]). Every n × n Latin square has a partial transversal of order
n− 1 and a full transversal if n is odd.

The best results towards this conjecture are asymptotic and show that all Latin squares have partial transversals of
size n − o(n). Woolbright [50] and Brower, de Vries and Wieringa [15] independently proved this with o(n) =

√
n.

The error term was further improved by Hatami and Shor [34], who showed that o(n) = O(log2 n) suffices.
Generalized Latin squares are n × n arrays filled with an arbitrary number of symbols such that no symbol

appears twice in the same row or column. They are natural extensions of Latin squares, and have also been
extensively studied. A familiar example of a generalized Latin square is a multiplication table between elements of
two subsets of equal size in some group. It is generally believed that extra symbols in a Latin square should help to
find transversals. The goal of this paper is to confirm that this is indeed the case. Moreover we show that, under
some very weak additional conditions, a generalized Latin square has not only one but many disjoint transversals.

Theorem 1.2. Let S be a generalized Latin square with at most (1−o(1))n symbols occurring more than (1−o(1))n
times. Then, S has (1− o(1))n pairwise disjoint transversals.

All previous results that guaranteed transversals studied arrays which were very far from Latin squares. For example,
Erdős and Spencer [23] showed that a transversal exists in any n×n array in which each symbol appears at most n/16
times. Furthermore, Alon, Spencer and Tetali [8] found many disjoint transversals in the case when each symbol
appears δn times, for some small but fixed δ > 0. On the other hand, our result shows that the only generalized
Latin squares without transversals are small perturbations of Latin squares.

Theorem 1.2 can be also used to attack several open problems on generalized Latin squares. For example Akbari
and Alipour conjectured the following.

Conjecture 1.3 (Akbari and Alipour [1]). Every generalized Latin square with at least n2/2 symbols has a transver-
sal.

More generally Barat and Nagy [13] conjectured that under the same assumptions as above, any generalized Latin
square should have a decomposition into disjoint transversals. Theorem 1.2 has implications for both of these
conjectures. It is easy to show that in any generalized Latin square with at least εn2 symbols at most (1 − ε/2)n
symbols occur more than (1− ε/2)n times (see Lemma 8.14). Thus the following is a corollary of Theorem 1.2.

Corollary 1.4. For all ε > 0 and sufficiently large n, every generalized Latin square with at least εn2 symbols has
(1− ε)n pairwise disjoint transversals.

For large n, this establishes the conjecture of Akbari-Alipour in a very strong form, showing that the bound of n2/2
can be reduced to εn2. It also proves asymptotically the Barat-Nagy conjecture, giving a near-decomposition of the
generalized Latin square into transversals.

Theorem 1.2 has also some interesting implications for transversals in actual Latin squares. Indeed, it is not
hard to show that any Latin square contains many subsquares which satisfy the assumptions of Theorem 1.2. In
fact, a random (1− o(1))n× (1− o(1))n subsquare will have this property with high probability. Thus we have the
following corollary.

Corollary 1.5. Let S be a random (1 − o(1))n × (1 − o(1))n subsquare of an n × n Latin square L. With high
probability, S has a transversal.

This corollary reproves the result that Latin squares have partial transversals of size n − o(n). However, it proves
much more, that is, partial transversals of size n− o(n) must be present almost everywhere in the Latin square.

Our main theorem has additional applications to group theoretic problems and questions about rainbow structures
in coloured graphs, which we discuss next.

Subsquares of multiplication tables

A natural way to obtain a generalized Latin square is to consider a subsquare S of a multiplication table of a group
G. Snevily made the following general conjecture on transversals in subsquares of abelian groups.

Conjecture 1.6 (Snevily [47]). Let S = A × B be a subsquare of the multiplication table of an abelian group G
defined by two n-element sets A,B ⊆ G.

(i) If G is an odd abelian group, then S has a transversal.
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(ii) If G is an even cyclic group, then S has no transversal only when both A and B are translates of the same
even cyclic subgroup of G.

Here a “translate of A” means any set of the form gA for g ∈ V (G). Part (i) of this conjecture has attracted a lot
of attention. After work by Alon [4] and Dasgupta, Károlyi, Serra and Szegedy [22], it was solved by Arsovski [10].
Part (ii) of Conjecture 1.6 is still open.

Our work has implications for this conjecture, and for various generalizations for other groups and semigroups.
Combining our Theorem 1.2 with the following lemma one can find not just one but many transversals in certain
subsquares of multiplication tables.

Lemma 1.7. Let S = A× B be a subsquare of the multiplication table of a group G defined by two n-element sets
A,B ⊆ G. Then, either S has at most (1 − o(1))n symbols occurring more than (1 − o(1))n times or there is a
subgroup H of G and elements g, g′ ∈ G such that |A∆gH| = o(n) and |B∆g′H| = o(n).

In other words, this lemma says that either a subsquare S of a multiplication table is close to a translate of a
subgroup, or it satisfies the condition of Theorem 1.2. In the latter case, we can use this theorem to nearly-decompose
S into disjoint transversals. Thus we have the following corollary which works in any group, not just finite or abelian
groups.

Corollary 1.8. Let S = A×B be a subsquare of the multiplication table of a group G defined by two n-element sets
A,B ⊆ G. Then, one of the following holds.

• S has (1− o(1))n disjoint transversals.

• There is a subgroup H of G and elements g, g′ ∈ G such that |A∆gH| = o(n) and |B∆g′H| = o(n).

Lemma 1.7 is implicit in the work of Fournier [25] and appears as Theorem 1.3.3 in the lecture notes of Green
[28]. It is formulated in terms of multiplicative energy, which for a subset A of group G is the number of quadruples
a1, a2, b1, b2 ∈ A such that a1a

−1
2 = b1b

−1
2 . It follows easily from the definitions that if S has more than (1− o(1))n

symbols occurring more than (1− o(1))n times, then both A and B have energy at least (1− o(1))n3 and therefore
are very close to cosets of some subgroups, which can further be shown to be the same subgroup.

Rainbow matchings, Hamiltonian paths and cycles

Transversals in Latin squares are closely related to rainbow subgraphs of edge-coloured graphs. Recall that an
edge-coloured graph is properly coloured if no two edges of the same colour share a vertex. A matching in a graph
is a set of disjoint edges. We call a subgraph of a graph rainbow if all of its edges have different colours. There is
a one-to-one correspondence between n × n generalized Latin squares and proper edge-colourings of the complete
bipartite graph Kn,n. Indeed, given a generalized Latin square S = (sij) with m symbols in total, associate with it
an m-edge-colouring of Kn,n by setting V (Kn,n) = {x1, . . . , xn, y1, . . . , yn} and letting the colour of the edge (xi, yj)
be sij . Notice that this colouring is proper, i.e., adjacent edges receive different colours. Therefore the study of
transversals in generalized Latin squares is equivalent to the study of perfect rainbow matchings in proper edge-
colourings of Kn,n. Moreover, if S is symmetric, i.e. sij = sji for all i and j, it also defines the proper edge-colouring
of the complete n-vertex graph Kn in which the edge ij is coloured by sij . Since S is symmetric each edge has a
well-defined colour. Under this second correspondence, transversals give rainbow maximum degree 2 subgraphs of
Kn.

As explained above, partial transversals in the Latin square S correspond to rainbow matchings in the corre-
sponding edge-coloured Kn,n. Thus Conjecture 1.1 is equivalent to the statement that any proper n-edge-colouring
of Kn,n contains a rainbow matching of size n− 1. Theorem 1.2 then follows from the following statement.

Theorem 1.9. There is an α > 0 so that the following holds for all 1 > ε ≥ n−α/α. Let Kn,n be properly coloured
with at most (1−ε)n colours having more than (1−ε)n edges. Then, Kn,n has (1−ε)n edge-disjoint perfect rainbow
matchings.

We can also find perfect rainbow matchings in graphs that are more general than Kn,n. Our proof works for all
suitably pseudorandom properly coloured balanced bipartite graphs. See Lemma 8.11 for an example of such a
result, and see Lemma 8.13 for a restatement and proof of Theorem 1.9.

There is a lot of interest in studying rainbow structures in properly coloured complete graphs. Recall that
transversals in symmetric generalized Latin squares correspond to rainbow maximum degree 2 subgraphs of properly
coloured complete graphs. Since paths and cycles are a special type of maximum degree 2 subgraph, there has
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been a focus on finding nearly spanning rainbow paths/cycles in properly coloured complete graphs. For example,
Andersen [9] in 1989 conjectured that all properly coloured Kn have a rainbow path of length n−2. Hahn conjectured
even more, that such a path can be found in any (not necessarily properly) coloured complete graph with at most
n/2−1 edges of each colour (see [32]). Hahn’s conjecture was recently disproved by the second and third author [42],
who showed that without the “proper colouring” assumption the graph might not have rainbow paths longer than
n− Ω(log n). Thus it makes sense to restrict ourselves to colourings which are proper. The progress on Andersen’s
conjecture was slow, despite efforts by various researchers, e.g., see [3, 30, 31, 27, 19]. Until recently it was not even
known how to find a rainbow path/cycle of length (1− o(1))n. This was proved by Alon and the second and third
author [6], who showed that any properly coloured Kn contains a rainbow cycle with n−O(n3/4) vertices. Using our
techniques one can say much more, i.e., we can nearly-decompose such a complete graph into long rainbow cycles.
This is a corollary of the following theorem.

Theorem 1.10. There is an α > 0 so that the following holds for all 1 > ε ≥ n−α/α. Let Kn be properly coloured
with at most (1 − ε)n colours having more than (1 − ε)n/2 edges. Then, Kn has (1 − ε)n/2 edge-disjoint rainbow
Hamiltonian cycles.

Corollary 1.11. There is an α > 0 so that the following holds for all 1 > ε ≥ n−α/α. Given a properly coloured Kn

let U be a random subset of (1− ε)n vertices. Then, with high probability, the subgraph induced by U has (1−2ε)n/2
edge-disjoint rainbow Hamiltonian cycles.

See Lemma 8.29 for a restatement and proof of Theorem 1.10, and Corollary 8.30 for a restatement and proof of
Corollary 1.11.

Rainbow spanning trees

In this paper we also study spanning rainbow trees in properly coloured complete graphs. Notice that a rainbow
Hamiltonian path is a very special case of a rainbow tree. Because of this one expects the results which hold for
rainbow spanning trees to be stronger than ones for paths. For example, every properly coloured Kn contains a
rainbow spanning tree (a star at any vertex is rainbow), whereas it is known that there are proper edge-colourings
of Kn without rainbow Hamiltonian paths. In fact, much more is probably true. It was conjectured by a number of
authors that properly coloured complete graphs should always have decompositions into spanning rainbow trees.

Conjecture 1.12 (Brualdi and Hollingsworth, [16]). Every properly (2n− 1)-coloured K2n can be decomposed into
edge-disjoint rainbow spanning trees.

Conjecture 1.13 (Kaneko, Kano, and Suzuki, [36]). Every properly coloured Kn contains bn/2c edge-disjoint
rainbow spanning trees.

These conjectures attracted a lot of attention from various researchers (see, e.g., [2, 18, 26]) who showed how to
find several disjoint spanning rainbow trees. The best known results for these problem guarantee the existence of εn
edge-disjoint rainbow trees (see [35] for Conjecture 1.12 and [12, 43] for Conjecture 1.13). Developing our results on
Hamiltonian cycles, we are able to improve this and show that one can find (1 − o(1))n disjoint spanning rainbow
trees.

Theorem 1.14. There is an α > 0 so that the following holds for all 1 > ε ≥ n−α/α. Every properly coloured Kn

has (1− ε)n/2 edge-disjoint spanning rainbow trees.

This theorem proves an asymptotic version of the Brualdi-Hollingsworth and Kaneko-Kano-Suzuki conjectures.
Note that unlike our results about perfect matchings and Hamiltonian cycles, which require certain small additional
conditions, this theorem is true for all proper edge-colourings.

2 Proof overview

Our various rainbow decomposition results build on each other. First we find decompositions into rainbow perfect
matchings, then into rainbow Hamiltonian cycles, and then into rainbow spanning trees. There are other rainbow
structures that we find in between these — the actual sequence of our proofs is the following:

1. Near-decompositions of nearly-regular balanced bipartite graphs into nearly-perfect rainbow matchings.

2. Near-decompositions of typical balanced bipartite graphs into perfect rainbow matchings.
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3. Near-decompositions of typical graphs into rainbow 2-factors.

4. Near-decompositions of typical graphs into rainbow Hamiltonian cycles.

5. Near-decompositions of complete graphs into rainbow spanning trees.

The following definitions make precise various terms in this overview.

• Near-decomposition: A near-decomposition of a graph G is a set of edge-disjoint subgraphs H1, . . . ,Ht in
G which cover almost all the edges of G, i.e. which have e(H1 ∪ · · · ∪Ht) = (1− o(1))e(G).

• Average degree: The average degree of a graph G is d(G) = 2e(G)/v(G).

• Nearly-regular: A graph is nearly regular if all the vertices v ∈ V (G) have d(v) = (1± o(1)) 2e(G)
v(G) , i.e. if all

its degrees are close to each other.

• Typical: A graph is typical if any pair of vertices u, v ∈ V (G) has d(u, v) = (1 ± o(1)) 4e(G)2

v(G)3 , i.e. if all its

codegrees are close to each other. This is the main notion of pseudorandomness that we use in this paper.

• Global boundedness: A coloured graph is globally b-bounded if it has ≤ b edges of each colour.

• 2-factor: A 2-factor is a collection of vertex-disjoint cycles which span all the vertices of a graph.

• Balanced bipartite: A graph is balanced bipartite if its vertices can be partitioned into two sets of the same
size, so that all the edges lie between the two sets.

2.1 Nearly-perfect rainbow matchings

There are two main results we prove about nearly-perfect rainbow matchings — one finds a single nearly-perfect
rainbow matching in a graph, the other nearly-decomposes a graph into them. The following is an informal description
of the first result:

A1. Every properly coloured, nearly-regular, globally d(G)-bounded, balanced bipartite graph G has a rainbow match-
ing M of order (1− o(1))|V (G)|/2. Additionally, M can be chosen probabilistically so that every edge of G is in M
with roughly the same probability.

The precise statement of this is Lemma 4.6. The proof uses Rödl’s semi-random method together with some
extra ideas. The key point in A1 is that the matching it produces is randomized. Given a properly coloured, nearly-
regular, globally d(G)-bounded, balanced bipartite graph we can repeatedly apply A1 in order to produce a sequence
of disjoint nearly-perfect rainbow matchings M1, . . . ,Mt. We can keep iterating this as long as the remaining graph
satisfies the assumptions of A1 (near-regularity and global boundedness). Using the fact that the matching in A1
is randomized we can show that with high probability we can iterate A1 until there are o(|V (G)|2) edges left in the
graph, i.e. until we have a near-decomposition into nearly-perfect rainbow matchings:

A 2. Every properly coloured, nearly-regular, globally d(G)-bounded, balanced bipartite graph G can be nearly-
decomposed into rainbow matchings of order (1− o(1))|V (G)|/2.

The precise statement of this is Lemma 8.2. The proof of A2 iterates A1 while ensuring that the assumptions of
A1 are maintained. We show this using a martingale concentration inequality.

2.2 Rainbow perfect matchings

The basic result we prove about near-decompositions into perfect rainbow matchings is the following:

A 3. Let G be a properly coloured, nearly-regular, globally d(G)-bounded, balanced bipartite graph. Let H be a
properly coloured, typical graph on V (G) which is edge-disjoint and colour-disjoint from G. Then G ∪ H has a
near-decomposition into rainbow perfect matchings.

The precise statement of this is Lemma 8.12. The assumptions of this lemma (that we have two disjoint graphs,
one of which is typical and the other nearly-regular and globally bounded) will reoccur several times in this paper.
We pause now to explain why these are natural assumptions under which to seek spanning rainbow structures.

We look at a nearly-regular, globally d(G)-bounded graph for two reasons. Firstly A2 shows that under this
assumption one can find rainbow nearly-perfect matchings (so it is reasonable to try to strengthen A2 to get perfect
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matchings). Secondly, if one starts in any properly coloured Kn,n and selects a random subgraph G by choosing
every colour independently with probability p (and letting G be the edges of the chosen colours), then the resulting
subgraph will be a nearly-regular, globally (1 + o(1))d(G)-bounded graph with high probability. We prove results
about nearly-regular, globally d(G)-bounded graphs so that we can say things about random subgraphs of properly
coloured complete graphs.

Unfortunately one cannot hope to find perfect rainbow matchings if one just considers a nearly-regular graph G.
This is because nearly-regular graphs might have no perfect matchings at all (e.g. a disjoint union of two copies of
Kn,n+1 is nearly-regular, balanced bipartite, and has no perfect matching). This is the motivation for the typical
graph H disjoint from G in A3. The union of a nearly-regular graph G and a typical graph H has a perfect matching,
making A3 more plausible.

To prove A3 we first apply A2 to G to get a near-decomposition of G into nearly-rainbow matchings. Then we
use edges of H to modify the matchings one-by-one to turn them into perfect matchings. The modifications we use
are simple switchings where we exchange 2 edges of a matching M for 3 edges of H in order to get a larger matching
M ′. Using a sequence of switchings we will obtain perfect matchings.

Proving Theorem 1.9

A3 can be used to prove Theorem 1.9. To do this, we need two intermediate results. The first concerns choosing a
random set of colours in a properly coloured graph.

A4. Let G be properly coloured and typical. Choose every colour independently with probability p, and let H be the
subgraph formed by the edges of the chosen colours. Then, with high probability, H is typical.

This result says that the subgraph chosen by a random set of colours is pseudorandom. A result like this was
first used by Alon and the second and third author when studying rainbow cycles in graphs [6].

Applying A4 to the complete bipartite graph Kn,n from Theorem 1.9 gives a typical subgraph H which can be
used in A3. The graph G formed by the colours from Kn,n unused in H will be nearly-regular with high probability.
However, we cannot yet apply A3 since the graph G might not be globally d(G)-bounded. Indeed, G may have
colour classes of size n, whereas the average degree of G will be (1±o(1))(n−p) (where p is the parameter from A4).
To get around this we have another intermediate result saying that there is a subgraph G′ of G which is globally
d(G′)-bounded.

A 5. Let G be a properly coloured balanced bipartite graph with ≤ (1 − ε)n colours having ≥ (1 − ε)n edges and
δ(G) ≥ (1− ε2)n. Then G has a spanning subgraph G′ with d(G′) ≥ (1− 2ε)n which is globally d(G′)-bounded and
nearly-regular.

See Lemma 6.7 for a precise statement of A5. This is proved in two stages. First, for every colour c with
≥ (1− ε)n edges, we randomly delete every colour c edge with a small probability q. The remaining graph G1 will
be globally (1 − o(1))d(G1)-bounded with high probability, but might no longer be nearly-regular. We then apply
a “regularization” lemma to G1 which deletes a small number of edges from G1 to make it nearly-regular, without
overly affecting the global boundedness. The resulting graph G′ is then globally d(G′)-bounded and nearly-regular.
Plugging G′ into A3 together with the graph H from A4 we obtain Theorem 1.9.

2.3 Rainbow 2-factors

Rainbow 2-factors are intermediate structures we use between finding perfect matchings and Hamiltonian cycles.
The main result about 2-factors that we need is a direct analogue of A3.

A 6. Let G be a properly coloured, nearly-regular, globally 1
2d(G)-bounded graph. Let H be a properly coloured,

typical graph on V (G) which is edge-disjoint and colour-disjoint from G. Then, G ∪ H has a near-decomposition
into rainbow 2-factors.

See Lemma 8.21 for a precise statement of this. The main difference betwen A3 and A6 is that the global
boundedness in A6 is 1

2d(G) (rather than d(G) as it was in A3). The reason for this is that to find a rainbow
2-factor we would need |V (G)| colours in the graph, which is forced by global 1

2d(G)-boundedness (but not by d(G)-
boundedness). Thus the global 1

2d(G)-boundedness condition is natural because it is the weakest global boundedness
we can impose on the graph to guarantee enough colours for a rainbow 2-factor

The proof of A6 consists of using A3 to find matchings in the graph, which are then put together to get 2-factors.
To see how we might do this, we randomly partition V (G ∪ H) and C(G ∪ H) into vertex sets U1, . . . , Uk and
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colour sets C1, . . . , Ck of the same size. Then, using variants of A4 we can show that the subgraphs GCi [Uj , Uk] are
nearly-regular, while the subgraphs HCi [Uj , Uk] are typical. By A3, these subgraphs have near-decompositions into
families Mi,j,k of perfect rainbow matchings for all distinct i, j, k. By taking unions of these matchings for suitable

i, j, k we obtain rainbow 2-factors. I.e.,
⋃k
i=1Mi,i+1 (mod k),i is a family of rainbow 2-factors.

2.4 Rainbow Hamiltonian cycles

The main result about Hamiltonian cycles that we need is a direct analogue of A3 and A6.

A7. Let G be a properly coloured, nearly-regular, globally 1
2d(G)-bounded graph. Let H be a properly coloured, typical

graph on V (G) which is edge-disjoint and colour-disjoint from G. Then G∪H has a near-decomposition into rainbow
Hamiltonian cycles.

See Lemma 8.27 for a precise statement of this. The proof of A7 consists of first splitting the colours of H at
random into two subgraphs H1 and H2. Using a result like A4, we have that H1 and H2 are both typical. Applying
A6 to G and H1, we get a near-decomposition of G ∪H1 into rainbow 2-factors. Then we use the typical graph H2

to modify the 2-factors one-by-one into Hamiltonian cycles. This modification is done by “rotations” — switching a
small number of edges on a 2-factor for edges of H2 in order to decrease the number of cycles in the 2-factor. After
a small number of rotations like this, we create a Hamiltonian cycle.

Theorem 1.10 is proved using A7. The proof is similar to the proof of Theorem 1.9 — starting with a properly
coloured Kn, we use analogues of A4 and A5 to get the graphs G and H needed in A7.

2.5 Rainbow spanning trees

Here we explain the proof of Theorem 1.14 — that the Brualdi-Hollingsworth and Kaneko-Kano-Suzuki conjectures
hold asymptotically. The starting point of this is to observe that a near-decomposition into rainbow Hamiltonian
cycles gives a near-decomposition into rainbow spanning trees. Because of this, our results about Hamiltonian cycles
have implications for spanning tree decompositions. The first implication is that if we have a properly coloured Kn

with ≤ (1 − ε)n colours having ≥ (1 − ε)n/2 edges, then this Kn has a near-decomposition into rainbow spanning
trees (by Theorem 1.10).

Thus it remains to look at colourings of Kn with ≥ (1− ε)n colours having ≥ (1− ε)n/2 edges. In this section
we will focus on the case when the colouring has exactly n − 1 colours each having exactly n/2 edges. This is the
setting of the Brualdi-Hollingsworth Conjecture and is substantially easier to deal with. To deal with this case we
need the following result on how the colours in a random subset of vertices behave.

A8. Let Kn be properly coloured and choose a subset of (1 − ε)n vertices U ⊆ V (Kn) at random. Then, Kn[U ] is
globally (1− 2ε)n/2-bounded.

See Lemma 5.2 (c) for a precise statement of this. Notice that the subgraph Kn[U ] from A8 is globally (1−2ε)n/2-
bounded and has d(Kn[U ]) = (1− ε)n.

Randomly partition Kn[U ] into graphs G′ and J , with every edge placed in J independently with probability
p � ε. Then randomly partition the colours of G′ into sets CG and CH , with each colour ending up in CH
independently with probability p. Let G′′ and H be the subgraphs of G′ consisting of edges with colours in CG
and CH respectively. Using results like A8 it can be shown that G′′, H, and J are all nearly-regular and typical.
Since G′′ ⊆ G, we have that G′′ is also globally (1 − 2ε)n/2-bounded. Since p � ε and G had d(G) = (1 − ε)n,
we have that d(G′′) ≈ (1 − ε − 2p)n ≥ (1 − 2ε)n. Thus G′′ and H satisfy the assumptions of A7, which gives a
near-decomposition of G′′ ∪H into rainbow Hamiltonian paths.

We now have a set of rainbow paths of length (1 − ε)n and an edge-disjoint typical subgraph J . We turn the
paths into spanning rainbow trees by extending each path one vertex at a time using edges of J . The operations
we use to extend the trees are very simple: we always have a collection of rainbow trees T1, . . . , T(1−ε)n which we
want to enlarge. To enlarge a tree Ti, we find three edges e1, e2, e3 outside T1, . . . , T(1−ε)n and two edges f1, f2 on
Ti so that T ′i = Ti ∪ {e1, e2, e3} \ {f1, f2} is another rainbow tree. Replacing Ti by T ′i gives us a collection of larger
rainbow trees, so by iterating this process we would eventually get rainbow spanning trees. The remaining question
is then “how can we find the edges e1, e2, e3, f1, f2 which we use to enlarge Ti?” This is where the typicality of the
graph J is used. The fact that J is pseudorandom means that its edges are suitably spread out around V (Kn), and
this allows us to find edges in J to switch with edges of Ti.
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3 Preliminaries

Here we collect some useful notation and results which will be used later in the paper.

3.1 Basic notation

For a graph G, the set of edges of G is denoted by E(G) and the set of vertices of G is denoted by V (G). For a
vertex v in a graph G, the set of edges in G through v is denoted by EG(v), the set of colours of edges going through
v is denoted by CG(v), the set of neighbours of v in G is denoted by NG(v), and dG(v) = |NG(v)|. For a coloured
graph G and a colour c, the set of colour c edges in G is denoted by EG(c) and the set of vertices touching colour c
edges in G is denoted by VG(c). In all of these, we omit the “G” subscript when the graph G is clear from context.
We will use additive notation for adding and deleting vertices and edges from graphs.

For a graph G and a set of vertices A, let G[A] denote the induced subgraph of G on A. For disjoint sets of
vertices A and B, we use G[A,B] to denote the bipartite subgraph of G on A ∪ B consisting of all edges between
A and B. For any event E, we let 1E be the indicator function for E, taking the value 1 when E occurs, and 0
otherwise.

For two functions f(x1, . . . , xt) and g(y1, . . . , ys), we use f(±x1, . . . ,±xt) = g(±y1, . . . ,±ys) to mean that
“maxσi∈{−1,+1} f(σ1x1, . . . , σtxt) ≤ maxσi∈{−1,+1} g(σ1y1, . . . , σsys) and also that minσi∈{−1,+1} f(σ1x1, . . . , σtxt)
≥ minσi∈{−1,+1} g(σ1y1, . . . , σsys)”. The most frequently used case of this notation will to say x = y ± z for some
z ≥ 0, in which case the notation is equivalent to both “y − z ≤ x ≤ y + z” and “|x− y| ≤ z”.

Notice that a = b ± c, b = d ± e =⇒ a = d ± c ± e. Also notice that for any a, b, b′ with |b′| ≥ |b|,
we have a ± b = a ± b′. Finally notice that the notation is transitive f(±x1, . . . ,±xt) = g(±y1, . . . ,±ys) and
g(±y1, . . . ,±ys) = h(±z1, . . . ,±zr) =⇒ f(±x1, . . . ,±xt) = h(±z1, . . . ,±zr).

We will often use the following which hold for any 0 ≤ x < 0.5.

1

1− x
≤ 1 + 2x and

1

1 + x
≥ 1− 2x (1)

1− x = (1± x2)e−x (2)

1 + x ≤ ex (3)

(1− x)t ≥ 1− tx (4)

T∑
i=1

e−(i−1)x = (1± x2 ± 2e−xT )x−1 (5)

The last inequality comes from
∑T
i=1 e

−(i−1)x = (1±x2)
∑T
i=1(1−x)i−1 = (1±x2) 1−(1−x)T

x = (1±x2± 2e−xT )x−1.
We will also use that, for any 0 ≤ x ≤ 0.25,

1 + x

1− x
≤ 1 + 3x. (6)

Throughout the paper most of our results will be either about balanced bipartite graphs or about general graphs.
When dealing with balanced bipartite graphs, they will always come with a specific bipartition into two parts usually
labelled by “X” and “Y ” with |X| = |Y | = n. When dealing with general graphs, they will usually have v(G) = n.
Whenever we define a graph G, if we do not specifically say that G is balanced bipartite, we implicitly mean that G
is a general graph.

We make a two definitions about graphs, which vary slightly depending on whether the graph they are talking
about is balanced bipartite or not.

Definition 3.1.

• A balanced bipartite graph G with parts X and Y is (γ, δ, n)-regular if |X| = |Y | = (1±γ)n and dG(v) = (1±γ)δn
for every vertex v ∈ V (G).

• A general graph G is (γ, δ, n)-regular if |G| = n and dG(v) = (1± γ)δn for every vertex v ∈ V (G).

Definition 3.2.

• A balanced bipartite graph G with parts X and Y is (γ, δ, n)-typical if it is (γ, δ, n)-regular and we have d(x, y) =
(1± γ)δ2n for any pair of vertices x, y ∈ X or x, y ∈ Y .
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• A general graph is (γ, δ, n)-typical if it is (γ, δ, n)-regular and for any pair of vertices x, y we have d(x, y) =
(1± γ)δ2n.

Definition 3.3. A graph G is globally b-bounded if G has ≤ b edges of each colour, i.e. if |EG(c)| ≤ b for all colours
c.

Definition 3.4. A graph G is locally `-bounded if G has ≤ ` edges of each colour passing through any vertex
v ∈ V (G), i.e. if ∆(EG(c)) ≤ ` for all colours c.

3.2 Asymptotic notation

For a number C ≥ 1 and x, y ∈ (0, 1], we use “x �C y” to mean “x ≤ yC

C ”. We will write “x
poly

� y” to mean that

there is some absolute constant C for which the proof works with “x
poly

� y” replaced by “x �C y”. This notation
parallels more standard notation “x � y” which means “there is a fixed positive continuous function f on (0, 1] so
that if “x � y” is replaced by “x ≤ f(y)” then the remainder of the proof works”. (Equivalently “x � y” can be
interpreted as “for all x ∈ (0, 1], there is some y ∈ (0, 1] such that the remainder of the proof works with x and y”.)

The two notations “x
poly

� y” and “x � y” are largely interchangeable — most of our proofs remain correct with

all instances of “
poly

�” replaced by “�”. The advantage of using “
poly

�” is that it proves polynomial bounds on the
parameters (rather than bounds of the form “for all ε > 0 and sufficiently large n”). This is important towards the
end of this paper, where the proofs need polynomial bounds on the parameters.

While the constants C will always be implicit in each instance of “x
poly

� y”, it is possible to work them out
explicitly. To do this one should go through the lemmas in the paper in numerical order, choosing the constants
C for earlier lemmas before later lemmas. This is because an inequality x �C y in a later lemma may be needed
to imply an inequality x �C′ y from an earlier lemma. Within an individual lemma we will often have several

inequalities of the form x
poly

� y. There the constants C need to be chosen in the reverse order of their occurrence in
the text. The reason for this is the same — as we prove a lemma we may use an inequality x�C y to imply another
inequality x�C′ y (and so we should choose C ′ before choosing C).

Throughout the paper, there are four operations we perform with the “x
poly

� y” notation:

(a) We will use x1

poly

� x2

poly

� . . .
poly

� xk to deduce finitely many inequalities of the form “p(x1, . . . , xk) ≤ q(x1, . . . , xk)”
where p and q are monomials with non-negative coefficients and min{i : p(0, . . . , 0, xi+1, . . . , xk) = 0} < min{j :
q(0, . . . , 0, xj+1, . . . , xk) = 0} e.g. 1000x1 ≤ x5

2x
2
4x

3
5 is of this form.

(b) We will use x
poly

� y to deduce finitely many inequalities of the form “x�C y” for a fixed constant C.

(c) For x
poly

� y and fixed constants C1, C2, we can choose a variable z with x�C1 z �C2 y.

(d) For n−1
poly

� 1 and any fixed constant C, we can deduce n−1 �C log−1 n�C 1.

To see that (a) is possible, we need to show that for any finite collection I of inequalities of the given form, we
can choose constants C1, . . . , Ck−1 so that 0 < x1 �C1 x2 �C2 · · · �Ck−1

xk < 1 implies all the inequalites in I. To
see this, first consider a single inequality “p(x1, . . . , xk) ≤ q(x1, . . . , xk)” of the form in (a). From the assumptions
on p and q, we know that p(x1, . . . , xk) = Dpx

`1
1 . . . x`kk and q(x1, . . . , xk) = Dqx

r1
1 . . . xrkk for some Dp, Dq > 0

and min{i : `i 6= 0} < min{i : ri 6= 0}. Now, it is easy to check that for C = r1 + · · · + rk + Dp/Dq, we have

0 < x1

poly

�C x2

poly

�C . . .
poly

�C xk < 1 =⇒ p(x1, . . . , xk) ≤ q(x1, . . . , xk). Now given a finite collection I of inequalities

of the given form, for each I ∈ I, we can choose a constant CI so that 0 < x1

poly

�CI x2

poly

�CI . . .
poly

�CI xk < 1 =⇒ I.

Letting C = maxI∈I CI gives a single constant for which 0 < x1

poly

�C x2

poly

�C . . .
poly

�C xk < 1 implies all the
inequalities in I.

We remark that occasionally we will use a slight strengthening of (a), when p and q are multinomials with
non-negative coefficients and min{i : p(0, . . . , 0, xi+1, . . . , xk) = 0} < min{j : q(0, . . . , 0, xj+1, . . . , xj) = 0} e.g.
50x1x2 + 5x2

2 ≤ x5
3x

2
4 +x2

1x
3
5 is of this form. This strengthening can be reduced to the monomial version. To do this,

consider multinomials p and q with non-negative coefficients and an integer i for which p(0, . . . , 0, xi+1, . . . , xk) = 0
and q(0, . . . , 0, xi+1, . . . , xk) 6= 0. Let Dp be the sum of the coefficients of p and notice that the monomial p̂ = Dpxi
satisfies p̂ ≥ p (for 0 < x1 ≤ · · · ≤ xk < 1). Letting Dq be the smallest coefficient of q and d the degree of q, notice
that the monomial q̂ = Dqx

d
i+1 satisfies q̂ ≤ q (for 0 < x1 ≤ · · · ≤ xk < 1). Thus we can use the monomial version of

(a) to get constants C1, . . . , Ck−1 so that 0 < x1 �C1
x2 �C2

· · · �Ck−1
xk < 1 implies p̂ ≤ q̂ and hence also p ≤ q.
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Notice that (b) is just a special case of (a) since the inequality “x �C y” is of the form of the inequalities in

(a). Operation (b) is important because it allows us to plug one instance of the “
poly

�” notation into another one.

As an example, suppose that we have proved a lemma which assumes “a
poly

� b”. This means that we have proved

that there is some explicit constant C for which the lemma holds with “a
poly

� b” replaced by “a �C b”. Now if we

subsequently have variables x, y with x
poly

� y, then (b) guarantees that we can plug x and y into the earlier lemma
with a = x and b = y.

For operation (c), notice that for C = C1C
C1C2
2 , if we have numbers x, y with x�C y then the number z = yC2/C2

satisfies x�C1 z �C2 y. Operation (c) is important because it allows us to introduce new variables inside our proof.

For example if we have a lemma which assumes x
poly

� y, then in the proof of the lemma we can say “choose z with

x
poly

� z
poly

� y”. Here the constants C1 and C2 in “x�C1
z �C2

y” are chosen first, and operation (c) guarantees that
we can later choose a constant for “x�C y”.

For operation (d), notice that “n−1 �C log−1 n �C 1” is equivalent to “ 1
C1/cn

1/c ≥ log n ≥ C” which is true

for sufficiently large n. Operation (d) is important because it allows us to use n−1
poly

� 1 to deduce any instance of

n−1
poly

� log−1 n
poly

� 1.

How does our “
poly

�” notation compare with the standard “�” notation? Versions of the operations (a), (b), and
(c) work with the “�” notation as well. Particularly (a) is more versatile with “�”, because it is possible to show
that x1 � x2 � · · · � xk can be used to deduce finitely many inequalities of the form “p(x1, . . . , xk) ≤ q(x1, . . . , xk)”
where p and q are arbitrary positive continuous functions on (0, 1] satisfying min{i : p(0, . . . , 0, xi+1, . . . , xk) = 0} <
min{j : q(0, . . . , 0, xj+1, . . . , xj) = 0} (rather than multinomials). Operation (d) however has no analogue for the
“�” notation (the natural analogue would be that “for n−1 � 1 and any positive continuous f, g on (0, 1] we can
deduce n−1 ≤ f(log−1 n) ≤ g(1)”. However this is not true for f(x) = 0.5e−1/x). Because of this, in our proofs the

“
poly

�” and “�” notations are interchangeable whenever operation (d) is not used (while when operation (d) is used,

we need to use the “
poly

�” notation).

3.3 Probabilistic tools

We will use the following cases of the Bonferroni Inequalities.

Lemma 3.5 (Bonferroni Inequalities). Let X1, . . . , Xn be events in a probability space. Then,

P(∪ni=1Xi) ≥
n∑
i=1

P(Xi)−
n∑
i=1

i−1∑
j=1

P(Xi ∩Xj).

Given a probability space Ω =
∏n
i=1 Ωi and a random variable X : Ω→ R we make the following definitions.

• Supose that there is a constant C such that changing ω ∈ Ω in any one coordinate changes X(ω) by at most
C. Then we say that X is C-Lipschitz.

• For i ∈ {1, . . . , n} we say that X is uninfluenced by i if ωj = ω′j for j 6= i =⇒ X(ω) = X(ω′). Otherwise we
say that X is influenced by i.

We will use the following concentration inequalities

Lemma 3.6 (Azuma’s Inequality). Suppose that X is C-Lipschitz and influenced by ≤ m coordinates in {1, . . . , n}.
Then, for any t > 0,

P (|X − E(X)| > t) ≤ 2e
−t2

mC2

Notice that the bound in the above inequality can be rewritten as P (X 6= E(X)± t) ≤ 2e
−t2

mC2 . A sequence of
random variables X0, X1, X2, . . . is a supermartingale if E(Xt+1|X0, . . . , Xt) ≤ Xt for all t.

Lemma 3.7 (Azuma’s Inequality for Supermartingales). Suppose that Y0, Y1, . . . , Yn is a supermartingale with
|Yi − Yi−1| ≤ C for each i ∈ [n]. Then, for any t > 0,

P (Yn > Y0 + t) ≤ e
−t2

2nC2

Lemma 3.8 (Chernoff Bound). Let X be the binomial random variable with parameters (n, p). Then for ε ∈ (0, 1)
we have

P
(
|X − pn| > εpn

)
≤ 2e−

pnε2

3 .
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Lemma 3.9 (Greenhill, Isaev, Kwan, McKay [29]). Let
(

[N ]
r

)
be the set of r-subsets of {1, . . . , N} and let h :(

[N ]
r

)
→ R be given. Let C be a uniformly random element of

(
[N ]
r

)
. Suppose that there exists α ≥ 0 such that

|h(A)− h(A′)| ≤ α for any A,A′ ∈
(

[N ]
r

)
with |A ∩A′| = r − 1. Then for any t > 0,

P
(
|h(C)− Eh(C)| ≥ t

)
≤ 2e

− 2t2

α2 min(r,N−r) .

4 Finding one rainbow matching probabilistically

The goal of this section is to prove that every properly coloured d-regular, globally (1 + o(1))d-bounded balanced
bipartite graph has a nearly-spanning rainbow matching M . This matching is found using a randomized process,
which allows us to prove that every edge ends up in M with at least the expected probability d−1. It will be
more convenient for us to prove the result for graphs which are approximately regular rather than regular. Thus,
throughout this section we will always deal with (γ, δ, n)-regular graphs for suitable parameters. See Lemma 4.6 for
a precise statement of the result we prove.

The random process that we use to find a rainbow matching is a variation of the semi-random method introduced
by Rödl. We remark that in the case when the graph G has exactly d edges of each colour, then our results follow
directly from standard versions of the Rödl Nibble (this is done by first expressing the problem in terms of finding
a matching in an uncoloured 3-uniform hypergraph, and then using e.g. Theorem 4.7.1 from [7]). Thus the difficult
case of the result we aim to prove is when G is a graph in which some colour classes have size much smaller than d.
We deal with this situation by using a balancing coin flips approach to keep our graphs nearly-regular.

Random process

Let G be a coloured balanced bipartite graph which is (γ, δ, n)-regular and globally (1+o(1))d-bounded. We describe
a randomized process which will find a rainbow matching M of size (1 − o(1))n in G with high probability. The
process will last for T rounds. In each round we will focus on some subgraph Gt of G and partition Gt into a rainbow
matching Mt and a vertex-disjoint, colour-disjoint graph Gt+1. At the end of the process we will have a collection of
vertex-disjoint, colour-disjoint matchings M1, . . . ,MT , and so letting M = M1∪· · ·∪MT we get a rainbow matching.
We will prove that with high probability e(M) = (1− o(1))n.

Individual rounds

To partition Gt into Mt+1 and Gt+1, in each round we use a random process which we call an (α, b)-random
edge-assignment. Let the parts of the bipartition of Gt be called X and Y . The definition of the (α, b)-random
edge-assignment is the following:

• First we activate every vertex of X with probability α.

• For every activated vertex x we choose a random neighbour yx of x in Y , and say the the edges xyx is chosen.

• Let Mt+1 be the matching formed by all the edges of the form xyx whose colour is not the colour of any other
chosen edge x′yx′ and for which yx does not appear on any other chosen edge x′yx′ .

• Let H be the subgraph of G on V (G) \ V (Mt+1) consisting of all the edges whose colours do not occur on any
chosen edge.

• Delete every edge xy on H with probability αb
d(x) −

α|E(c(xy))|
d(x) to get Gt+1.

Suppose that Gt is (γt, δt, nt)-regular and globally (1 + γt)δtnt-bounded. We will run an (α, (1 + γt)δtnt)-random
edge-assignment on Gt and estimate the probabilities of edges and vertices of Gt ending up in Mt or Gt+1.

P(v ∈ V (Gt+1)) ≈ 1− α ≈ e−α for any vertex v ∈ V (Gt)

P({x, y} ⊆ V (Gt+1)) ≈ 1− 2α ≈ e−2α for any pair {x, y} ⊆ V (Gt)

P(y ∈ NGt+1
(x)|x ∈ V (Gt)) ≈ 1− 2α ≈ e−2α for any y ∈ NGt(x)

P(e ∈ E(Gt+1)) ≈ 1− 3α ≈ e−3α for any edge e ∈ E(Gt) (7)

P(e ∈ E(Mt+1)) ≈ α

δtnt
for any edge e ∈ E(Gt) (8)
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Using linearity of expectation, we can estimate the expected number of vertices, degrees of vertices, and sizes of
colour classes in Gt+1.

E(|X ∩ V (Gt+1)|) = E(|Y ∩ V (Gt+1)|) ≈ e−αnt
E(|EGt+1

(c)|) . e−2αδtnt for any colour c

E(dGt+1
(x)) ≈ e−2αδtnt = (e−αδ)(e−αnt) for any vertex x ∈ V (Hω)

It can be shown that the quantities above are Lipschitz, and so by Azuma’s Inequality they are concentrated around
their expectation with high probability. This implies that with high probability Gt+1 is (γt+1, e

−αδt, e
−αnt)-regular

and globally (1 + γt+1)(e−αδt)(e
−αnt)-bounded for some suitable error γt+1.

Iterating

Let G0 = G be a coloured graph which is (γ, δ, n)-regular and globally (1+o(1))δn-bounded. We iteratively construct
graphs G1, . . . , GT and matchings M1, . . . ,MT—at step t we run an (α, (1 + o(1))e−2αtδn)-random edge-assignment
on Gt in order to obtain Mt+1 and Gt+1.

From the previous section we have that, with suitable errors γ1, . . . , γT , the following hold for all t with high
probability:

(i) Gt is (γt, e
−αtδ, e−αtn)-regular.

(ii) Gt is globally (1 + γt)(e
−αtδ)(e−αtn)-bounded.

In particular, if T = ω(α−1), then (i) implies that |V (GT )| . (1 + γT )e−αTn = o(n). Since M1, . . . ,MT are vertex-

disjoint, colour-disjoint rainbow matchings with |V (G)| = |V (GT )| + |
⋃T
i=1 V (Mi)|, we get that M =

⋃T
i=1 V (Mi)

is a rainbow matching of size (1− o(1))n in G.

Showing that the matching is random

It remains to show that for any edge e ∈ E(G), the probability that e is in M is (approximately) at least (δn)−1.
First notice that (7) implies P(e ∈ E(Gt)) =

∏t
i=0 P(e ∈ Gi|e ∈ Gi−1) & e−3tα. Combining this with (8), and (5),

we get

P(e ∈ E(M1 ∪ · · · ∪MT )) =

T∑
t=0

P(e ∈ Gt)P(e ∈Mt+1|e ∈ Gt)

&
T∑
t=0

(
e−3tα

)( α

(e−αtδ)(e−αtn)

)
=

α

δn

T∑
t=0

e−αt &
1

δn
.

This concludes the proof sketch in this section. The main thing we need to do in the full proof is to keep track of
the errors γt and make sure that they do not get too big.

4.1 Formal definition of the random edge assignment

Here we formally define the probability space of the (α, b)-random edge-assignment which runs on a graph G. The
process will depend on two parameters α and b. The graph G will be a globally b-bounded balanced bipartite graph
with parts X and Y . The process has a coordinate for every vertex in X, and a coordinate for every edge e ∈ E(G)
(the balancing coin flips):

• Vertex choices: For x ∈ X, the vertex x is activated with probability α. Every activated vertex chooses a
neighbour yx of x uniformly at random from its neighbours.

• Balancing coin flips: For xy ∈ E(G), the edge xy is killed with probability αb
d(x) −

α|E(c(xy))|
d(x) .
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We say that an edge xy ∈ E(G) is chosen if x is activated and chooses y. We say that a colour c is chosen if some
colour c edge is chosen. We construct a matching M and graphs Γ, H depending on the process as follows.

M = {xy ∈ E(G) : xy is chosen, and no x′y′ ∈ E(G) \ {xy} is chosen

with y′ = y or c(x′y′) = c(xy)}
V (Γ) = V (G)

E(Γ) = {e ∈ E(G) : c(e) is not chosen and e is not killed}
H = Γ[V (G) \ V (M)]

We say that the M,Γ, and H are produced by the process. Notice that by the definitions of M and H we always
have that M is a rainbow matching, that V (M) and V (H) partition V (G), and that M and H share no colours.

4.2 Probabilities

To analyze various features of (α, b)-random edge-assignments, we need estimates of the probability of various events.
The following lemma computes all the probability estimates required.

Lemma 4.1. Suppose that we have d, b, α, ` and γ with (1 + γ)d ≥ b and `d−1 ≤ α ≤ γ ≤ 0.01.
Let G be a coloured balanced bipartite graph which is (γ, d/n, n)-regular, globally b-bounded, and locally `-bounded.

Let M,Γ, H be produced by an (α, b)-random edge-assignment on G. Then the following probability bounds (10) –
(23) hold.

Proof. Let the bipartition classes of G be X and Y . We will often use the following

1

d(v)
= (1± 2γ)

1

d
for any v ∈ V (G). (9)

This comes from the (γ, d/n, n)-regularity of G and (1).

P(xy chosen) =
α

d
(1± 2γ) for any xy ∈ E(G). (10)

This comes from P(xy chosen) = α
d(x) and (9).

P(xy killed) =

(
αb

d
− α|E(c(e))|

d

)
(1± 2γ) for any xy ∈ E(G). (11)

This comes from P(xy killed) = αb
d(x) −

α|E(c(e))|
d(x) and (9).

P(e and e′ chosen) ≤ α2

d2
(1 + 5γ) for e 6= e′ ∈ E(G). (12)

If e ∩X = e′ ∩X, then both e and e′ cannot be chosen, so we may assume that e = xy and e′ = x′y′ for x 6= x′.

The events that xy and x′y′ are chosen are independent which gives P(edges xy and x′y′ chosen) = α2

d(x)d(x′) . Now

(12) comes from (9) and γ ≤ 0.01.

P(c chosen) =
α|E(c)|

d
(1± 4γ) for any c ∈ C(G). (13)

By the union bound and (10) we have that c is chosen with probability ≤
∑
e∈E(c) P(e chosen) ≤ |E(c)|(1 +

2γ)αd . By the Bonferroni inequalities (see Lemma 3.5), (10) and (12) we have the bound P(colour c chosen) ≥∑
e∈E(c) P(e chosen)−

∑
e,e′∈E(c)
e 6=e′

P(e and e′ chosen) ≥ |E(c)|(1−2γ)αd −
(|E(c)|

2

)
(1+5γ)α

2

d2 . The lower bound in (13)

then comes from |E(c)| ≤ b ≤ (1 + γ)d and α ≤ γ ≤ 0.01.

P(xy chosen and xy 6∈ E(M)) ≤ 3α2

d
for any xy ∈ E(G). (14)

From the definition of M , the only way xy 6∈ E(M) can hold for a chosen edge xy is if another edge x′y′ is
chosen with either y′ = y or c(x′y′) = c(xy). By the union bound we have P(xy chosen and xy 6∈ E(M)) ≤∑
x′∈N(y)\{x} P(xy chosen and x′y chosen) +

∑
x′y′∈C(xy)\{xy} P(xy chosen and x′y′ chosen). Using (12), |E(c)| ≤

b ≤ (1 + γ)d, ∆(G) ≤ (1 + γ)d, and γ ≤ 0.01, this is at most (d(y) + |E(c)|)(1 + 5γ)α
2

d2 ≤
3α2

d , as required.
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P(e 6∈ Γ) = (1± 9γ)
αb

d
for any e ∈ E(G). (15)

Since e is killed independently of any colour being chosen, we have P(e 6∈ Γ) = P(c(e) chosen) + P(e killed) −
P(c(e) chosen)P(e killed). Combining this with (13), (11), |E(c(e))| ≤ b ≤ (1 + γ)d, and α ≤ γ ≤ 0.01, we get

P(e 6∈ Γ) = α|E(c(e))|
d (1± 4γ) +

(
αb
d −

α|E(c(e))|
d

)
(1± 2γ)− (1± 7γ)α|E(c(e))|

d

(
αb
d −

α|E(c(e))|
d

)
= (1± 9γ) bαd .

P(xy ∈ E(M)) =
α

d
(1± 5γ) for any xy ∈ E(G). (16)

Recall that M contains only chosen edges. Using this, the upper bound comes from (10), while the lower bound
comes from (10), (14), and α ≤ γ.

P(v ∈ V (M)) = α(1± 7γ) for any v ∈ V (G). (17)

Recall that M is a matching, which implies that the events “vu ∈ E(M)” are disjoint for u ∈ N(v). Using (16) and
that d(v) = (1± γ)d, this gives P(v ∈ V (M)) =

∑
u∈N(v) P(vu ∈ E(M)) = d(v) · αd (1± 5γ) = α(1± 7γ).

P(u, v ∈ V (M)) ≤ 3α2 for any vertices u 6= v ∈ V (G). (18)

Notice that P(u, v ∈ V (M)) ≤
∑
z∈N(u),
w∈N(v)

P(uz, vw chosen) = P(uv chosen) +
∑

z∈N(u),
w∈N(v),
uz 6=vw

P(uz, vw chosen). Here the

first term is defined to be zero if there is no edge uv in G. Using (10), (12), and ∆(G) ≤ (1 + γ)d, we get that this

is at most (1 + 2γ)αd + (1 + γ)2d2 · (1 + 5γ)α
2

d2 which, combined with d−1 ≤ α ≤ γ ≤ 0.01, implies the result.

P({u, v} ∩ V (M) 6= ∅) = 2α(1± 11γ) for any vertices u 6= v ∈ V (G). (19)

This comes from the Bonferroni inequalities together with (17), (18), and α ≤ γ.

P(xy chosen and v ∈ V (M)) ≤ α2

d
(1 + 7γ) for xy ∈ E(G) and v 6∈ {x, y}. (20)

By the union bound, (12), and ∆(G) ≤ (1 + γ)d, this probability is ≤
∑
u∈N(v) P(xy and vu chosen) ≤ d(v)(1 +

5γ)α
2

d2 ≤ (1 + 7γ)α
2

d .

P(e 6∈ Γ and v ∈ V (M)) ≤ 6α2 for e ∈ E(G) and v ∈ V (G). (21)

By the union bound P(e 6∈ Γ and v ∈ V (M)) ≤ P(e killed and v ∈ V (M)) + P(c(e) chosen and v ∈ V (M)). Using
(11), (17), and b ≤ (1 + γ)d, the first term can be bounded above by P(e killed and v ∈ V (M)) = P(e killed)P(v ∈
V (M)) ≤

(
αb
d −

α|E(c(e))|
d

)
(1 + 2γ)α(1 + 7γ) ≤ 3α2. Let Ec(e),v be the set of ≤ ` colour c(e) edges through v. The

second term can be bounded by

P(c(e) chosen and v ∈ V (M)) ≤
∑

e′∈Ec(e),v

P(e′ chosen) +
∑

e′ 6∈Ec(e),v,
c(e′)=c(e)

P(e′ chosen and v ∈ V (M)).

Using (10), (20), |Ec(e),v| ≤ ` ≤ αd, d−1 ≤ α ≤ γ ≤ 0.01, and b ≤ (1 + γ)d, this is at most (1 + 2γ)(αd)αd +

|E(c)|α
2

d (1 + 7γ) ≤ 3α2.

P(e ∈ Γ and v 6∈ V (M)) = 1− α− αb

d
± 22.5αγ = (1± 23αγ)

(
1− α− αb

d

)
for e ∈ E(G) and v ∈ V (G). (22)

This comes from “P(A and B) = 1− P(A)− P(B) + P(A and B)” together with (15), (17), (21), α ≤ γ ≤ 0.01, and
b ≤ (1 + γ)d.

P(xy 6∈ E(H)) = P(xy 6∈ E(Γ) or x ∈ V (M) or y ∈ V (M)) =

(
2α+

bα

d

)
(1± 40γ) for xy ∈ E(G). (23)

This comes from the Bonferroni inequalities together with (15), (17), (18), (21), and α ≤ γ.
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4.3 Expectations

Using the probabilities in the previous section, it is immediate to compute the expectations of relevant quantities.

Lemma 4.2. Suppose that we have d, `, α, γ with `d−1 ≤ α ≤ γ ≤ 0.01.
Let G be a coloured bipartite graph which is (γ, d/n, n)-regular, globally (1 + γ)d-bounded, and locally `-bounded.

Let M,Γ, and H be the graphs produced by an (α, (1 + γ)d)-random edge-assignment on G. The following hold:

• E(|X ∩ V (H)|) = (1± (1 + 10α)γ)(1− α)n

• E(|Y ∩ V (H)|) = (1± (1 + 10α)γ)(1− α)n

• E(|EH(c)|) ≤ E(|{uv ∈ EG(c) : {u, v} ∩ V (M) = ∅}|) ≤ (1 + 24αγ)(1− 2α)|EG(c)| for any colour c.

• E(dH(x)) = E(|NΓ(x) \ V (M)|) = (1± (1 + 26α)γ) (1− 2α) d for any vertex x ∈ V (H).

Proof. These are immediate from linearity of expectation, (17), (19), (22), and the (γ, d/n, n)-regularity of G.

4.4 Concentration

By Azuma’s Inequality, the random variables considered in the previous section are concentrated around their
expectations.

Lemma 4.3. Suppose that we have n, δ, γ, α, ` with n−0.001 ≤ α ≤ γ ≤ 0.00001, γ ≤ δ ≤ 1 and ` ≤ n0.001.
Let G be a coloured bipartite graph with bipartition classes X and Y which is (γ, δ, n)-regular, locally `-bounded,

and globally (1+γ)δn-bounded. Let M,Γ, and H be the graphs produced by an (α, (1+γ)δn)-random edge-assignment
on G. The following hold with probability ≥ 1− n−2:

(i) |X ∩ V (H)| = |Y ∩ V (H)| = (1± (1 + 12α)γ)(1− α)n.

(ii) |EH(c)| ≤ |E(c) \ V (M)| ≤ (1 + 26αγ)(1− 2α)δn for every colour c.

(iii) dH(v) = |NΓ(v) \ V (M)| = (1± (1 + 30α)γ) (1− 2α) δn for every vertex v ∈ V (H).

Proof. First we prove the Lipschitzness of the relevant random variables.

Claim 4.4. |X ∩ V (H)|, |Y ∩ V (H)|, |E(c) \ V (M)|, and |NΓ(v) \ V (M)| are all 26`-Lipschitz for any colour c and
vertex v.

Proof. Consider two (α, (1 + γ)d)-random edge-assignments which differ on one coordinate—Edge-Assignment 1
which produces graphs M1,Γ1, H1 and Edge-Assignment 2 which produces graphs M2,Γ2, H2. Furthermore, let
C1 and C2 be the colours chosen respectively by the two edge-assignments, and let K1 and K2 the edges killed
respectively by the two edge-assignments. We will show that |V (M1)∆V (M2)| ≤ 20, |E(K1)∆E(K2)| ≤ 1 and
|C1∆C2| ≤ 2.

First, notice that C1 and C2 only differ in the colour of some edge xy if xy is chosen by one assignment and not
the other.

Suppose that the coordinate on which the two edge-assignments differ is a balancing coin flip on an edge xy. Notice
that M1 = M2, C1 = C2 and K1 and K2 can differ only on the edge xy, so that, as required, |V (M1)∆V (M2)| ≤ 20,
|K1∆K2| ≤ 1 and |C1∆C2| ≤ 2.

Suppose that the coordinate on which the two edge-assignments differ is a vertex-activation choice for a vertex
x ∈ X, which is, say, activated in Edge-Assignment 1 but not Edge-Assignment 2. Say that y is chosen by x in
Edge-Assignment 1. Either M1 = M2, or M1 = M2 + xy, or M1 is M2 with up to two edges removed — edges x′y′

with y′ = y or c(xy) = c(x′y′). Thus, we have |V (M1)∆V (M2)| ≤ 4. As C1 = C2 ∪ {c(xy)} and K1 = K2, we have
|E(K1)∆E(K2)| ≤ 1 and |C1∆C2| ≤ 2.

Suppose finally that the coordinate on which the two edge-assignments differ is a vertex-choice for a vertex x ∈ X.
Note that if x is not activated then the outcome of the edge-assignments is the same and C1 = C2, so we can assume
that x is activated. Let y1

x and y2
x be the vertices chosen by x in Edge-Assignments 1 and 2 respectively.

Notice that xy1
x and xy2

x are the only edges which may be chosen by one, but not both assignments. Hence c(xy1
x)

and c(xy2
x) are the only colours which may be chosen by one, but not both assignments, so that |C1∆C2| ≤ 2. The

two rainbow matchings M1 and M2 can only differ on edges sharing a vertex or a colour with one of the edges xy1
x or

xy2
x. Notice that M1 has at most one edge touching each of the vertices x, y1

x, and y2
x (since M1 is a matching), and
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has at most one edge of each of the colours c(xy1
x) and c(xy2

x) (since M1 is rainbow). Thus, e(M1\M2) ≤ 5. Similarly,
e(M2 \M1) ≤ 5. This implies that |V (M1)∆V (M2)| ≤ 20. Furthermore, K1 = K2, so certainly |K1∆K2| ≤ 1

Thus, we always have that |V (M1)∆V (M2)| ≤ 20, |K1∆K2| ≤ 1 and |C1∆C2| ≤ 2. By the definition of
H1 and H2, we then have V (H1)∆V (H2) = V (M1)∆V (M2) which implies |(X ∩ V (H1))∆(X ∩ V (H2))|, |(Y ∩
V (H1))∆(Y ∩ V (H2))| ≤ 20. For a colour c, E(c) \ V (M1) and E(c) \ V (M2) can only differ on colour c edges
passing through V (M1)∆V (M2). Combined with local `-boundedness, this gives |(E(c)\V (M1))∆(E(c)\V (M2))| ≤
`|V (M1)∆V (M2)| ≤ 20`. For a vertex v, NΓ1(v) \ V (M1) and NΓ2(v) \ V (M2) can differ only on vertices of
V (M1)∆V (M2), on vertices of K1∆K2, or on vertices z ∈ N(v) with vz having colour in C1∆C2. Combined with
local `-boundedness, this gives |(NΓ1

(v) \ V (M1))∆(NΓ2
(v) \ V (M2))| ≤ 2`+ 22 ≤ 26`.

Notice that |X ∩ V (H)|, |Y ∩ V (H)|, and |E(c) \ V (M)| are influenced only by the choices of the vertices x ∈ X
and which vertices in X are activated, but not which edges are killed. Furthermore, |NΓ(v) \ V (M)| is influenced
only by the choices of the vertices x ∈ X and which vertices in X are activated and which edges between v and
NG(v) are killed. There are at most (1 + γ)n vertices in X, and dG(v) ≤ (1 + γ)n neighbours of v. Overall we have
that the quantities |X ∩ V (H)|, |Y ∩ V (H)|, |E(c) \ V (M)|, and |NΓ(v) \ V (M)| are each influenced by at most 3n
coordinates.

Notice that n−0.001 ≤ α ≤ γ ≤ 0.00001, δ ≤ 1 and ` ≤ n0.001 implies that `(δn)−1 ≤ α ≤ γ ≤ 0.01. Fix
t = αγδn/10. By Lemma 4.2, we have

E(|X ∩ V (H)|)± t = (1± (1 + 12α)γ)(1− α)n

E(|Y ∩ V (H)|)± t = (1± (1 + 12α)γ)(1− α)n

E(|E(c) \ V (M)|) + t ≤ (1 + (1 + 26α)γ)(1− 2α)δn

E(|NΓ(v) \ V (M)|)± t = (1± (1 + 30α)γ) (1− 2α) δn

By Azuma’s Inequality we have that for any given c, v any of (i) – (iii) fail to hold with probability ≤ 2e
− t2

3n(26`)2 ≤
2e−

α2γ2δ2n0.9

300000 ≤ 2e−n
0.8

(using n−0.001 ≤ `−1 ≤ α ≤ γ ≤ 0.00001). Taking a union bound over all c, v we have that

all of (i) – (iii) hold with probability > 1− 8n2e−n
0.8 ≥ 1− n−2 (using n−0.001 ≤ 0.001).

The following version of the above lemma will be more convenient to apply.

Corollary 4.5. Suppose that we have n, δ, γ, α, ` with n−1
poly

� α ≤ γ
poly

� δ ≤ 1 and `
poly

� n. Let G be a coloured
balanced bipartite graph which is (γ, δ, n)-regular, locally `-bounded, and globally (1+γ)δn-bounded. Let H be produced
by an (α, (1 + γ)δn)-random edge-assignment on G.

With probability ≥ 1 − n−2, the graph H is (e35αγ, e−αδ, e−αn)-regular and globally (1 + e35αγ)(e−αδ)(e−αn)-
bounded.

Proof. Notice that n−1
poly

� α ≤ γ
poly

� δ ≤ 1 and `
poly

� n implies n−0.001 ≤ α ≤ γ ≤ 0.00001, δ ≤ 1 and ` ≤ n0.001. Let
X,Y be the bipartition classes of G. By Lemma 4.3, we have that with probability ≥ 1 − n−2 all of (i), (ii), and

(iii) hold. Notice that, from (3) and α ≤ γ
poly

� 1, we have

(1± (1 + 30α)γ)(1± 4α2) = (1± (1 + 30α)γ ± 5α2) = (1± e35αγ). (24)

From (i), (2), and (24), we have |X ∩ V (H)| = |Y ∩ V (H)| = (1 ± (1 + 12α)γ)(1 − α)n = (1 ± (1 + 12α)γ)(1 ±
α2)e−αn = (1± e35αγ)(e−α)n.

From (iii), (2), (24), we have that for all vertices v ∈ V (G) we have dH(v) = (1 ± (1 + 30α)γ) (1− 2α) δn =
(1± (1 + 30α)γ)(1± 4α2)e−2αδn = (1± e35αγ)(e−αδ)(e−αn). These show that H is (e35αγ, e−αδ, e−αn)-regular.

From (ii), (2), and (24), we have that for every colour c we have |EH(c)| ≤ (1 + (1 + 26α)γ)(1 − 2α)δn ≤
(1 + (1 + 26α)γ)(1 + 4α2)e−2αδn ≤ (1 + e35αγ)e−2αδn. This shows that H is globally (1 + e35αγ)(e−αδ)(e−αn)-
bounded.

4.5 Finding a nearly-perfect matching

Here we prove the main result of this section. By iterating the (α, b)-random edge-assignment process on a properly
coloured graph G we can find a nearly spanning rainbow matching M in G. The following lemma does this and shows
that the resulting rainbow matching is random-like in a sense that every edge is in M with at least (approximately)
the right probability.
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Lemma 4.6. Suppose that we have n, δ, γ, p, ` with 1 ≥ δ
poly

� p
poly

� γ
poly

� n−1 and n
poly

� `.
Let G be a locally `-bounded, (γ, δ, n)-regular, globally (1+γ)δn-bounded, coloured, balanced bipartite graph. Then

G has a random rainbow matching M which has size ≥ (1− 2p)n and

P(e ∈ E(M)) ≥ (1− 9p)
1

δn
for each e ∈ E(G). (25)

Proof. Fix H0 = G, α = γ, and T = α−1 ln(p−1). Without loss of generality, we may suppose that γ and α are

chosen so that T is an integer (to see this replace γ by γ′ = ln(p−1)
bγ−1 ln(p−1)c . This ensures that T ′ = γ′−1 ln(p−1) is an

integer. Notice that p
poly

� 2γ ≥ γ′ ≥ γ holds, so we could perform the proof of the lemma with γ replaced by γ′).
Notice that this gives p = e−αT . Fix the following constants:

γt = e35αtγ δt = e−αtδ nt = e−αtn.

Using p = e−αT we have nT = pn, γT = p−35γ ≤ p, and δT = pδ.
We construct graphs H1, . . . ,HT and matchings M1, . . . ,MT recursively as follows.

• For t ≥ 0, if Ht is not (γt, δt, nt)-regular or globally (1 + γt)δtnt-bounded then stop the process at step t.

• Otherwise, if Ht is (γt, δt, nt)-regular and globally (1+γt)δtnt-bounded, then we run an (α, (1+γt)δtnt)-random
edge-assignment on Ht to get a graph Ht+1 and a matching Mt+1.

Notice that for all t, Ht is locally `-bounded and we have n−1
t ≤ n−1

T = p−1n−1
poly

� α = γ ≤ γt ≤ p−35γ
poly

� pδ ≤
δt ≤ 1 and `

poly

� n. Let At be the event that the process has not stopped at any of the steps 1, . . . , t. The events
At are clearly decreasing. Since γ0 = γ, δ0 = δ, and n0 = n, the assumptions of the lemma imply that P(A0) = 1.
From Corollary 4.5 we have P(At|At−1) ≥ 1 − n−2

t−1 (in this application we have γ = γt−1, δ = δt−1, n = nt−1,

α = α, ` = `). This implies P(A0 ∩ A1 ∩ · · · ∩ AT ) = P(A0)P(A1|A0)P(A2|A1) . . .P(AT |AT−1) ≥
∏T
i=1(1− n−2

t−1) ≥
(1− n−2

T )T = (1− p−2n−2)T ≥ 1− 1
γ2p4n2 > 0 (using p, γ

poly

� n−1).

Define M to be the rainbow matching M1 ∪ · · · ∪MT conditional on the events A0, . . . , AT occuring (to see that
M is a rainbow matching, recall that Hi and Mi were vertex-disjoint and colour-disjoint). As AT holds, HT has
(1± γT )nT vertices, so that M is a matching of size ≥ n− (1 + γT )nT ≥ (1− 2p)n.

Claim 4.7. The following hold for each t = 1, . . . , T and e ∈ E(G).

P(e ∈ E(Ht), At|e ∈ E(Ht−1), At−1) ≥ (1− T−1p) (1− 3α) (26)

P(e ∈ E(Mt+1)|e ∈ E(Ht), At) = (1± p)e2tα α

δn
(27)

Proof. Using Corollary 4.5, notice that P(At|e ∈ E(Ht−1), At−1) ≤ n−2
t−1 ≤ n−2

T ≤ p−2n−2 (this application of

Corollary 4.5 is the same as our previous one). Using (23), (16), and p−2n−2 ≤ γα (which comes from 1
poly

� p
poly

�
γ

poly

� n−1) gives:

P(e ∈ E(Ht), At|e ∈ E(Ht−1), At−1) ≥ P(e ∈ E(Ht)|e ∈ E(Ht−1), At−1)− P(At|e ∈ E(Ht−1), At−1)

≥
(

1− 2α− (1 + γt)δt
δt

α

)
− 150αγt − p−2n−2

≥ (1− 160p−45αγ) (1− 3α)

P(e ∈ E(Mt+1)|e ∈ E(Ht), At) = (1± 5γt)
α

δtnt
= (1± 6p−45γ)e2tα α

δn
.

Now the claim follows from 160p−45αγ ≤ T−1p and 6p−45γ ≤ p (which both come from 1
poly

� p
poly

� γ).

Let t ≤ T . Notice that the events “e ∈ Ht and At holds” are decreasing with t. Using (2), (4), (26), and
p ≥ 10α2T we have

P(e ∈ E(Ht), At) =

t∏
i=1

P(e ∈ Hi, Ai|e ∈ Hi−1, Ai−1) ≥
(
1− T−1p

)t
(1− 3α)

t ≥ (1− 3p)e−3tα.
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Combining the above with (5), (27), p = e−αT , and p ≥ α we get:

P(e ∈ E(M1 ∪ · · · ∪MT )) =

T∑
t=1

P(e ∈ Ht−1, At−1)P(e ∈Mt|e ∈ Ht−1, At−1)

≥ (1− p)(1− 3p)
α

δn

T∑
t=1

e−α(t−1)

≥ (1− 4p)(1− α2 − 2e−αT )
1

δn

≥ (1− 8p)
1

δn
.

Now (25) comes from P(e ∈ E(M1 ∪ · · · ∪MT )|A0 ∩ · · · ∩ AT ) ≥ P(e ∈ E(M1 ∪ · · · ∪MT )) − P(A0 ∩ · · · ∩AT ) ≥
P(e ∈ E(M1 ∪ · · · ∪MT ))− 2γ2p4n−2 ≥ (1− 9p) 1

δn .

5 Random and pseudorandom subgraphs

In this section we collect intermediate lemmas which we will need concerning random and pseudorandom subgraphs.
We will often use the typicality of complete graphs.

Lemma 5.1. For γ
poly

� n−1, Kn is (γ, 1, n)-typical and Kn,n is (γ, 1, n)-typical.

Proof. Notice that Kn is ( 2
n , 1, n)-typical while Kn,n is (0, 1, n)-typical. Combined with γ

poly

� n−1, this implies the
lemma.

5.1 Random subgraphs

We will need a number of results of the form “for a nice graph G, a random subgraph H of G is still nice”. Here
“nice” can mean that G is (γ, δ, n)-regular, (γ, δ, n)-typical, or globally bounded. We will look at four different kinds
of “random subgraphs” H.

Lemma 5.2 (Random subgraphs of a general graph). Let 1 ≥ γ, δ, p, µ
poly

� n−1. Let G be a properly coloured,
globally µn-bounded (γ, δ, n)-regular/(γ, δ, n)-typical general graph.

(a) Random set of colours: Let H1 be a subgraph of G formed by choosing each colour with probability p. Then
H1 is (2γ, pδ, n)-regular/(2γ, pδ, n)-typical with probability 1− o(n−1).

(b) Random set of edges: Let H2 be a subgraph of G formed by choosing each edge with probability p. Then H2

is (2γ, pδ, n)-regular/(2γ, pδ, n)-typical and globally (1 + γ)pµn-bounded with probability 1− o(n−1).

(c) Random set of vertices: For pn ∈ Z with p < 1, let A ⊆ V (G) be a subset of order pn chosen uniformly at
random out of all such subsets. Then G[A] is globally (1 + γ)

(
µp2
)
n-bounded and (2γ, δ, pn)-regular/(2γ, δ, pn)-

typical with probability 1− o(n−1).

(d) Two disjoint random sets of vertices: For pn ∈ Z with p < 1/2, let A,B ⊆ V (G) be two disjoint subsets of
order pn chosen uniformly at random out of all pairs of such subsets. Then G[A,B] is a globally (1+γ)

(
2µp2

)
n-

bounded, (2γ, δ, pn)-regular/(2γ, δ, pn)-typical balanced bipartite graph with probability 1− o(n−1).

Proof. Notice that the following bounds on expectations are true by linearity of expectation for all vertices u 6= v
and colours c.

E(dH1(v)) = E(dH2(v)) = pdG(v) = (1± γ)pδn when G is (γ, δ, n)-regular.

E(dH1
(u, v)) = E(dH2

(u, v)) = p2dG(u, v) = (1± γ)p2δ2n when G is (γ, δ, n)-typical.

E(|N(v) ∩A|) = E(|N(v) ∩B|) = pdG(v) = (1± γ)δ(pn) when G is (γ, δ, n)-regular.

E(|N(u, v) ∩A|) = E(|N(u, v) ∩B|) = pdG(u, v) = (1± γ)δ2(pn) when G is (γ, δ, n)-typical.

E(|EH2
(c)|) = p|EG(c)| ≤ pµn

E(|EG(c) ∩A|) = E(|EG(c) ∩B|) =
pn(pn− 1)

n(n− 1)
|EG(c)| =

(
p2 − p(1− p)

n− 1

)
|EG(c)| ≤ p2µn

E(|EG(c) ∩ (A ∪B)|) =
2pn(2pn− 1)

n(n− 1)
|EG(c)| ≤ 4p2|EG(c)| − 2p(1− 2p)

n− 1
≤ 4p2µn

18



First we prove (a) and (b). Notice that the random variables dH1(v), dH2(v), dH1(u, v), dH2(u, v) and |EH2(c)| are
all 2-Lipshitz (using the fact that the colouring is proper), and are all influenced by ≤ 2n coordinates. By Azuma’s
Inequality (Lemma 3.6), we have that the probability that any of these deviate from their expectation by more than

γp2δ2µn is ≤ 2e
−(γp2δ2µn)2

8n = o(n−3) (using 1 ≥ γ, δ, p, µ
poly

� n−1 which implies γ2p4δ4µ2n ≥ 40 log n). Taking a
union bound over all pairs of vertices and colours, we obtain (a) and (b).

It remains to prove (c) and (d). Notice that the functions |N(v) ∩ A|, |N(v) ∩ B|, |N(u, v) ∩ A|, |N(u, v) ∩ B|,
|EG(c) ∩ A| and |EG(c) ∩ B| each satisfy the assumptions of Lemma 3.9 with α = 1, r = pn, N = n. Also
|EG(c) ∩ (A ∪ B)| satisfies the assumptions of Lemma 3.9 with α = 1, r = 2pn, N = n. Finally, notice that we
have 0 < min(r,N − r) < n for all of these. By Lemma 3.9 we have that the probability that any of these functions

deviate from their expectation by more than γp2δ2µn/4 is ≤ 2e−
2(γp2δ2µn/4)2

n = o(n−3) (using 1 ≥ γ, δ, p, µ
poly

� n−1

which implies γ2p4δ4µ2n ≥ 40 log n). Taking a union bound over all pairs of vertices and all colours, we obtain (c)
and the “(2γ, δ, pn)-regular/(2γ, δ, pn)-typical” part of (d). We also get that with probability 1 − o(n−1) we have

|EG(c) ∩ A|, |EG(c) ∩ B| = p2|EG(c)| − p(1−p)
n−1 |EG(c)| ± γp2δ2µn/4 = p2|EG(c)| ± γp2µn/3 for all colours c (using

γ, p, µ
poly

� n−1). Similarly we have |EG(c) ∩ (A ∪ B)| = 4p2|EG(c)| ± γp2µn/3. These give e(G[A,B] ∩ EG(c)) =
|EG(c)∩ (A∪B)|− |EG(c)∩A|− |EG(c)∩B| = 4p2|EG(c)|−2 ·p2|EG(c)|±γp2µn ≤ (1+γ)2p2µn (the last inequality
coming from global µn-boundedness). This implies the global boundedness part of (d).

We will need a balanced bipartite version of part of the above lemma.

Lemma 5.3 (Random subgraphs of a balanced bipartite graph). Let 1 ≥ γ, δ, p, µ
poly

� n−1. Let G be a properly
coloured, globally µn-bounded (γ, δ, n)-regular/(γ, δ, n)-typical balanced bipartite graph.

(a) Random set of colours: Let H1 be a subgraph of G formed by choosing each colour with probability p. Then
H1 is (2γ, pδ, n)-regular/(2γ, pδ, n)-typical with probability 1− o(n−1).

(b) Random set of edges: Let H2 be a subgraph of G formed by choosing each edge with probability p. Then H2

is (2γ, pδ, n)-regular/(2γ, pδ, n)-typical and globally (1 + γ)pµn-bounded with probability 1− o(n−1).

Proof. Let u, v be vertices, and c a colour. Notice that the following bounds on expectations are true by linearity of
expectation.

E(dH1
(v)) = E(dH2

(v)) = pdG(v) = (1± γ)pδn when G is (γ, δ, n)-regular

E(dH1
(u, v)) = E(dH2

(u, v)) = p2dG(u, v) = (1± γ)p2δ2n when G is (γ, δ, n)-typical

E(|EH2
(c)|) = p|EG(c)| ≤ pµn

Notice that the random variables dH1
(v), dH2

(v), dH1
(u, v), dH2

(u, v) and |EH2
(c)| and are all 2-Lipshitz (using the

fact that the colouring is proper), and are all influenced by≤ 2n coordinates. By Azuma’s Inequality (Lemma 3.6), we

have that the probability that any of these deviate from their expectation by more than γp2δ2µn is ≤ 2e
−(γp2δ2µn)2

8n =

o(n−3) (using 1 ≥ γ, δ, p, µ
poly

� n−1 which implies γ2p4δ4µ2n ≥ 40 log n). Taking a union bound over all pairs of
vertices and colours, we obtain (a) and (b).

The following lemma gives another property of the random subgraph formed by choosing every edge independently
with probability p. This time we are concerned with how many vertices a small set of colours covers.

Lemma 5.4. Let 1 ≥ p, ε
poly

� k−1
poly

� ν
poly

� n−1. Let G be a properly coloured graph with all colours covering
≥ (1− ν)n vertices. Let H be a random subgraph formed by choosing every edge with probability p. Then, with high
probability, any set of k colours of H covers ≥ (1− ε)n vertices.

Proof. Let S be a set of k colours and GS , HS the subgraphs of G and H consisting of colour S edges. Notice that
e(GS) ≥ k(1− ν)n/2. By the Handshaking Lemma, we have

∑
v∈V (GS) dGS (v) = 2e(GS) ≥ k(1− ν)n. Let L be the

set of vertices in GS of degree ≥ k/2. Using ∆(GS) ≤ k, we have |L|k+(n−|L|)k/2 ≥
∑
v∈V (GS) dGS (v) ≥ k(1−ν)n,

which is equivalent to |L| ≥ (1− 2ν)n.

For a vertex v ∈ L we have P(dHS (v) = 0) = (1 − p)dGS (v) ≤ (1 − p)k/2 ≤ e−pk/2 ≤ ε/4, as p, ε
poly

� k−1. Let
X be the number of isolated vertices in L. By linearity of expectation E(X) ≤ εn/4. Notice that X is 2-Lipschitz
and is influenced by ≤ e(GS) ≤ kn/2 edges. By Azuma’s Inequality (Lemma 3.6) applied with t = εn/4 we have

P(X ≥ εn/2) ≤ 2e−
(εn/4)2

4(kn/2) = 2e−
ε2n
32k ≤ n−3k (as ε, k−1

poly

� n−1 implies that ε2/k2 ≥ 400 logn
n ). Thus, with probability

≥ 1− n−3k, HS has ≤ X + (n− |L|) ≤ εn isolated vertices. Taking a union bound over all sets S of k colours gives
the result.
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5.2 (e,m)-Dense graphs

In this paper it is convenient to use two different notions of pseudorandomness. The first of these is (γ, δ, n)-typicality
(See Definition 3.2). The second is the following.

Definition 5.5.

• A general graph G is (e,m)-dense if for any λ ≥ 1 and disjoint sets A, B with |A| = |B| = λm, we have
e(A,B) ≥ λ2e.

• A balanced bipartite graph G with parts X and Y is (e,m)-dense if for any λ ≥ 1 and sets A ⊆ X, B ⊆ Y
with |A| = |B| = λm, we have e(A,B) ≥ λ2e.

We remark that most of the time we will use the above definition with λ = 1. Thus the definition should be
thought of as saying that there are e edges between any two sets of vertices of size m. Notice that if G is (e,m)-dense,
then it is also (e′,m′)-dense for any e′ ≤ e and m′ ≥ m.

How is the above definition related to (γ, δ, n)-typicality? In fact, (γ, δ, n)-typicality is a stronger concept. We
prove two lemmas relating typicality and density. The following is a variation of a lemma proved by the third author
together with Alon and Krivelevich in [5].

Lemma 5.6. Every (γ, p, n)-typical graph H has the following for every pair of subsets A, B with |B| ≥ γ−1p−2:

|e(A,B)− p|A||B|| ≤ 2|A| 12 |B|γ 1
2n

1
2 p.

Proof. Let AdjH be the adjacency matrix of H, and let M = AdjH − pJ where J is the appropriately-sized all-ones
matrix. Notice that for every pair of distinct vertices x, x′, we have∑

v∈V (H)

Mx,vMx′,v = dH(x, x′)− p(d(x) + d(x′)) + p2n ≤ (1 + γ)p2n− 2(1− γ)p2n+ p2n ≤ 3γp2n. (28)

Next notice that we have

|e(A,B)− p|A||B||2 =

∑
x∈A

∑
y∈B

Mx,y

2

≤ |A|
∑
x∈A

∑
y∈B

Mx,y

2

≤ |A|
∑

x∈V (H)

∑
y∈B

Mx,y

2

= |A|
∑

x∈V (H)

∑
y∈B

M2
x,y

+ |A|
∑

x∈V (H)

 ∑
y 6=y′∈B

Mx,yMx,y′


≤ n|A||B|+ |A|

∑
y 6=y′∈B

 ∑
x∈V (H)

Mx,yMx,y′


(28)

≤ n|A||B|+ |A|
∑

y 6=y′∈B

3γnp2 ≤ n|A||B|+ |A||B|23γnp2 ≤ 4|A||B|2γnp2

Here the first inequality comes from the Cauchy-Schwarz inequality and the last inequality comes from |B| ≥ γ−1p−2.
Taking square roots gives the result.

The following version of the above is more convenient to apply.

Lemma 5.7. Let 1 ≥ p, µ
poly

� γ
poly

� n−1. Every (γ, p, n)-typical graph (which is either balanced bipartite or general)
is (0.99p(µn)2, µn)-dense.

Proof. First we deal with the case when G is a general graph. Notice that p, µ
poly

� γ
poly

� n−1 implies µn ≥ γ−1p−2. By
Lemma 5.6 we have that for any λ ≥ 1 and pair of subsets A, B with |A| = |B| = λµn we have |e(A,B)−p(λµn)2| ≤
2(λµn)

1
2 (λµn)γ

1
2n

1
2 p ≤ 0.01p(λµn)2 (the last inequality is 2γ

1
2 ≤ 0.01λ

1
2µ

1
2 which comes from γ

poly

� µ and λ ≥ 1).
Now suppose that G is a balanced bipartite (γ, p, n)-typical graph with parts X,Y . Add a copy of the Erdős-Rényi

random graph G(n, p) to both X and Y to get a graph H. Notice that for any vertex v we have E(dH(v)) = (1±γ)2pn
and that any pair of vertices u, v have E(dH(u, v)) = (1± γ)2p2n. Notice that these quantities are each 1-Lipschitz
affected by ≤ 2n coordinates. By Azuma’s Inequality (Lemma 3.6) and the union bound we get that with high
probability H is a (2γ, p, 2n)-typical general graph. By the general graph version of this lemma with µ′ = µ/2,
H is (0.99p(µn)2, µn)-dense. This implies that between any sets A ⊆ X, B ⊆ Y with |A| = |B| = λµn we have
eG(A,B) = eH(A,B) ≥ λ20.99p(µn)2, i.e. that G is (0.99p(µn)2, µn)-dense (as a balanced bipartite graph).
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The following lemma shows that it is possible to delete a small number of edges from any graph so that its
complement is pseudorandom. Here H denotes the set of edges on V (H) not present in H.

Lemma 5.8. Let 1 ≥ p, µ
poly

� n−1. Every d-regular balanced bipartite graph G on 2n vertices has a (d−bpnc)-regular
spanning subgraph H such that H is (0.48p(µn)2, µn)-dense.

Proof. Choose γ with 1 ≥ p, µ
poly

� γ
poly

� n−1. Consider an arbitrary 1-factorization of Kn,n in which every colour either
only occurs on G or only occurs outside G (this exists since every regular bipartite graph has a 1-factorization). By
Lemma 5.1, Kn,n is (γ, 1, n)-typical. Let E be a subgraph of Kn,n formed by choosing every colour with probability
0.5p. By Lemma 5.3 (a), E is (2γ, 0.5p, n)-typical with high probability. By Lemma 5.7, applied with γ′ = 2γ,
p′ = 0.5p, µ = µ, E is (0.48p(µn)2, µn)-dense.

Since E and G \ E are unions of perfect matchings, they are regular. Since E is (2γ, 0.5p, n)-typical, the graph

G\E is d′-regular for some d′ ≥ d− (1 + 2γ)0.5pn ≥ d−bpnc (using γ
poly

� 1). Therefore we can find some (d−bpnc)-
regular subgraph H of G which is edge-disjoint from E (using that G is bipartite). Since Hc contains E, we have
that H is (0.48p(µn)2, µn)-dense as required.

We will need two lemmas showing that deleting a small number of edges from an (e,m)-dense graph does not
change the pseudorandomness too much.

Lemma 5.9. Let G be (e,m)-dense and H a subgraph of G. Then G \H is (e− e(H),m)-dense.

Proof. For any λ ≥ 1 and sets A ⊆ X, B ⊆ Y with |A| = |B| = λm we have eG\H(A,B) ≥ eG(A,B) − e(H) ≥
λ2e− e(H) ≥ λ2(e− e(H)).

Lemma 5.10. Let G be (e,m)-dense and M a matching in G. Then G \ E(M) is (e−m,m)-dense.

Proof. For λ > 1, let A and B be sets with |A| = |B| = λm. Since G is (e,m)-dense, we have eG(A,B) ≥ λ2e. Since
M is a matching there can be at most λm edges of M between A and B. Therefore eG\M (A,B) ≥ λ2e − λm ≥
λ2(e−m).

6 Regularization lemmas

In our proofs we will need a number of intermediate lemmas saying that a graph G can be modified into a regular
graph. Broadly speaking there are three types of modifications that we will need: deleting a small number of edges,
adding edges from a disjoint dense graph, or adding a small number of vertices.

6.1 Regularization by deleting edges

Here we will prove results about finding a regular subgraph by deleting edges from a graph with very high minimum
degree. The goal of this section is to prove Lemmas 6.6 and 6.7. The following theorem of Cristofides, Kühn, and
Osthus is a result of the type we want in this section (see Theorem 12 in [20]).

Theorem 6.1 (Cristofides, Kühn, Osthus). Let G be a graph with minimum degree δ ≥ n/2 and r an even number
with r ≤ 1

2 (δ +
√
n(2δ − n)). Then G has a spanning r-regular subgraph.

The following version of this will be a bit easier to apply.

Lemma 6.2. Let n−1
poly

� ε
poly

� 1. Let G be an n-vertex graph with δ(G) ≥ (1 − ε)n. Then, G has a spanning
2d(1− ε− 8ε2)n/2e-regular subgraph.

Proof. Set δ = (1 − ε)n ≥ n/2 and r = 2d(1 − ε − 8ε2)n/2e. Notice that r is even and has r ≤ 1
2 (δ +

√
n(2δ − n))

(using
√
n(2δ − n) = n

√
1− 2ε ≥ n(1−ε−2ε2), which holds for ε ≤ 1/2). Apply Theorem 6.1 to get the lemma.

We will also need a balanced bipartite version of this lemma. To prove it we use the following theorem of Ore
and Ryser (see [40]).

Theorem 6.3 (Ore, Ryser). A balanced bipartite graph with parts X,Y has no spanning d-regular subgraph if and
only if there is a set T ⊆ Y with d|T | >

∑
x∈X min(|N(x) ∩ T |, d).

Using this we can prove a bipartite version of Lemma 6.2.
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Lemma 6.4. Let n−1
poly

� ε
poly

� 1. Let G be a balanced bipartite graph with vertex classes X and Y with |X| = |Y | = n
and δ(G) ≥ (1− ε)n. Then G has a spanning b(1− ε− 8ε2)nc-regular subgraph.

Proof. Notice that there is an ε̂ ∈ R with (1− ε̂− 8ε̂2)n = b(1− ε− 8ε2)nc and 1
poly

� ε+n−1 ≥ ε̂ ≥ ε
poly

� n−1. Notice
that δ(G) ≥ (1− ε̂)n. Fix d = (1− ε̂− 8ε̂2)n = b(1− ε− 8ε2)nc.

If the lemma does not hold then by Theorem 6.3, there is a set T ⊆ Y with d|T | >
∑
x∈X min(|N(x)∩T |, d). Fix

|T | = (1−τ)n and αn = |{x ∈ X : min(|N(x)∩T |, d) = d}|. Notice that δ(G) ≥ (1− ε̂)n implies |N(x)∩T | ≥ |T |− ε̂n
for all x ∈ X. Using this d|T | >

∑
x∈X min(|N(x)∩T |, d) implies d(1−τ)n > (1−τ− ε̂)(1−α)n2 +dαn. Plugging in

the value of d gives (1− ε̂−8ε̂2)(1−τ) > (1−τ− ε̂)(1−α)+(1− ε̂−8ε̂2)α, and therefore (ε̂+8ε̂2−α)τ > 8ε̂2(1−α).

As α ≤ 1 and τ ≥ 0, we must have that α < ε̂+ 8ε̂2. Therefore, τ > 8ε̂2(1−α)
ε̂+8ε̂2−α and α < ε̂+ 8ε̂2 < 1.1ε̂ ≤ 0.002 give

τ > 4ε̂.
Notice that |N(x) ∩ T | ≤ (1 − τ)n ≤ (1 − 4ε̂)n ≤ d which implies that (1 − ε̂ − 8ε̂2)(1 − τ)n2 = d|T | >∑
x∈X min(|N(x) ∩ T |, d) =

∑
x∈X |N(x) ∩ T | = e(X,T ) ≥ |T |δ(G) ≥ (1 − τ)(1 − ε̂)n2, a contradiction to “8ε̂2 >

0”.

We want versions of the above lemmas for coloured graphs. Our lemmas will furthermore provide regular
subgraphs with a better global boundedness than the starting graph. To do this, we use the following lemma which
shows that any properly coloured graph has a subgraph with better global boundedness. It is proved by selecting
the subgraph randomly.

Lemma 6.5. Let 1
poly

� ε
poly

� n−1 and k ∈ {1, 2}. Let G be a properly coloured, globally n/k-bounded graph on ≤ 2n
vertices with ≤ (1 − 20ε)n colours having ≥ (1 − 20ε)n/k edges and δ(G) ≥ (1 − ε2)n. Then G has a spanning
subgraph H with δ(H) ≥ (1− ε+ 18ε2)n which is globally (1− ε)n/k-bounded.

Proof. We say that a colour is large if it has ≥ (1− 20ε)n/k edges in G. Other colours are called small. For a vertex
v, let `H(v) and `G(v) be the numbers of large colours through v in H and G respectively. Similarly let sG(v) be
the number of small colours through v. Notice that `G(v) ≤ (1 − 20ε)n and sG(v) = dG(v) − `G(v) ≥ 20εn − ε2n
always hold. Let H be the subgraph of G formed by deleting every edge having a large colour independently with
probability p = ε+ ε2. The following hold for all vertices v and large colours c by linearity of expectation.

E(|EH(c)|) = (1− p)|EG(c)| ≤ (1− ε− ε2)n/k,

E(dH(v)) = (1− p)`G(v) + sG(v) = (1− p)dG(v) + psG(v)

≥ (1− ε− ε2)(1− ε2)n+ (ε+ ε2)(20ε− ε2)n = (1− ε+ 18ε2 + 20ε3)n.

Notice that |EH(c)| and dH(v) are both 1-Lipschitz and affected by ≤ n edges. By Azuma’s Inequality (Lemma 3.6),

the probability that either of these deviates from its expectation by more than ε3n/4 is ≤ 2e
−(ε3n/4)2

n = o(n−2) (using

n
poly

� ε−1). Taking a union bound, we have that with high probability all large colours have |EH(c)| ≤ (1 − ε)n/k
and all vertices have dH(v) ≥ (1 − ε + 18ε2)n. Also, small colours c always have |EH(c)| ≤ (1 − ε)n/k. Thus with
high probability H is globally (1− ε)n/k-bounded and has δ(H) ≥ (1− ε+ 18ε2)n, as required.

By combining this with Lemmas 6.2 and 6.4 we prove the main results of this section.

Lemma 6.6 (Regularization lemma for high degree general graphs). Let n−1
poly

� γ
poly

� ε
poly

� 1, and let G be a properly
coloured n-vertex graph with ≤ (1− 20ε)n colours having ≥ (1− 20ε)n/2 edges and δ(G) ≥ (1− ε2)n. Then G has
a spanning subgraph H which is globally (1− ε)n/2-bounded and (γ, δ, n)-regular for some δ ≥ 1− ε+ 9ε2.

Proof. First apply Lemma 6.5 with k = 2 in order to get a subgraph G′ with δ(G′) ≥ (1 − ε + 18ε2)n which is
globally (1−ε)n/2-bounded. Then apply Lemma 6.2 to G′ with ε′ = ε−18ε2 to get a subgraph H which is r-regular

for r ≥ (1− (ε− 18ε2)− 8(ε− 18ε2)2)n ≥ (1− ε+ 9ε2)n (using ε
poly

� 1).

Lemma 6.7 (Regularization lemma for high degree bipartite graphs). Let n−1
poly

� γ
poly

� ε
poly

� 1, and let G be a
properly coloured balanced bipartite graph on 2n vertices with ≤ (1 − 20ε)n colours having ≥ (1 − 20ε)n edges and
δ(G) ≥ (1 − ε2)n. Then G has a spanning subgraph H which is globally (1 − ε)n-bounded and (γ, δ, n)-regular for
some δ ≥ 1− ε+ 9ε2.

Proof. First apply Lemma 6.5 with k = 1 in order to get a subgraph G′ with δ(G′) ≥ (1 − ε + 18ε2)n which is
globally (1− ε)n-bounded. Then apply Lemma 6.4 to G′ with ε′ = ε− 18ε2 to get a subgraph H which is r-regular

for r ≥ (1− (ε− 18ε2)− 8(ε− 18ε2)2)n− 1 ≥ (1− ε+ 9ε2)n (using ε
poly

� 1).
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6.2 Regularization using a disjoint dense graph

The following two lemmas take a graph G which is close to being regular and a disjoint dense graph E, and modify
G slightly using edges of E in order to produce a truly regular graph. Lemma 6.9 will be applied later in the paper,
while Lemma 6.8 is a technical lemma to facilitate its proof.

Lemma 6.8. For d > m, let G be a balanced bipartite graph on 2n vertices with δ(G) ≥ d − 1 and 2k =∑
v∈V (G) max(0, d(v) − d), let E be an edge-disjoint (1, d − m)-dense graph, and let M be a matching in E of

size m− k such that dG(v) = d− 1 ⇐⇒ v ∈ V (M). Then, there is a subgraph H ⊆ G and a matching N in E of
size m so that H ∪N is d-regular.

Proof. The proof is by induction on k. The initial case is when k = 0. In this case notice that every v ∈ V (G) must
have max(0, d(v)− d) = 0 which implies ∆(G) ≤ d. Since δ(G) ≥ d− 1 and dG(v) = d− 1 ⇐⇒ v ∈ V (M) we have
that G ∪M is d-regular

Suppose that k ≥ 1 and that the lemma holds for all k′ < k. Let X and Y be the parts of G. Notice that since
δ(G) ≥ d−1 and both X and Y have exactly e(M) degree d−1 vertices, we must have k =

∑
x∈X max(0, d(x)−d) =

e(G) − dn + e(M) =
∑
y∈Y max(0, d(y) − d). In particular this implies that X and Y each have ≤ k vertices of

degree ≥ d + 1. Let x ∈ X, y ∈ Y be vertices with max(0, d(x) − d),max(0, d(y) − d) ≥ 1. We have d(x) ≥ d + 1,
d(y) ≥ d + 1. Since there are m − k vertices in Y of degree d − 1 and ≤ k vertices in Y of degree ≥ d + 1, Y has
at least n −m vertices of degree d. Similarly X has at least n −m vertices of degree d. This implies that N(x)
and N(y) have subsets of size d−m consisting of vertices of degree d. Since E is (1, d−m)-dense, there is an edge
uv ∈ E with u ∈ N(x), v ∈ N(y), and d(v) = d(w) = d.

Let G′ = G − xu − yv and M ′ = M ∪ uv. We have that M ′ is a matching because dG(u) = dG(v) = d 6= d − 1
which implies u, v 6∈ V (M). Notice that δ(G′) ≥ d− 1,

∑
w∈V (G) max(0, dG′(w)− d) = 2k − 2, e(M ′) = m− k + 1,

and dG′(v) = d − 1 ⇐⇒ v ∈ V (M ′). By induction there is a subgraph H of G′ and a matching M in E with the
required properties.

The following version of the above lemma will be easier to apply.

Lemma 6.9 (Regularization using a disjoint dense graph). For d > 2m, let G be a balanced bipartite graph on
2n vertices with e(G) ≤ dn + m, δ(G) ≥ d, and E an edge-disjoint (1, d/2)-dense graph. Then there is a subgraph
H ⊆ G and a matching M ⊆ E of size ≤ m so that H ∪M is d-regular.

Proof. Since δ(G) ≥ d, we have that
∑
v∈V (G) min(0, d(v)− d) = 2e(G)− 2dn ≤ 2m. The result follows by applying

Lemma 6.8 with m′ = k =
∑
v∈V (G) min(0, d(v)− d)/2 ≤ m and M = ∅. To see that E is (1, d−m′)-dense for this

application, note that d > 2m is equivalent to d−m > d/2.

6.3 Regularization by adding vertices

Here we show that a nearly-regular graph can be made regular by adding a small number of vertices (and edges
adjacent to those vertices). We will need the Gale-Ryser Theorem concerning which degree sequences are realisable
by bipartite graphs (see [45]).

Theorem 6.10 (Gale, Ryser). Let x1 ≥ · · · ≥ xm, and y1 ≥ · · · ≥ yn be non-negative numbers. There exists a
bipartite graph with parts X, Y with degree sequence x1, . . . , xm in X and y1, . . . , yn in Y if, and only if, we have∑n
i=1 yi =

∑m
i=1 xi and

∑t
i=1 yi ≤

∑m
i=1 min(t, xi) for t = 1, . . . , n.

We use the Gale-Ryser Theorem to prove the regularization lemma of this section.

Lemma 6.11 (Regularization by adding vertices). Suppose that 0.01 ≥ δ
poly

� γ
poly

� n−1. Every (γ, δ, n)-regular
balanced bipartite graph G on 2n vertices is contained in a d-regular balanced bipartite graph G′ with parts of size
≤ (1 + 9γ)n for d = d(1 + 5γ)δne, where, additionally, all edges of G′ \G touch V (G′) \ V (G).

Proof. Let m = dn − e(G). Since e(G) =
∑
x∈X d(x) = (1 ± γ)δn2, we have 2γδn2 ≤ m ≤ 8γδn2. Let X ′ and Y ′

be two sets of new vertices with |X ′| = |Y ′| =
⌈
m
d

⌉
. Notice that γn ≤ |X ′|, |Y ′| ≤ 9γn. Choose a graph H between

X ′ and Y ′ with exactly d
⌈
m
d

⌉
−m = d|X ′| −m edges (a graph with this many edges exists since γ

poly

� n−1 implies
|X ′||Y ′| ≥ γ2n2 ≥ d). Moreover, choose H so that ∆(H) is as small as possible. This ensures that δ(H) ≥ ∆(H)−1.
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For each vertex v ∈ V (G) ∪ V (H) let kv = d − dG∪H(v). Notice that δ(H) ≥ ∆(H) − 1 implies that any integer t
has either “t ≤ d−∆(H)” or “t ≥ d− δ(H)”, and so

∑
x′∈X′

min(t, kx′) =

{∑
x′∈X′ t if t ≤ d−∆(H)∑
x′∈X′ kx′ if t ≥ d− δ(H)

(29)

Since G is (γ, δ, n)-regular, for v ∈ X ∪ Y we have kv ≤ 9γd. Notice that
∑
x′∈X′ kx′ = d|X ′| − eH(X ′, Y ′) = m =

d|Y | − eG(X,Y ) =
∑
y∈Y ky. Order the vertices of Y as y1, . . . , yn such that ky1 ≥ ky2 ≥ · · · ≥ kyn . Notice that,

for all t = 1, . . . , n,
∑t
i=1 kyi ≤ 9γdt ≤ γnt ≤ |X ′|t =

∑
x′∈X′ t. We also have

∑t
i=1 kyi ≤

∑
y∈Y ky =

∑
x′∈X′ kx′ .

Combining these with (29) we get that for all t we have
∑t
i=1 kyi ≤

∑
x′∈X′ min(t, kx′). By the Gale-Ryser Theorem,

there is a graph J1 between X ′ and Y such that dJ1(v) = kv. By symmetry, there is a graph J2 between X and Y ′

with dJ2(v) = kv for all v ∈ X ∪ Y ′. Now G′ = G ∪H ∪ J1 ∪ J2 is d-regular. Notice that all edges of G′ \G touch
X ′ ∪ Y ′ = V (G′) \ V (G), completing the proof of the lemma.

7 Completion

Our strategy for finding rainbow perfect matchings and Hamiltonian cycles is to first find nearly-perfect matchings
or near-Hamiltonian cycles and then modify them. In this section, we collect the “modification lemmas” which we
use to complete nearly-spanning structures into truly spanning ones.

In all lemmas of this section we will have a dense graph which is disjoint from the matchings/cycles which we are
trying to complete. The matchings/cycles are turned into what we want by modifying them gradually using edges
of the dense graph.

7.1 Perfect matchings

The following lemma extends a matching by one edge.

Lemma 7.1. Suppose that we have the following edge-disjoint subgraphs in a balanced bipartite graph G with parts
X, Y of size n.

• A matching M with e(M) ≥ (1− θ)n.

• A (1, θn)-dense graph E.

• Graphs DX , DY with dDX (x′) ≥ 2θn for each x′ ∈ X and dDY (y′) ≥ 2θn for each y′ ∈ Y .

Let x ∈ X and y ∈ Y be vertices outside M . Then, there are vertices u, v,mu,mv with uv ∈ E, xmu ∈ DX ,
ymv ∈ DY , umu, vmv ∈M such that M ′ = (M ∪ {xmu, uv, ymv}) \ {umu, vmv} is a matching.

Proof. Let σ be the permutation which exchanges vertices of M and fixes all other vertices. Notice that since
dDX (x) ≥ 2θn, dDY (y) ≥ 2θn and e(M) ≥ (1 − θ)n, we have |NDX (x) ∩ V (M)|, |NDY (y) ∩ V (M)| ≥ θn. Since E
is (1, θn)-dense, it has an edge uv from σ(NDX (x) ∩ V (M)) to σ(NDY (y) ∩ V (M)). Now taking mu = σ(u) and
mv = σ(v) gives vertices satisfying the lemma.

By iterating the above lemma, we can turn nearly-perfect rainbow matchings into perfect ones.

Lemma 7.2 (Completing a matching). Let 1
poly

� θ, p
poly

� ε
poly

� n−1. Suppose that we have the following colour-disjoint
subgraphs in a properly coloured, balanced bipartite graph G with parts X,Y of size n.

• A rainbow matching M0 with e(M0) ≥ (1− ε)n.

• A (p(θn)2, θn)-dense graph E.

• Graphs DX , DY with dDX (x) ≥ 3θn for each x ∈ X and dDY (y) ≥ 3θn for each y ∈ Y .

Then, there is a perfect rainbow matching N in M0 ∪ E ∪DX ∪DY using ≤ εn edges in each of E, DX , and DY ,
where, additionally edges of DX in N pass through X \ V (M0) and edges of DY in N pass through Y \ V (M0).

24



Case 1 Case 2 Case 3

Figure 1: The three kinds of rotations we use in Lemmas 7.3 and Lemma 7.4. The dashed edges are removed from
the cycles, while the solid red edges are added. In each case, the resulting graph is a single cycle. In Lemma 7.3
Cases 1 and 2 are relevant, while in Lemma 7.4 all three cases are relevant.
Case 2 should be thought of as a degenerate version of Case 1 when we have z = σ(w) (or symmetrically w = σ(z)).
Note that this case never actually occurs because Lemmas 7.3 and Lemma 7.4 assume that E,G are disjoint from
all Ci. We include Case 2 in the figure for purposes of exposition.

Proof. We will repeatedly apply Lemma 7.1 to produce rainbow matchings M1, . . . ,Mn−e(M0) with e(Mi) = e(M0)+i
and V (M0) ⊆ V (Mi). We will maintain that Mi always has at most i edges of each of E,DX , DY , with the edges
of Mi ∩ DX passing through X \ V (M0) and the edges of Mi ∩ DY passing through Y \ V (M0). When finished,
N = Mn−e(M0) will then satisfy all the requirements of the lemma.

At the (i + 1)st application, we apply Lemma 7.1 with M = Mi, vertices xi ∈ X \ V (Mi), yi ∈ Y \ V (Mi), and
Ei = E \ C(Mi), D

i
X = DX \ C(Mi), D

i
Y = DY \ C(Mi) – the graphs E,DX , DY with all the edges with colour in

C(Mi) removed. Using Lemma 5.10 and e(E∩Mi) ≤ i, the graph Ei is (p(θn)2−iθn, θn)-dense (and so (1, θn)-dense

since θ, p
poly

� ε implies p(θn)2 ≥ εnθn). Also e(DX ∩Mi), e(DY ∩Mi) ≤ i gives dDiX (x), dDiY (y) ≥ 3θn − i ≥ 2θn

for each x ∈ X and y ∈ Y . These show that the assumptions of Lemma 7.1 hold for Mi, E
i, Di

X , D
i
Y , xi, yi and so

we can apply it to obtain a matching Mi+1 containing one more edge than Mi. The matching Mi+1 is necessarily
rainbow since it is a union of a submatching of Mi (which is rainbow), and one edge from each of Ei, Di

X , and Di
Y

(which are all colour-disjoint from each other and from Mi). From Lemma 7.1, the new edges of Mi+1 in DX and
DY pass through xi ∈ X \ V (M0) and yi ∈ Y \ V (M0) respectively, as required.

7.2 Hamiltonian cycles

The following lemma joins two long cycles together using edges from some disjoint, dense graphs.

Lemma 7.3. Let 1 ≥ λ
poly

� p
poly

� θ
poly

� n−1. Let C1, C2 be two vertex-disjoint cycles of length ≥ λn. Let E, F,G be(
p(θn)2, θn

)
-dense graphs. Suppose that C1, C2, E,F, and G are all edge-disjoint. Let xy ∈ E(C1) ∪ E(C2).

Then, there is a cycle C in C1 ∪ C2 ∪ E ∪ F ∪ G with vertex set V (C1) ∪ V (C2) containing 1 edge of each of
E,F,G, and, additionally, xy ∈ E(C).

Proof. Without loss of generality, assume that |C1| ≤ |C2|. Choose arbitrary orientations of C1 and C2. Let σ be
the permutation mapping v to its successor (in the cycle containing v). Let X1 be the set of vertices v ∈ V (C1) with
|NE(v) ∩ V (C2)| < 2θn+ 2 and let X2 be the set of vertices v ∈ V (C1) with |NF (σ(v)) ∩ V (C2)| < 2θn+ 2.

Suppose |X1| ≥ λn/3. Noting that |C2| ≥ |C1| ≥ |X1|, pick a set Y1 ⊂ V (C2) with |Y1| = |X1| and note that

eE(X1, Y1) < |X1|(2θn+ 2) < p|X1|2 (as λ
poly

� p, θ), contradicting that E is (p(θn)2, θn)-dense. Thus, |X1| < λn/3.
Similarly, |X2| < λn/3, and thus we may pick x0 ∈ V (C1) \ (X1 ∪X2 ∪ {x, y}).

Let y0 = σ(x0). We have |(NE(x0) ∩ V (C2)) \ {x, y}| ≥ 2θn and |(NF (y0) ∩ V (C2)) \ {x, y}| ≥ 2θn. Since
G is

(
p(θn)2, θn

)
-dense, by considering appropriate disjoint subsets with size θn of (NE(x0) ∩ V (C2)) \ {x, y} and

(NF (y0) ∩ V (C2)) \ {x, y} respectively, we have the following. There is an edge zw ∈ E(G) with σ(z) ∈ (NE(x0) ∩
V (C2))\{x, y} and σ(w) ∈ (NF (y0)∩V (C2))\{x, y}. Now C = C1∪C2−x0y0−zσ(z)−wσ(w)+x0σ(z)+y0σ(w)+zw
is a cycle with the required properties (see Figure 1).

Next we prove a similar lemma which joins cycles together. In the next two lemmas we will have both directed
and undirected graphs on the same vertex set. The cycles we obtain in both lemmas will contain a mixture of edges
from the directed and undirected graphs. In such a situation, “cycle” just means a graph which is a cycle after
turning all directed edges into undirected edges, i.e. we do not care about directions of edges in cycles at all (the
actual purpose of the directed edges in the lemmas is to control degrees through certain vertices).
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Lemma 7.4. Let 1 ≥ δ
poly

� θ
poly

� n−1 and m ≤ θn/2. Let C = {C0, . . . , Cm} be a 2-factor. For each i = 0, . . . ,m let
xiyi ∈ E(Ci). Let E be (1, θn)-dense and DX , DY digraphs with d+(DX), d+(DY ) ≥ δn. Suppose that C, E, DX ,
and DY are all edge-disjoint. Suppose that |C0| ≤ δn/2.

Then there is a 2-factor C′ with ≤ m cycles in which each cycle contains an edge xiyi for some i ≥ 1. Additionally,
C′ contains 1 edge from E, 1 edge from F which starts at x0, and 1 edge from G which starts from y0.

Proof. Choose arbitrary orientations of C1, . . . , Cm. Let σ be the permutation mapping v to its successor (in the
cycle containing v). Let U = {xi, yi : i ≥ 1} and notice that |U | ≤ 2m ≤ θn. We have |N+

DX
(x0) \ (U ∪ C0)| ≥

δn − θn − δn/2 ≥ δn/3 and |N+
DY

(y0) \ (U ∪ C0)| ≥ δn − θn − δn/2 ≥ δn/3. Since E is (1, θn)-dense and
θn ≤ δn/6, by choosing appropriate disjoint subsets of size θn, we have the following. There is an edge zw ∈ E with
σ(z) ∈ N+

DX
(x0)\(U∪C0) and σ(w) ∈ N+

DY
(y0)\(U∪C0). Now C′ = C−x0y0−zσ(z)−wσ(w)+x0σ(z)+y0σ(w)+zw

is a 2-factor with the required properties (see Figure 1).

By iterating the above lemmas we obtain the following lemma which turns a rainbow 2-factor into a rainbow
Hamiltonian cycle. Once again we have have a combination of directed and undirected graphs. When we say a
directed graph is properly coloured, we mean that the underlying undirected graph is properly coloured.

Lemma 7.5 (Completing a Hamiltonian cycle). Let 1
poly

� δ
poly

� p
poly

� θ
poly

� n−1 and m ≤ pθn. Suppose that we have
the following colour-disjoint, edge-disjoint, properly coloured graphs on a set of n vertices.

• A rainbow 2-factor C = {C0, . . . , Cm}.

•
(
p(θn)2 +mθn, θn

)
-dense graphs E,F,G.

• Digraphs DX , DY with d+(DX), d+(DY ) ≥ δn+m.

For each i = 0, . . . ,m, let xi, yi be a pair of adjacent vertices in Ci. Then, there is a rainbow Hamiltonian cycle
C in E ∪ F ∪ G ∪ DX ∪ DY ∪ C0 ∪ · · · ∪ Cm so that, additionally, C \ (C0 ∪ · · · ∪ Cm) has ≤ m edges of each of
E,F,G,DX , DY , the edges of C in DX all start in {x0, . . . , xm}, and the edges of C in DY all start in {y0, . . . , ym}.

Proof. Choose λ with δ
poly

� λ
poly

� p. The proof is by induction on m. The initial case is when m = 0 in which case
the lemma is trivial. Suppose that m ≥ 1. If |C0|, |C1| ≥ λn, then apply Lemma 7.3 to C0, C1, E, F,G. If |C0| or
|C1| ≤ λn, then apply Lemma 7.4 to C, E,DX , DY . In either case we get a new 2-factor C′ with ≤ m cycles, where
each cycle contains an edge xiyi for some i. Additionally C′ contains at most one edge from each of E,F,G,DX , DY ,
with remaining edges from C. This implies that C′ is rainbow since C was rainbow and E,F,G,DX , DY , were all
colour-disjoint from each other and from C. From Lemma 7.4 we also have that if C′ has edges in DX and DY , then
they start at x0 and y0 respectively.

Let E′, F ′, G′, D′x, D
′
Y be E,F,G,DX , DY with colours of C′ \ C deleted to get

(
p(θn)2 +mθn− θn, θn

)
-dense

graphs E′, F ′, G′ (using Lemma 5.10), and digraphs D′X , D
′
Y with d+(D′X), d+(D′Y ) ≥ δn+m−1. The lemma holds

by induction.

8 Near-decompositions into rainbow structures

In this section, we prove our main results on matchings and Hamiltonian cycles. Most of the results here are of the
form “every properly coloured graph with certain properties can be nearly-decomposed into rainbow matchings/2-
factors/Hamiltonian cycles”. These results build on one another. First we find near-decompositions into nearly-
perfect matchings. Then we use completion results from the previous section to find near-decompositions into perfect
matchings. We use these to find near-decompositions into 2-factors. Then we again use completion results from the
previous section to find near-decompositions into Hamiltonian cycles.

8.1 Nearly-perfect matchings

In this section we show that every properly coloured d-regular, globally d-bounded bipartite graph has a near-
decomposition into nearly-perfect rainbow matchings. This is proved by iteratively finding such matchings individ-
ually using Lemma 4.6. For a d-regular, globally d-bounded bipartite graph Gd, consider the following recursive
process producing matchings Md, . . . ,Mεd.

P1: For t = d, . . . , εd, apply Lemma 4.6 to Gt in order to partition its edges into a randomized rainbow matching
Mt and a graph Gt−1.
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We emphasise that this process is run in decreasing order with t. The reason for this is that if we define the process
like this, then the graphs Gt turn out to be approximately t-regular for every t.

If we were able to run this process for (1 − o(1))d many steps, then we would obviously produce the desired
(1− o(1))d edge-disjoint nearly-perfect rainbow matchings in G0. To show that we can run it for that long, we need
to show that with high probability Gt satisfies the assumptions of Lemma 4.6. There are two assumptions of that
lemma which need to be maintained: (γ, t/n, n)-regularity and global (1 + γ)t-boundedness.

Maintaining global boundedness

Recall that in the matching Mt produced in Gt by Lemma 4.6, every edge ends up in Mt with probability roughly
t−1. This means that at step t− 1 of P1, for any colour c we have

E(|EGt−1(c)|) = P(c 6∈ C(Mt))|EGt(c)|+ P(c ∈ C(Mt))(|EGt(c)| − 1)

≈
(

1− |EGt(c)|
t

)
|EGt(c)|+

|EGt(c)|
t

(|EGt(c)| − 1)

≤ t− 1

Here, the last inequality is equivalent to “|EGt(c)| ≤ t”. Thus one would expect the global t-boundedness of Gt to
be preserved throughout the entire process. By using Azuma’s Inequality, we can show that this happens with high
probability.

Maintaining regularity

Here we explain how to preserve (γ, t/n, n)-regularity between the applications of Lemma 4.6. First notice that if
Lemma 4.6 produced perfect matchings, then there would be nothing to check—then Gt would always be t-regular
(and hence (0, t/n, n)-regular). But the matchings produced by Lemma 4.6 have size (1− o(1))n, and so over time,
one would expect the maximum degree of the graph to become bigger than t after a large number of steps. One
thing that we will never lose is the minimum degree—the graphs will always have δ(Gt) ≥ t, since there can be at
most one edge from each matching Mi present at any vertex.

To preserve regularity, we introduce another step to our process in addition to P1. Fix some large constant k,
and do the following:

P2: Whenever t ≡ 0 (mod k), modify Gt slightly to make it into a t-regular graph.

This step ensures that Gt is (γ, t/n, n)-regular for all t and suitable γ. Indeed, for any t, there is some k′ ≤ k with
Gt+k′ (t + k′)-regular and ∆(Gt) ≤ ∆(Gt+k). Thus we have t ≤ δ(Gt) ≤ ∆(Gt) ≤ t + k, which implies that Gt is
(k/t, t/n, n)-regular.

Step P2 is performed using Lemma 6.9. This lemma turns a graph Gt with δ(Gt) ≥ t into a t-regular graph G′t
by deleting some edges and adding a small matching N disjoint from Gt. Edges in this matching N are given a new
“dummy colour” which was previously unused in Gt. While these dummy colours can end up in our matchings Mt,
the total number of dummy colours is small (at most n/k), and so after deleting the dummy colours we still have
nearly-perfect matchings in G.

A concentration lemma

The following lemma will be used to show that the global boundedness of a graph decreases suitably after repeated
applications of Lemma 4.6.

Lemma 8.1. For Cε ≤ 0.1 and m ≤ D, suppose that we have random variables X0, X1, X2, . . . , Xm, with D−m−1 ≥
D
C and D

C ≤ X0 ≤ D, such that, for every t = 0, . . . ,m− 1, and for any values of X0, . . . , Xt, we have

Xt+1 =

{
Xt − 1 with probability (1− ε) 1

D−tXt

Xt with probability 1− (1− ε) 1
D−tXt.

Then we have

P
(
Xm ≥ (1 + 3Cε)

(
1− m

D

)
X0

)
≤ e

−ε2D
18C4 .
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Proof. Let q = P(Xt+1 = Xt−1|X0, . . . , Xt) = (1−ε) 1
D−tXt, and notice that E(Xt+1|X0, . . . , Xt) = Xt(1−q)+(Xt−

1)q =
(
D−t−1+ε
D−t

)
Xt. Let Yt = (1−Cε/D)t XtD−t . Notice that E(Yt+1|Y0, . . . , Yt) = (1−Cε/D)t+1 E(Xt+1|X0,...,Xt)

D−t−1 =

(1 − Cε/D)t+1 D−t−1+ε
(D−t)(D−t−1)Xt = (1 − Cε/D)

(
1 + ε

D−t−1

)
Yt ≤ (1 − Cε/D) (1 + Cε/D)Yt ≤ Yt. This shows that

Yt is a supermartingale.
Notice that for t ≤ m we have

|Yt+1 − Yt| = (1− Cε/D)t
∣∣∣∣ (1− Cε/D)Xt+1

D − t− 1
− Xt

D − t

∣∣∣∣
= (1− Cε/D)t

∣∣∣∣ Xt+1 −Xt

(D − t− 1)
− CεXt+1

D(D − t− 1)
+

Xt

(D − t− 1)(D − t)

∣∣∣∣
≤ (1− Cε/D)t

(
1

D − t− 1
+

Cε

D − t− 1
+

D

(D − t− 1)(D − t)

)
≤ 3C2

D
.

The third inequality uses the triangle inequality, the 1-Lipschitzness of Xt, and Xt ≤ X0 ≤ D. the fourth inequality

comes from D − t− 1 ≥ D −m− 1 ≥ D
C and Cε ≤ 0.1. Hence Yt is 3C2

D -Lipschitz.
By Lemma 3.7, we have

P (Ym ≥ Y0 + s) ≤ e
−s2D2

18C4m .

Substituting Y0 = X0/D, s = γX0/D, and using X0 ≥ D/C and m ≤ D gives

P
(
Ym ≥ (1 + γ)

X0

D

)
≤ e

−γ2X2
0

18C4m ≤ e
−γ2D
18C6 . (30)

Note that, as m ≤ D and Cε ≤ 0.01, by (4) and (6) we have 1+Cε
(1−Cε/D)m ≤ 1 + 3Cε. Substituting Ym = (1 −

Cε/D)m Xm
D−m and γ = Cε into (30), and using this gives

P
(
Xm ≥ (1 + 3Cε)

(
1− m

D

)
X0

)
≤ P

(
Xm ≥ (1 + Cε)

(D −m)X0

(1− Cε/D)mD

)
≤ e

−ε2D
18C4 .

Analysis of the random process

Now we prove the first decomposition result of this paper. All our other decomposition results build on this.
It produces a near-decomposition into nearly-perfect rainbow matchings in a δn-regular graph which is globally
(1− σ)δn-bounded.

Lemma 8.2. Suppose that we have n, `, δ, σ with n−1
poly

� σ
poly

� δ ≤ 1 and `
poly

� n.
Let G be a coloured balanced bipartite graph on 2n vertices which is δn-regular, locally `-bounded, and globally

(1−σ)δn-bounded. Then, G has (1−σ)δn edge-disjoint rainbow matchings M1, . . . ,M(1−σ)δn with e(Mi) = (1−σ)n
for all i.

Proof. Choose k, γ, ν, p so that n−1
poly

� γ
poly

� p
poly

� ν
poly

� k−1
poly

� σ
poly

� δ ≤ 1. Set D = d(1− k−1)δne.

Claim 8.3. There is a D-regular subgraph GD of G and a (6pnD, νD/6)-dense graph ED with GD and ED edge-
disjoint.

Proof. Apply Lemma 5.8 to G with µ = νδ/8 and p′ = k−1δ in order to find a (δn−bk−1δnc)-regular subgraph GD of

G so that ED = GD is (0.48k−1δ(νδn/8)2, νδn/8)-dense (to apply Lemma 5.8 we use that 1 ≥ k−1δ, νδ/8
poly

� n−1).
Since δn − bk−1δnc = D, the graph GD is D-regular. Notice that ED is (6pnD, νδn/8)-dense (using 6pnD ≤
0.48k−1δ(νδn/8)2 which comes from p

poly

� k−1, ν, δ). Now νD/6 ≥ νδn/8 implies the claim.

We will define a random process producing spanning graphs GD−1, . . . , GνD, ED−1, . . . , EνD and rainbow match-
ings MD−1, . . . ,MνD. They will always have the following properties:

(a) Gd is (γ, d/n, n)-regular.

(b) Md ⊆ E(Gd) with e(Md) ≥ (1− p)n.
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(c) δ(Gd) ≥ d and e(Gd) ≤ dn+ kpn.

(d) Ed is
(
1, d−1

2

)
-dense and edge-disjoint from Gd.

(e) • If k - d then Gd−1 ⊆ Gd.
• If k | d then Gd−1 \Gd is a matching of size ≤ 4kpn in Ed. This matching has a dummy colour cd.

Notice (a) (c), and (d) hold for GD and ED: indeed GD is D-regular (implying (a) and (c)), while ED is
(6pnD, νD/6)-dense (which combined with (D − 1)/2 ≥ νD implies (d)).

The process producing GD−1, . . . , GνD, ED−1, . . . , EνD, and MD−1, . . . ,MνD is the following.

• If Gd is globally d-bounded then Md is the (random) matching produced from Lemma 4.6 applied to Gd with

n = n, γ = γ, p′ = p/20, ` = `, δ′ = d/n. Notice that 1 ≥ δ′
poly

� p′
poly

� γ
poly

� n−1 and n
poly

� ` hold with these
parameters (using δ ≥ δ′ ≥ νδ/2), allowing us to apply the lemma. Additionally:

– If k - d then let Gd−1 = Gd \Md and Ed−1 = Ed.

– If k | d then apply Lemma 6.9 to Gd \Md and Ed with d′ = d − 1 and m = e(Gd \Md) − (d − 1)n

(using that by (d) Ed is (1, d′/2)-dense, by (c), e(Md) ≥ (1 − p)n, and by p
poly

� k−1, ν, δ we have 2m =
2(e(Gd \Md)− (d− 1)n) ≤ 4kpn ≤ νδn/2 ≤ d′). We get a subgraph Hd and a matching Nd in Ed of size
≤ 4kpn. Let Gd−1 = Hd ∪Nd with the edges of Nd given the dummy colour cd to get a (d − 1)-regular
graph. Let Ed−1 = Ed \Nd.

• If Gd is not globally d-bounded then we stop the process.

We show that the properties we need in the process hold.

Claim 8.4. As long as the process goes on (a) – (e) hold.

Proof. First we prove (b), (d), and (e).

(b) This is immediate since Md was produced by applying Lemma 4.6 to Gd with p′ = p/20.

(d) We have Ed = ED \
⋃
i∈[d+1,D],k|iNi and e(Ni) ≤ 4kpn. As ED is (6pnD, νD/6)-dense, this implies that Ed is

(6pnD−4kpnd(D−d)/ke, νD/6)-dense (using Lemma 5.9). Since d−1
2 ≥ νD/6 and 6pnD−4kpnd(D−d)/ke ≥

1, this implies that Ed is (1, d−1
2 )-dense

(e) This is immediate from the construction of Gd−1: When k - d, then Gd−1 = Gd \Md ⊆ Gd holds. When k | d,
then Gd−1 = Nd ∪Hd ⊆ Nd ∪ (Gd \Md) with Nd “a matching in Ed of size ≤ 4kpn” which has dummy colour
cd.

Next we prove (a) and (c). First recall that (a) and (c) hold for the starting graph GD. If k | d + 1, then, by
construction, Gd is d-regular which implies both (a) and (c).

Suppose then that k - d+ 1 and d < D. Fix d̂ = min(kd(d+ 1)/ke− 1, D). Notice that Gd̂ is d̂-regular (as d̂ = D

or k | d̂+1 in which case Gd̂ is d̂-regular from the application of Lemma 6.9). Also notice that 0 < d̂−d ≤ k−1 (the
first inequality comes from d < D and k - d + 1. The second inequality comes from kd(d + 1)/ke − 1 ≤ d + k − 1).

Because k - d̂, d̂− 1, . . . , d+ 1, we have that

Gd = Gd̂ \ (Md̂ ∪Md̂−1 ∪ · · · ∪Md+1). (31)

Since the graphs Mi are matchings, this implies δ(Gd) ≥ δ(Gd̂)−(d̂−d) = d. Next, (31) implies ∆(Gd−1) ≤ ∆(Gd̂) =

d̂ ≤ d + k, which combined with δ(Gd) ≥ d implies that Gd is (k/d, d/n, n)-regular and hence (γ, d/n, n)-regular
since k/d ≤ k/νD ≤ 2k/νδn ≤ γ. Thus, (a) holds. Finally, (31) implies e(Gd) ≤ e(Gd̂)− e(Md̂)− · · · − e(Md+1) ≤
d̂n− (d̂− d)(1− p)n ≤ dn+ kpn, completing the proof that (c) holds.

To show that the process does not end too early, it remains to show that Gd is globally d-bounded.

Claim 8.5. With probability ≥ 1− n−1, Gd is globally d-bounded for d = D, . . . , νD.
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Proof. Notice that by (e) and p
poly

� ν, k−1, δ, for any dummy colour ci we always have |EGd(ci)| ≤ 4kpn ≤ νD/2 ≤ d.
For a non-dummy colour c, if |EGD (c)| ≤ νD/2 then |EGd(c)| ≤ νD/2 ≤ d for all d. It remains to prove the claim
for non-dummy colours with |EGD (c)| ≥ νD/2. Let c be such a colour.

Let Y cd be the number of colour c edges in Gd. From Lemma 4.6 we have that as long as the process goes on,
we have P(e ∈ E(Md)|e ∈ E(Gd)) ≥ (1 − p) 1

d . Since Md is rainbow, for any colour c the events “e ∈ E(Md)” and
“f ∈ E(Md)” are disjoint for distinct e, f ∈ E(c). This implies P(c ∈ C(Md)|Y cd = y) ≥ (1 − p)yd . Recall that,
Gd−1 consists of a subgraph of Gd \Md together with maybe some dummy colour edges. This implies that the event
“c ∈ C(Md)” is contained in the event “Y cd−1 ≤ Y cd − 1”, which gives following.

Y cd−1 =

{
≤ Y cd − 1 with probability ≥ (1− p) 1

dY
c
d

Y cd with probability ≤ 1− (1− p) 1
dY

c
d .

Let ZcD, . . . , Z
c
νD be random variables with ZcD = Y cD = |EGD (c)| and, for each d = D, . . . , νD + 1, for any values of

ZcD, . . . , Z
c
d, we have

Zcd−1 =

{
Zcd − 1 with probability (1− p) 1

dZ
c
d

Zcd with probability 1− (1− p) 1
dZ

c
d

Notice that Yd is stochastically dominated by Zd, i.e. specifically we have P(Y cd ≥ x) ≤ P(Zcd ≥ x) (to see this note,
that Yd and Zd can be coupled so that Yd is always bounded above by Zd).

Let Xc
t = ZcD−t and notice that Xc

0 , . . . , X
c
m satisfy the assumptions of Lemma 8.1 with D = D, ε = p, C = 2ν−1,

m = D − d. Therefore we have

P
(
Zcd ≥

d

D
ZcD(1 + 6ν−1p)

)
= P

(
Xc
D−d ≥

(
1− D − d

D

)
Xc

0(1 + 6ν−1p)

)
≤ 4e−0.001ν4p2D ≤ n−4.

The last inequality comes from D ≥ δn/2 and ν4p2δ
poly

� n−1. Note that (1+6ν−1p) dDZ
c
D ≤ (1+6ν−1p) dD (1−σ)δn ≤ d

(using the global (1− σ)δn-boundedness of G and pν−1, k−1
poly

� σ).
Thus for every colour c with |EGD (c)| ≥ νD/2, we have P(|EGd(c)| ≥ d) = P(Yd ≥ d) ≤ P(Zd ≥ d) ≤ n−4 for

all d. By the union bound over all c and d, we have that Gd is globally d-bounded for all d ≥ νD with probability
≥ 1− n−1.

Since there are ≤ dD/ke ≤ σn/2 dummy colours we have that each Mi contains a submatching M ′i of size
≥ e(Mi) − dD/ke ≥ (1 − p)n − σn/2 ≥ (1 − σ)n containing no dummy colours (using (b)). Finally notice that we

have (1− ν)D ≥ (1− σ)δn matchings (using σ
poly

� ν, k−1).

The following lemma takes a decomposition into rainbow matchings (as in the previous lemma) and outputs
another such decomposition where the matchings are nicely spread out around the vertex set.

Lemma 8.6. Let t ≥ pn, pt ≥ 1, and p ≤ 1
2 . Let G be a properly coloured balanced bipartite graph on 2n vertices with

δ(G) ≥ t and M1, . . . ,Mt edge-disjoint rainbow matchings in G with e(Mi) ≥ (1− p3)n for all i. Then G has edge-
disjoint rainbow matchings M ′1, . . . ,M

′
(1−p)t with e(M ′i) ≥ (1−10p)n for all i and also δ(M ′1∪· · ·∪M ′t) ≥ (1− 101p)t.

Proof. For a bipartite graph H on 2n vertices with ∆(H) ≤ t, let fH(v) = max((1− 100p)t− dH(v), 0) and f(H) =
1
2

∑
v∈V (H) f(v). Notice that f(H) ≤ tn− e(H) (since ∆(H) ≤ t implies that all vertices v have fH(v) ≤ t−dH(v)).

For H = M1 ∪ · · · ∪Mt notice that e(H) ≥ (1− p3)tn and hence f(H) ≤ tn− (1− p3)tn = p3tn.
Let N1, . . . , Nt be a family of t edge-disjoint rainbow matchings in G such that H = N1∪· · ·∪Nt has e(H)−4f(H)

as large as possible. By the previous paragraph we have e(H)− 4f(H) ≥ (1− 5p3)tn.

Claim 8.7. f(H) = 0.

Proof. Suppose, for contradiction, that f(H) > 0. Let U be the set of vertices u in H with dH(u) ≤ (1−10p)t. Notice
that vertices v outside U have (1−100p)t−dH(v) ≤ −90pt < −1 (using pt ≥ 1). We have |U |(1−10p)t+(2n−|U |)t ≥
2e(H) ≥ 2e(H)− 8f(H) ≥ 2(1− 5p3)tn, which implies that |U | ≤ p2n.

Let u be a vertex with fH(u) > 0. This implies that dH(u) < (1−100p)t and hence dG(u)−dH(u) ≥ 100pt > 4|U |
(using t ≥ pn). Choose some matching Ni with u 6∈ V (Ni) (one must exist since dH(u) < (1− 100p)t). Let N ′i ⊂ Ni
be the set of edges in Ni that touch a vertex in U , so that |N ′i | ≤ |U |. As dG(u)− dH(u) ≥ 4|N ′i | and G is properly
coloured, we can pick some y ∈ NG\H(u) so that y is in no edge in N ′i and uy has colour outside of C(N ′i).

Let Fy ⊂ N ′i be the set of edges in Ni with the same colour as uy or which contain y, noticing that, by
construction, V (Fy) ∩ U = ∅. Let N ′′i = (Ni \ Fy) ∪ {uy} to get a rainbow matching. Let H ′ = (H \ Ni) ∪ N ′′i to
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get another union of t rainbow matchings. Notice that fH′(u) = fH(u) − 1 and fH′(w) = fH(w) for w 6= u (using
V (Fy)∩U = ∅), so that f(H ′) ≤ f(H)− 1/2. We also have e(H ′) ≥ e(H) + 1− e(Fy) ≥ e(H)− 1. Combining these
gives e(H ′) − 4f(H ′) ≥ (e(H) − 1) − 4(f(H) − 1

2 ) > e(H) − 4f(H), which is a contradiction to the maximality of
H.

Notice that f(H) = 0 is equivalent to δ(H) ≥ (1 − 100p)t. Recall that
∑t
i=1 e(Ni) = e(H) ≥ e(H) − 4f(H) ≥

(1 − 5p3)tn. These imply that H has at most pt matchings of size ≤ (1 − 10p)n (since otherwise we would have
e(H) ≤ pt(1− 10p)n + (t− pt)n = (1− 10p2)tn < (1− 5p3)tn, giving a contradiction to e(H) ≥ (1− 5p3)tn). The
union of the remaining matchings has minimum degree ≥ (1− 101p)t and so satisfies the lemma.

The following lemma strengthens our previous rainbow matching decomposition result (Lemma 8.2). It bootstraps
that lemma in two different ways. First it removes the condition that the host graph is regular, replacing this with
the condition that it is (γ, δ, n)-regular. Secondly, the decomposition produced is nicely spread out as in Lemma 8.6.

Lemma 8.8. Let n−1
poly

� γ
poly

� p, δ ≤ 1. Let G be a properly coloured balanced bipartite graph on 2n vertices, which
is (γ, δ, n)-regular, and globally (1 − p)δn-bounded. Then, G has edge-disjoint rainbow matchings M1, . . . ,M(1−p)δn
with e(Mi) ≥ (1− p)n for all i and also δ(M1 ∪ · · · ∪M(1−p)δn) ≥ (1− 2p)δn.

Proof. We will first prove the lemma when we additionally have “p
poly

� δ ≤ 0.01”. Assuming that, choose n−1
poly

�
γ

poly

� σ
poly

� ξ
poly

� p
poly

� δ ≤ 0.01.
By Lemma 6.11, there is a balanced bipartite, regular graph G′ containing G which has ≤ 11γn extra vertices

in each part with G′[V (G)] = G. Colour the edges of G′ so that the edges of G retain their colours, and any edge
e 6∈ E(G) gets a new colour ce (which only occurs on e). Let n′ = |G′|/2 ≤ (1 + 11γ)n be the size of the parts of
G′. Since G′[V (G)] = G and G was (γ, δ, n)-regular, the graph G′ is (δ′n′)-regular for some δ′n′ = (1± σ)δn (using

n−1
poly

� γ
poly

� σ
poly

� δ ≤ 1). Notice that G′ is globally (1− σ)δ′n′-bounded (using (1− p)δn ≤ (1− σ)δ′n′ which comes

from γ
poly

� σ
poly

� p).
By Lemma 8.2 applied to G′ with ` = 1, we have (1 − σ)δ′n′ ≥ (1 − 2σ)δn edge-disjoint rainbow matchings

M1, . . . ,M(1−σ)δ′n′ with e(Mi) = (1 − σ)n′. For each i, let M ′i = Mi[V (G)] to get a rainbow matching in G with

e(Mi) ≥ (1− σ)n′ − 22γn ≥ (1− ξ3)n (using γ
poly

� σ
poly

� ξ). Notice that δ(G) ≥ (1− γ)δn ≥ (1− 2σ)δn.
Apply Lemma 8.6 to G and M ′1, . . . ,M

′
(1−2σ)δn with t = (1− 2σ)δn, n = n, and p = ξ. This gives edge-disjoint

rainbow matchings M ′′1 , . . . ,M
′′
(1−ξ)(1−2σ)δn with e(M ′′i ) = (1−10ξ)n for all i and also δ(M ′′1 ∪· · ·∪M ′′(1−ξ)(1−2σ)δn) ≥

(1 − 101ξ)(1 − 2σ)δn. Notice that (1 − ξ)(1 − 2σ)δn ≥ (1 − p)δn (using ξ, σ
poly

� p) and consider the matchings
M ′′1 , . . . ,M

′′
(1−p)δn. Now the lemma holds for these matchings because e(M ′′i ) = (1−10ξ)n ≥ (1−p)n, and δ(M ′′1 ∪· · ·∪

M ′′(1−p)δn) ≥ δ(M ′′1 ∪· · ·∪M ′′(1−ξ)(1−2σ)δn)−((1−ξ)(1−2σ)δn−(1−p)δn) ≥ (1−101ξ)(1−2σ)δn−(p−ξ−2σ+2ξσ)δn ≥
(1− 2p)δn (using ξ, σ

poly

� p).

Now we will prove the general case when we just have n−1
poly

� γ
poly

� p, δ ≤ 1. Choose p̂ such that n−1
poly

� γ
poly

�
p̂

poly

� p, δ ≤ 1. Apply Lemma 5.3 (b) to G with p′ = 0.01 in order to partition the edges of G into 100 spanning
subgraphs G1, . . . , G100 with each Gi (2γ, 0.01δ, n)-regular and globally (1+γ)(1−p)0.01δn ≤ (1−p̂)0.01δn-bounded.

For i = 1, . . . , 100, applying the “p̂
poly

� δ ≤ 0.01” case of the lemma to Gi gives a family of rainbow matchings
M i

1, . . . ,M
i
(1−p̂)0.01δn with e(M i

j) ≥ (1 − p̂)n for all i and also δ(M i
1 ∪ · · · ∪M i

(1−p̂)δn) ≥ (1− p̂)0.01δn. Taking the

union of these families for i = 1, . . . , 100 gives the required edge-disjoint rainbow matchings (using p̂ ≤ p).

8.2 Perfect matchings

In this section we find near-decompositions of graphs into perfect rainbow matchings. This is done by taking
the near-decompositions into nearly-perfect rainbow matchings produced in the previous section and then using a
completion lemma from Section 7 to turn them into perfect matchings. The most straightforward to prove version
of this is the following.

Lemma 8.9. Let 1
poly

� θ, p
poly

� ε
poly

� n−1 and t ≤ n. Suppose that we have the following edge-disjoint subgraphs in a
properly coloured balanced bipartite graph on 2n vertices.

• Rainbow matchings M1, . . . ,Mt with e(Mi) ≥ (1− ε)n and δ(M1 ∪ · · · ∪Mt) ≥ t− 10εn.

• A (2p(θn)2, θn)-dense graph E.

• Graphs DX , DY with δ(DX), δ(DY ) ≥ 4θn.
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Additionally suppose that M1 ∪ · · · ∪Mt, E, DX , and DY are colour-disjoint. Then there are edge-disjoint perfect
rainbow matchings M ′1, . . . ,M

′
t in E ∪DX ∪DY ∪M1 ∪ · · · ∪Mt.

Proof. Let X and Y be the parts of the bipartition. We construct the matchings M ′1, . . . ,M
′
t one-by-one using

Lemma 7.2. They will have the following properties.

(i) xy ∈ E(DX ∩M ′i) =⇒ x 6∈ V (Mi) ∩X.

(ii) xy ∈ E(DY ∩M ′i) =⇒ y 6∈ V (Mi) ∩ Y .

(iii) e(E ∩M ′i) ≤ εn.

Suppose that we have constructed matchingsM ′1, . . . ,M
′
s satisfying the above properties. Let Es = E\(M ′1∪· · ·∪M ′s),

Ds
X = DX \ (M ′1 ∪ · · · ∪M ′s), Ds

Y = DY \ (M ′1 ∪ · · · ∪M ′s). Using (i), ε
poly

� θ, and δ(M1 ∪ · · · ∪Mt) ≥ t − 10εn,
we have dDsX (x) ≥ dDX (x) − |{i : x 6∈ V (Mi)}| ≥ δ(DX) − 10εn ≥ 3θn for any x ∈ X. Similarly dDsY (y) ≥ 3θn for

y ∈ Y . By (iii) and Lemma 5.9, the graph Es is (2p(θn)2 − sεn, θn)-dense. Hence, using sεn ≤ εn2 ≤ pθ2n2, Es
is (p(θn)2, θn)-dense. By Lemma 7.2 applied to Ms+1, Es, Ds

X and Ds
Y , there is a rainbow perfect matching M ′s+1

satisfying (i) – (iii).

Dense graphs are less convenient to work with than typical ones. The following lemma is a version of the previous
one which replaces the colour-disjoint dense graphs by a single colour-disjoint typical one.

Lemma 8.10. Let 1 ≥ p
poly

� ε
poly

� γ
poly

� n−1. Suppose that we have the following edge-disjoint subgraphs in a properly
coloured balanced bipartite graph on 2n vertices for some t ≤ n.

• Rainbow matchings M1, . . . ,Mt with e(Mi) ≥ (1− ε)n for each i, and δ(M1 ∪ · · · ∪Mt) ≥ t− 10εn.

• A (γ, p, n)-typical, balanced bipartite graph G which is colour-disjoint from M1, . . . ,Mt.

Then, there are edge-disjoint perfect rainbow matchings M ′1, . . . ,M
′
t in M1 ∪ · · · ∪Mt ∪G.

Proof. Choose 1 ≥ p
poly

� p1

poly

� θ
poly

� ε
poly

� γ
poly

� n−1. Choose three disjoint sets of colours CE , CDX , CDY from G, with
each colour put independently into CE , CDX and CDY with probability 2p1p

−1/0.99, 5θp−1 and 5θp−1 respectively

(this is possible since p
poly

� p1

poly

� θ implies 2p1p
−1/0.99+5θp−1 +5θp−1 ≤ 1). Let E, DX , DY be the subgraphs of G

with colours from CE , CDX , CDY respectively. By Lemma 5.3 (a), with high probability E is (2γ, 2p1/0.99, n)-typical
and DX , DY are (2γ, 5θ, n)-typical.

We have that δ(DX), δ(DY ) ≥ (1−2γ)5θn ≥ 4θn. By Lemma 5.7 applied with µ = θ, p = p1/0.99 and γ = 2γ, E
is (2p1(θn)2, θn)-dense. By Lemma 8.9 applied with θ = θ and p = p1 we obtain the required perfect matchings.

Combining the above with Lemma 8.8 we get the following versatile lemma guaranteeing near-decompositions
into perfect rainbow matchings.

Lemma 8.11. Suppose that we have n, δ, p with n−1
poly

� γ
poly

� p, δ ≤ 1. Let G be a properly coloured, (γ, δ, n)-regular,
globally (1 − p)δn-bounded, balanced bipartite graph of order 2n. Let H be a properly coloured, colour-disjoint,
(γ, p, n)-typical, balanced bipartite graph on the same vertex set as G. Then G∪H has edge-disjoint perfect rainbow
matchings M1, . . . ,M(1−p)δn.

Proof. Choose n−1
poly

� γ
poly

� ε
poly

� p, δ ≤ 1. By Lemma 8.8 there are edge-disjoint rainbow matchings M1, . . . ,
M(1−ε)δn with e(Mi) = (1 − ε)n for all i with δ(M1 ∪ · · · ∪M(1−ε)δn) ≥ (1− 2ε)δn. By Lemma 8.10 applied with
t = (1− ε)δn there are edge-disjoint perfect rainbow matchings M ′1, . . . ,M

′
(1−ε)n in H ∪G.

As a corollary, we obtain that a typical properly coloured graph can be nearly-decomposed into perfect rainbow
matchings as long as there is a gap between its global boundedness and its degrees.

Corollary 8.12. Suppose that we have n, δ, p, γ with n−1
poly

� γ
poly

� p, δ ≤ 1. Every properly coloured, (γ, δ, n)-
typical, globally (1−p)δn-bounded, balanced bipartite graph G of order 2n has (1−p)δn edge-disjoint perfect rainbow
matchings.

Proof. By Lemma 5.3 (a), G can be partitioned into a (2γ, pδ/2, n)-typical graph H and a colour-disjoint (2γ, δ −
pδ/2, n)-typical graph G′. Since (1−p)δn ≤ (1−pδ/2)(1−p/2)δn, G′ is globally (1−pδ/2)(δ−pδ/2)n-bounded. By
Lemma 8.11 applied with p′ = pδ/2, and δ′ = δ − pδ/2, G′ ∪H has (1− pδ/2)(δ − pδ/2)n ≥ (1− p)δn edge-disjoint
perfect rainbow matchings.
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Applying the above lemma when the host graph is Kn,n we can show that any proper colouring of Kn,n has a
near-decomposition into perfect rainbow matchings under natural conditions on the sizes of the colour classes. This
gives us Theorem 1.9, which we restate with our notation as Lemma 8.13.

Lemma 8.13. Let 1
poly

� ε
poly

� n−1. Let Kn,n be properly coloured with ≤ (1 − 20ε)n colours having ≥ (1 − 20ε)n
edges. Then Kn,n has (1− ε)n edge-disjoint perfect rainbow matchings.

Proof. Choose 1
poly

� ε
poly

� p
poly

� γ
poly

� n−1. By Lemma 5.1, Kn,n is (γ, 1, n)-typical. Apply Lemma 5.3 (a) with
p = p, δ = 1, and γ = γ in order to partition Kn,n into a (2γ, p, n)-typical graph J and a colour-disjoint graph
G with δ(G) ≥ (1 − 2γ)(1 − p)n ≥ (1 − ε2)n. Apply Lemma 6.7 to G in order to find a subgraph G′ which is

globally (1 − ε)n-bounded and (γ, δ, n)-regular for some δ ≥ 1 − ε + 9ε2. Since ε
poly

� p we have that G′ is globally
(1 − p)δn-bounded. By Lemma 8.11 applied with γ′ = 2γ to G′ and J there are edge-disjoint perfect rainbow

matchings M1, . . . ,M(1−p)δn in G′ ∪ J . Since ε
poly

� p and δ ≥ 1 − ε + 9ε2, we have the required perfect rainbow
matchings in Kn,n.

As a corollary we show that having quadratically many colours guarantees perfect rainbow matchings.

Lemma 8.14. Let 1 ≥ ε
poly

� n−1. Let Kn,n be coloured with at least 2εn2 colours. Then Kn,n has ≤ (1− ε)n colours
having ≥ (1− ε)n edges.

Proof. Suppose otherwise. Then Kn,n has ≤ n2 − (1 − ε)n · (1 − ε)n = 2εn2 − ε2n2 edges outside of the (1 − ε)n
largest colours. This means that Kn,n has ≤ 2εn2− ε2n2 + (1− ε)n colours. By ε

poly

� n−1, this is smaller than 2εn2,
contradicting the lemma’s assumption.

Corollary 8.15. Let 1
poly

� ε
poly

� n−1. Let Kn,n be coloured with at least εn2 colours. Then Kn,n has (1 − ε)n
edge-disjoint perfect rainbow matchings.

Proof. Let ε′ = ε/40. By Lemma 8.14, Kn,n has ≤ (1− 20ε′)n colours having ≥ (1− 20ε′)n edges. By Lemma 8.13,
Kn,n has (1− ε′)n ≥ (1− ε)n edge-disjoint perfect rainbow matchings.

8.3 2-Factors

Here we use the perfect matching decomposition results from the previous section in order to show that suitable
properly coloured complete graphs have near-decompositions into rainbow 2-factors. These 2-factor results are a
stepping stone for finding Hamiltonian cycles. The basic idea of the proof is to join rainbow matchings together into
2-factors. Suppose that we have partitioned the vertices of a graph into sets V1, . . . , Vk of equal size, and that we
have rainbow matchings M1, . . . ,Mk with Mi going from Vi to Vi+1 (mod k). Notice that if the matchings M1, . . . ,Mk

are all colour-disjoint, then M1 ∪ · · · ∪Mk is a rainbow 2-factor. The proof strategy in this section is to partition the
edges of a general graph G into balanced bipartite subgraphs in which we can find perfect rainbow matchings using
results from the previous section. Then we can put these matchings together in the way just described and obtain
2-factors.

First we will need the following standard lemma which asserts that there exist complete graphs with rainbow
Hamiltonian decompositions.

Lemma 8.16. For prime n ≥ 3, there exist properly n-coloured Kn with decompositions into (n − 1)/2 rainbow
Hamiltonian cycles.

Proof. Identify the vertices of Kn with Z/nZ. Colour ij by i + j (mod n). For i = 1, . . . , (n − 1)/2, let Ci =
{a(a + i) : a = 1, . . . , n}. Notice that Ci is rainbow since we have a(a + i), a′(a′ + i) ∈ Ci =⇒ c(a(a + i)) =
2a+ i, c(a′(a′ + i)) = 2a′ + i, and so distinct edges in Ci have distinct colours. Since n is prime and i ≤ (n− 1)/2,
a+ ki = a (mod n) =⇒ n | k which implies that Ci is a cycle. The cycles C1, . . . , C(n−1)/2 are disjoint because for
i 6= j, a(a+ i) = b(b+ j) implies that b+ j = a and a+ i = b, which implies i+ j ≡ 0 (mod n).

Using the above, and results about perfect matching decompositions, we can prove our first result about 2-factor
decompositions. The following should be compared with Lemma 8.11. It shows that under analogous assumptions
to that lemma, one can find a near-decomposition into rainbow 2-factors. It also has a divisibility condition on the
size of the host graph. This divisibility condition will later be removed.
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Lemma 8.17. Let 1 ≥ δ, p
poly

� k−1
poly

� γ
poly

� n−1, with k prime and k | n. Let G be a properly coloured, globally
(1 − p)δn/2-bounded, (γ, δ, n)-regular graph, J a properly coloured (γ, p, n)-typical graph which is edge-disjoint and
colour-disjoint from G. Then G ∪ J has (1− 2p)δn/2 edge-disjoint rainbow 2-factors with cycles of length ≥ k.

Proof. Partition V (Kn) randomly into k sets V1, . . . , Vk of size m = n/k. Partition C(G ∪ J) randomly into k sets
C1, . . . , Ck, with each colour ending up in each set independently with probability 1/k.

By Lemma 5.2 (d), with probability 1 − o(k2n−1), the balanced bipartite graphs G[Vi, Vj ] are (2γ, δ, k−1n)-
regular and globally (1 + γ)(1 − p)δk−2n-bounded. Also by Lemma 5.2 (d), with probability 1 − o(kn−1), the
graphs J [Vi, Vj ] are (2γ, p, k−1n)-typical. Let Ga,b,c = GCc [Va, Vb] and Ja,b,c = JCc [Va, Vb]. By Lemma 5.3 (a),
with probability 1−o(kn−1), the balanced bipartite graphs Ga,b,c are (4γ, k−1δ, k−1n)-regular, and the graphs Ja,b,c
are (4γ, k−1p, k−1n)-typical. By a union bound, with high probability these hold for all the graphs Ga,b,c, Ja,b,c

simultaneously (using n−1
poly

� k−1). Since γ
poly

� p, the graphs Ga,b,c are globally (1− p/2)(k−1δ)(k−1n)-bounded.
For any a, b, c ∈ {1, . . . , k} with a 6= b, apply Lemma 8.11 to Ga,b,c and Ja,b,c with n′ = k−1n, δ′ = k−1δ,

p′ = k−1p, γ′ = 4γ. This gives a familyMa,b,c = {M i
a,b,c : 1 ≤ i ≤ (1−p)k−2δn} of (1−p)k−2δn rainbow matchings

with every matching M i
a,b,c ∈Ma,b,c having V (M i

a,b,c) = Va ∪ Vb and C(M i
a,b,c) ⊆ Cc.

Consider a proper k-colouring of Kk with vertex set {1, . . . , k} and a decomposition into rainbow Hamiltonian
cycles H1, . . . , H(k−1)/2 (which exists by Lemma 8.16). For every i ∈ [(k− 1)/2], j ∈ [(1− p)k−2δn], and t ∈ [k], let

F ji,t =
⋃

ab∈E(Hi)
c=c(ab)+t (mod k)

M j
a,b,c.

Claim 8.18. For all i, j, t, F ji,t is a rainbow 2-factor with cycles of length ≥ k.

Proof. Without loss of generality, by reordering the vertex sets V1 and colour sets Cj , we can suppose that Kk is
ordered and coloured so that the vertex sequence of Hi is 1, 2, . . . , k and so that c(a(a+ 1)) + t mod k = a. Then

F ji,t =
⋃k
a=1M

j
a,a+1,a.

Let v ∈ V (F ji,t) with v ∈ Va. We claim that NF ji,t
(v) = {x, y} for some x ∈ Va+1, y ∈ Va−1. To see this, notice

that since M j
a,a+1,a, M j

a−1,a,a−1 are perfect matchings between Va and Va+1, Va−1 respectively, they each have one
edge through v. Let these edges be vx and vy to get two vertices with x, y ∈ N(v). To see that there are no edges
other than vx, vy containing v, notice that v ∈ Va and none of the matchings forming F ji,t other than M j

a,a+1,a and

M j
a−1,a,a−1 touch Va. We have shown that F ji,t is 2-regular and so a 2-factor.

To see that F ji,t has no cycles shorter than k, consider a cycle C with vertex sequence v1, v2, . . . , vs. Without
loss of generality, we can suppose that Hi is labelled so that v1 ∈ V1 and v2 ∈ V2. By the previous paragraph, this
implies that vi ∈ Vi (mod k) must hold for all i, implying that s ≥ k.

To see that F ji,t is rainbow, notice first that it is the union of rainbow sets of edges M j
a,a+1,a for a = 1, . . . , k.

For any such matching we have C(M j
a,a+1,a) ⊆ Ca. Together with the colour-disjointness of Ca and Ca′ , we get that

M j
a,a+1,a and M j

a′,a′+1,a′ are colour-disjoint for a 6= a′. Thus, F ji,t is rainbow.

Notice that F ji,t and F j
′

i′,t′ are edge-disjoint for (i, j, t) 6= (i′, j′, t′) (since any matching Md
a,b,c is contained in

exactly one of the 2-factors F ji,t, and matchings Md
a,b,c, M

d′

a′,b′,c′ are edge-disjoint for (a, b, c, d) 6= (a′, b′, c′, d′)). The

total number of 2-factors we have is k × (1− p)k−2δn× (k − 1)/2 = (1− p)(1− k−1) δn2 ≥ (1− 2p) δn2 .

In the remainder of this section we prove that the above lemma is true even without the divisibility condition
on n. The idea of the proof is to randomly partition the graph G into subgraphs which do satisfy the divisibility
condition. Applying Lemma 8.17 to each of these subgraphs gives a decomposition of them into 2-factors. By
carefully putting the 2-factors together we get a decomposition of the whole graph into 2-factors. First we need the
following standard number-theoretic result.

Lemma 8.19. Let 1
poly

� ε
poly

� s−1
poly

� k−1
poly

� n−1. There exist prime numbers k1, k2 ∈ [k, (1 + ε)k], integers
s′ = (1±ε)s and n1, . . . , ns′ = (1±ε)n/s so that n1 + · · ·+ns′ = n and for each i = 1, . . . , s′ either k1 | ni or k2 | ni.

Proof. Since 1
poly

� ε
poly

� k−1, we can choose two distinct primes k1, k2 ∈ [k, (1 + 0.2ε)k]. (When ε is constant,
this is a consequence of the Prime Number Theorem. More generally, we need the result of Hoheisel that there is
some fixed number α > 0 such that for sufficiently large n, there is a prime in the interval [n, (1 + n−α)n]. (See

[11]). Since ε
poly

� n−1 implies 0.2ε ≥ n−α, we get that there is a prime in [x, (1 + 0.2ε)x] for sufficiently large x).

As ε
poly

� k−1
1 , k−1

2 , s−1
poly

� n−1, there are integers z1, z2 ≥ 100n/εsk with k1z1 + k2z2 = n. (See [46, pg 25–26,
Corollary 2]. Applying this corollary with a = k1, b = k2, n′ = n− (k1 + k2)d100n/εske gives non-negative integers
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x, y with k1x+k2y = n− (k1 +k2)d100n/εske. Letting z1 = x+ d100n/εske, z2 = y+ d100n/εske gives the numbers
we want.)

For some appropriate s′′ ≥ 50ε−1, pick integers m1, . . . ,ms′′ so that mi = (1 ± 0.5ε)n/sk1 and
∑s′′

i=1mi = z1.
This is possible as z1 ≥ 100n/εsk. Similarly, for some appropriate s′, pick integers ms′′+1, . . . ,ms′ so that mi =

(1± 0.5ε)n/sk2 and
∑s′

i=s′′+1mi = z2.
For each 1 ≤ i ≤ s′′, let ni = k1mi, and for each s′′ < i ≤ s′, let ni = k2mi. Then, for each 1 ≤ i ≤ s′,

ni = (1± 0.5ε)n/s. Thus, as n1 + . . .+ ns′ = n, we have s′ = (1± ε)s. The numbers k1, k2, s′, and n1, . . . , ns′ then
satisfy the conditions of the lemma.

The following lemma shows how any large set can be evenly covered by subsets whose sizes satisfy the divisibility
condition of Lemma 8.17.

Lemma 8.20. Let 1
poly

� ε
poly

� ŝ−1
poly

� k−1
poly

� γ
poly

� n−1. There exists a family H of partitions of [n] and a number
s = (1± ε)ŝ with the following properties.

(i) H = M1 ∪ · · · ∪ Ms2 log2 n with each Mi = {M1
i , . . . ,M

s
i } for disjoint sets M1

i , . . . ,M
s
i satisfying |M j

i | =

(1± ε)n/s and
⋃s
j=1M

j
i = [n].

(ii) For each i, j there is some prime number kji ∈ [k, (1 + ε)k] with kji | |M
j
i |.

(iii) For each distinct pair x, y ∈ [n], there are (1± 5ε)s log2 n sets M j
i containing both x and y.

Proof. Apply Lemma 8.19 in order to find a number s = (1± ε)ŝ, primes k1, k2 = (1± ε)k and numbers n1, . . . , ns =
(1± ε)n/s so that n1 + · · ·+ ns = n and, for each i = 1, . . . , s, either k1 | ni or k2 | ni. Let M1, . . . ,Ms be disjoint
subsets of [n] with |M i| = ni.

Choose s2 log2 n permutations σ1, . . . , σs2 log2 n of [n] uniformly at random. LetMi = {σi(M1), . . . , σi(M
s)} and

H = M1 ∪ · · · ∪Ms2 log2 n. Notice that as a consequence of the properties from Lemma 8.19, all the conditions of
the lemma hold for H aside from (iii). We will show that this condition holds with high probability.

Let x, y ∈ [n] be distinct vertices. We have P(x, y ∈Mi) =
∑s
j=1

(
nj
2

)/(
n
2

)
= (1±4ε)s−1. Let X be the number of

familiesMi which contain x, y. We have that X is bounded above and below by random variables with distributions
Binomial(s2 log2 n, (1 + 4ε)s−1) and Binomial(s2 log2 n, (1 − 4ε)s−1) respectively. From Chernoff’s Bound we have

P
(
|X − s log2 n| > 5εs log2 n

)
≤ 4e−

ε2s log2 n
100 = o(n−2) (using ε

poly

� ŝ−1). By the union bound taken over all pairs

x, y, we have that with high probability all pairs x, y ∈ [n], have (1± 5ε)s log2 n families Mi containing both x and
y.

By combining the lemmas of this section we can prove Lemma 8.17 without the divisibility assumption.

Lemma 8.21. Let 1 ≥ δ, p, log−1 n
poly

� k−1
poly

� γ
poly

� n−1. Let G be a properly coloured, globally (1− p)δn/2-bounded,
(γ, δ, n)-regular graph and let J be a properly coloured (γ, p, n)-typical graph which is edge-disjoint and colour-disjoint
from G but has the same vertex set. Then G∪J has (1−p)δn/2 edge-disjoint rainbow 2-factors with cycles of length
≥ k.

Proof. Choose 1 ≥ δ, p, log−1 n
poly

� ε
poly

� ŝ−1
poly

� k−1
poly

� γ
poly

� n−1.
Apply Lemma 8.20 to find a familyH of partitions of V (G) and a number s = (1±ε)ŝ so that the properties in that

lemma hold (with the associated notation). Let σ be a random permutation of V (G). Lemma 5.2 (c) implies that for

each i, j with probability 1−o(n−1) we have that G[σ(M j
i )] is (2γ, δ, |M j

i |)-regular and globally (1+γ)(1−p) δ|M
j
i |

2

2n -

bounded, while J [σ(M j
i )] is (2γ, p, |M j

i |)-typical. Noticing that there are s3 log n ≤ n choices for (i, j), fix σ then, so

that this holds for each i, j. Notice that, for all distinct vertices x and y, there are (1±5ε)s log2 n sets M j
i containing

σ−1(x) and σ−1(y), and hence there are (1±5ε)s log2 n sets σ(M j
i ) containing x and y. Relabelling the sets σ(M j

i ) by

M j
i , we can now assume that the properties from Lemma 8.20 hold for the family H (with the associated notation),

G[M j
i ] is (2γ, δ, |M j

i |)-regular and globally (1 + γ)2(1− p) δ|M
j
i |

2

2n -bounded, while J [M j
i ] is (2γ, p, |M j

i |)-typical.
Partition the colours independently at random into sets C1, . . . , Cs. Let GCj and JCj denote the subgraphs of G

and J respectively consisting of colour Cj edges. By Lemma 5.2 (a), for all i, j, t, with probability 1− o(sn−1) the

graph GCt [M j
i ] is (4γ, δ/s, |M j

i |)-regular and globally (1+γ)2(1−p) δ|M
j
i |

2

2n -bounded, while JCt [M j
i ] is (4γ, p/s, |M j

i |)-
typical. Thus, as there are at most s4 log n ≤ ns−1 choices of (i, j, t), we can fix sets C1, . . . , Cs so that this holds
for all i, j, t.
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For any edge e, let dH(e) be the number of partitions in H which contain some set containing e. From the
properties from Lemma 8.20, we have dH(e) = (1 ± 5ε)s log2 n. For each edge e, choose an arbitrary injection
fe : [dH(e)]→ [s2 log2 n] for which e is containing in some set inMfe(m) for all m ∈ [dH(e)]. For each edge e, choose

a number me out of 1, . . . , (1 + 5ε)s log2 n at random. For i = 1, . . . , s2 log2 n, let Gi and Ji be subgraphs of G and
J respectively consisting of edges e with fe(me) = i (here it is possible that me > dH(e), in which case fe(me) is
undefined. When this happens, the edge e is placed in neither of the graphs Gi, Ji). Notice that edges of G are
placed into Gi and Ji independently with probability 1/(1 + 5ε)s log2 n.

For i = 1, . . . , s2 log2 n and j, t = 1, . . . , s, define Gi,j,t and Ji,j,t to be the subgraphs of G and J with vertex set

M j
i consisting of edges xy which are simultaneously contained in E(Gi), contained in M j

i , and whose colours are in

Cj+t (mod s). Notice that Gi,j,t and Ji,j,t are formed from GCt [M j
i ] and JCt [M j

i ] by choosing every edge with proba-

bility 1/(1+5ε)s log2 n. By Lemma 5.2 (b) with probability 1−o(n−1s), the graph Gi,j,t is (8γ, δ
(1+5ε)s2 log2 n

, |M j
i |)-

regular and globally (1 + γ)3(1 − p) δ|Mj
i |

2

(1+5ε)2ns log2 n
-bounded, while Ji,j,t is (8γ, p

(1+5ε)s2 log2 n
, |M j

i |)-typical. Using

|M j
i | = (1 ± ε)ns and p

poly

� ε, γ, we have that Gi,j,t is globally (1 − p/4)
δ|Mj

i |
(1+5ε)2s2 log2 n

-bounded. Noting again that

there are at most s4 log n ≤ ns−1 choices of (i, j, t), we can fix the choices of me so that this holds for each i, j, t.
Apply Lemma 8.17 with δ′ = δ

(1+5ε)s2 log2 n
, p′ = p

(1+5ε)s2 log2 n
, n′ = |M j

i |, γ′ = 12γ, k′ = kji in order to find

a family Fi,j,t of (1 − p/2)
δ|Mj

i |
(1+5ε)2s2 log2 n

edge-disjoint rainbow 2-factors with cycles of length ≥ k in Gi,j,t ∪ Ji,j,t
(for this application we are using 1 ≥ δ, p, log−1 n

poly

� s−1
poly

� k−1
poly

� γ
poly

� n−1 to conclude that 1 ≥ δ′, p′
poly

�
k′−1

poly

� γ′
poly

� n′−1. The divisibility condition in Lemma 8.17 comes from the property of kji in Lemma 8.20). Since

|M j
i | = (1± ε)ns and p

poly

� ε, we can choose a subfamily F ′i,j,t of size (1− p) δn
2s3 log2 n

. Let Fi,t =
⋃s
j=1 F ′i,j,t to get a

family of (1 − p) δn
2s2 log2 n

edge-disjoint rainbow 2-factors in G ∪ J with cycles of length ≥ k. To see that these are

rainbow 2-factors notice that for j 6= j′ the graphs Gi,j,t ∪ Ji,j,t and Gi,j′,t ∪ Ji,j′,t are vertex-disjoint (their vertex

sets are M j
i and M j′

i respectively) and colour-disjoint (their colours are contained in Cj+t (mod s) and Cj′+t (mod s)

respectively). Since the 2-factors in {Fi,t : 1 ≤ i ≤ s2 log2 n, 1 ≤ t ≤ s} are all edge-disjoint, we have a total of
(1− p)δn/2 edge-disjoint rainbow 2-factors as required.

By combining the above with a regularization lemma we can find 2-factor decompositions in nearly-complete
graphs which have few large colours.

Lemma 8.22. Let 1 ≥ ε, log−1 n
poly

� k−1
poly

� γ
poly

� n−1. Let H be a properly coloured, (γ, 1− ε2, n)-typical graph with
≤ (1− 60ε)n colours having ≥ (1− 60ε)n/2 edges. Then H has (1− 3ε)n/2 edge-disjoint rainbow spanning 2-factors
with cycles of length ≥ k.

Proof. Choose 1 ≥ ε, log−1 n
poly

� p
poly

� k−1
poly

� γ
poly

� n−1. Apply Lemma 5.2 (a) with p = p/(1 − ε2), δ = (1 − ε2),
and γ = γ in order to partition H into a (2γ, p, n)-typical graph J and a colour-disjoint graph G with δ(G) ≥
δ(H)−∆(J) ≥ (1− 3ε2)n.

Apply Lemma 6.6 to G with ε′ = 3ε, γ = γ in order to find a subgraph G′ which is globally (1− 3ε)n/2-bounded

and (γ, δ, n)-regular for some δ ≥ 1− 3ε+ 81ε2. Notice that G′ is globally (1− p)δn/2-bounded (since p
poly

� ε).
By Lemma 8.21 applied to G′ and J with γ′ = 2γ, δ = δ, p = p, k = k there are (1 − p)δn/2 ≥ (1 − 3ε)n/2

edge-disjoint rainbow 2-factors with cycles of length ≥ k.

8.4 Hamiltonian cycles

Here we take the 2-factor decompositions from the previous section and modify them into Hamiltonian decomposi-
tions. The proofs and results in this section are very similar to the ones in Section 8.2 where we took nearly-perfect
matchings and modified them into perfect matchings. The following is the first result we prove about turning a
family of 2-factors into a family of Hamiltonian cycles. It parallels Lemma 8.9 for turning nearly-perfect matchings
into perfect matchings.

As in Lemmas 7.4 and 7.5 the following lemma has a mix of directed and undirected graphs. As before in the
cycles we build, we do not care about the directions of their edges.

Lemma 8.23. Let 1
poly

� δ
poly

� p
poly

� θ
poly

� k−1
poly

� n−1 and t ≤ n. Suppose that we have the following edge-disjoint,
properly coloured graphs on a set of n vertices.

• F1, . . . , Ft rainbow 2-factors with cycles of length ≥ k.
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• (3p(θn)2, θn)-dense graphs E1, E2, E3.

• Digraphs DX , DY with δ+(DX), δ+(DY ) ≥ 3δn.

Additionally suppose that F1 ∪ · · · ∪ Ft, E1, E2, E3, DX , and DY are colour-disjoint. Then there are edge-disjoint
rainbow Hamiltonian cycles C1, . . . , Ct in E1 ∪ E2 ∪ E3 ∪DX ∪DY ∪ F1 ∪ · · · ∪ Ft.

Proof. For i = 1, . . . , t let mi be the number of cycles in Fi, and note that mi ≤ k−1n ≤ pθn.

Claim 8.24. There are matchings M1, . . . ,Mt with ∆(M1 ∪ · · · ∪Mt) ≤ 4n/k such that Mi ⊆ Fi is a matching of
size mi containing exactly one edge from each cycle of Fi.

Proof. Choose each matching Mi uniformly at random from all matchings containing exactly one edge from each
cycle of Fi. If t ≤ 4n/k then we trivially have ∆(M1 ∪ · · · ∪Mt) ≤ 4n/k. Otherwise, notice that for any vertex v, its
degree in M1 ∪ · · · ∪Mt is stochastically dominated by Binomial(t, 2k−1). By Chernoff’s Bound with ε = 1/2, the

union bound, and t ≤ n we have P(∆(M1 ∪ · · · ∪Mt) > 4t/k) ≤ 4ne−2t/12k < 1) (using n−1
poly

� k−1 and 4n/k ≤ t).
A choice of matchings satisfying the claim thus exists.

Let Mi = {x1
i y

1
i , . . . , x

mi
i ymii }. We construct the Hamiltonian cycles C1, . . . , Ct one-by-one using Lemma 7.5.

They will have the following properties.

(i) xy ∈ DX ∩ Ci =⇒ x = xji for some j ∈ {1, . . . ,mi}.

(ii) yx ∈ DY ∩ Ci =⇒ y = yji for some j ∈ {1, . . . ,mi}.

(iii) e(Ei ∩ Ci) ≤ k−1n for i = 1, 2, 3.

Suppose that we have constructed Hamiltonian cycles C1, . . . , Cs satisfying the above properties. Let Esi = Ei \
(C1 ∪ · · · ∪Cs) for i = 1, 2, 3, Ds

X = DX \ (C1 ∪ · · · ∪Cs), Ds
Y = DY \ (C1 ∪ · · · ∪Cs). Using (i), δ+(DX) ≥ 3δn, and

∆(M1 ∪ · · · ∪Mt) ≤ 4n/k ≤ δn, we have d+
DsX

(x) ≥ d+
DX

(x)− d+
DX∩(C1∪···∪Cs)(x) ≥ δ+(DX)− 4n/k ≥ δn+ nk−1 ≥

δn + ms+1 for any x ∈ X. Similarly d+
DsY

(y) ≥ δn + ms+1 for y ∈ Y . Using Lemma 5.9 and (iii), Es1 , E
s
2 , E

s
3

are (3p(θn)2 − s(k−1n), θn)-dense. Since k−1ns,ms+1θn ≤ p(θn)2, they are also (p(θn)2 + ms+1θn, θn)-dense. By
Lemma 7.5 applied to Fs+1, Es1 , E

s
2 , E

s
3 , D

s
X , D

s
Y with θ = θ, p = p, m = ms+1, δ = δ, (xj , yj) = (xji , y

j
i ) there is a

rainbow Hamiltonian cycle Cs+1 satisfying (i) – (iii).

We will need the following easy lemma.

Lemma 8.25. Let δ
poly

� n−1. Every graph G with δ(G) ≥ δn has an orientation D such that δ+(D) ≥ δn/3.

Proof. Orient the graph at random. Notice that for any vertex d+(v) ∼ Binomial(0.5, d(v)). By Chernoff’s Bound

we have P(d+(v) < d(v)/3) ≤ 2e−d(v)/54 ≤ 2e−δn/54 = o(n−1) (using δ
poly

� n−1). Taking a union bound over all
vertices shows that some suitable orientation exists.

The following version of Lemma 8.23 will be easier to apply.

Lemma 8.26. Let 1
poly

� p
poly

� γ, k−1
poly

� n−1. For t ≤ n, let F1, . . . , Ft be edge-disjoint rainbow 2-factors with cycles
of length ≥ k. Let G be an edge-disjoint, colour-disjoint (γ, p, n)-typical graph. Then there are edge-disjoint rainbow
Hamiltonian cycles C1, . . . , Ct in F1 ∪ · · · ∪ Ft ∪G.

Proof. Choose 1
poly

� p
poly

� δ
poly

� p1

poly

� θ
poly

� γ, k−1
poly

� n−1. Choose five disjoint sets of colours CE1
, CE2

, CE3
, CDX , CDY

from G, with each colour put independently into CE1
, CE2

, CE3
, CDX , CDY with probabilites 4p1p

−1, 4p1p
−1, 4p1p

−1,

10δp−1, 10δp−1 respectively (this is possible since p
poly

� δ
poly

� p1 implies 4p1p
−1+4p1p

−1+4p1p
−1+10δp−1+10δp−1 ≤

1). Let E1, E2, E3, DX , DY be the subgraphs of G with colours from CE1
, CE2

, CE3
, CDX , CDY respectively. By

Lemma 5.2 (a), with positive probability E1, E2, E3 is (2γ, 4p1, n)-typical and DX , DY are (2γ, 10δ, n)-typical. By
Lemma 8.25 and (2γ, 10δ, n)-typicality, DX and DY can be oriented so that δ+(DX), δ+(DY ) ≥ 3δn.

By Lemma 5.7 applied with µ = θ, γ′ = γ/2, E1, E2, E3 are (3p1(θn)2, θn)-dense. By Lemma 8.23 applied with
θ = θ, p = p1, we obtain the required Hamiltonian cycles.

The following lemma should be compared with Lemmas 8.11 and 8.21. It produces a near-decomposition into
Hamiltonian cycles under a similar assumption to those lemmas.
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Lemma 8.27. Let 1 ≥ δ, p, log−1 n
poly

� γ
poly

� n−1. Let G be a properly coloured (γ, δ, n)-typical graph which is globally
(1− p)δn/2-bounded. Then G has (1− p)δn/2 edge-disjoint rainbow Hamiltonian cycles.

Proof. Choose 1
poly

� δ, p, log−1 n
poly

� p1

poly

� k−1
poly

� γ
poly

� n−1. Apply Lemma 5.2 (a) with p′ = p1, δ = δ, and γ = γ
in order to partition H into three colour-disjoint graphs G′, J1 and J2 so that J1 and J2 are (2γ, p1δ, n)-typical and

G′ is (2γ, (1− 2p1)δ, n)-typical. Setting δ1 = (1− 2p1)δ and using p
poly

� p1, we have that G′ is (2γ, δ1, n)-typical and
globally (1− p1)δ1n/2-bounded.

Apply Lemma 8.21 to G′ and J1 with γ′ = 2γ, δ′ = δ1, p′ = p1, k = k in order to find (1− p1)δ1n/2 edge-disjoint
rainbow spanning 2-factors F1, . . . , F(1−p1)δ1n/2 in G′ whose cycles have length ≥ k.

Apply Lemma 8.26 to F1, . . . , F(1−p1)n/2 and J2 with p = δp1, γ′ = 2γ, k = k, t = (1− p1)δ1n/2 in order to find

(1− p1)δ1n/2 edge-disjoint rainbow Hamiltonian cycles in G. Since p
poly

� p1 implies (1− p1)δ1n/2 ≥ (1− p)δn/2, we
have enough cycles for the lemma.

The following lemma should be compared with Lemma 8.22. Under similar assumptions, it produces a near-
decomposition into Hamiltonian cycles rather than 2-factors.

Lemma 8.28. Let 1
poly

� ε, log−1 n
poly

� γ
poly

� n−1. Let G be a properly coloured, (γ, 1 − ε2, n)-typical graph with
≤ (1 − 180ε)n colours having ≥ (1 − 180ε)n/2 edges. Then G has (1 − 6ε)n/2 edge-disjoint rainbow Hamiltonian
cycles.

Proof. Choose 1
poly

� ε, log−1 n
poly

� p
poly

� k−1
poly

� γ
poly

� n−1. Apply Lemma 5.2 (a) with p′ = p/(1 − ε2), δ = (1 − ε2),
and γ = γ in order to partition H into a (2γ, p, n)-typical graph J and a colour-disjoint (2γ, 1 − p − ε2, n)-typical
graph G′.

Let ε′ =
√
p+ ε2, and notice that ε

poly

� p implies ε ≤ ε′ ≤ 2ε. Hence G′ has ≤ (1 − 60ε′)n colours having
≥ (1 − 60ε′)n/2 edges. Apply Lemma 8.22 to G′ with γ′ = 2γ, ε′ = ε′, k = k in order to find (1 − 3ε′)n/2
edge-disjoint rainbow spanning 2-factors F1, . . . , F(1−3ε′)n/2 in G′ whose cycles have length ≥ k.

Apply Lemma 8.26 to F1, . . . , F(1−3ε′)n/2 and J with p = p, γ′ = 2γ, k = k, t = (1 − 3ε′)n/2 in order to find
(1 − 3ε′)n/2 edge-disjoint rainbow Hamiltonian cycles in G. Since (1 − 3ε′)n/2 ≥ (1 − 6ε)n/2, we have enough
cycles.

We can show that when a properly coloured Kn has few large colours, then it has a near-decomposition into
Hamiltonian cycles. This is “half” of our proof of the asymptotic version of the Brualdi-Hollingsworth and Kaneko-
Kano-Suzuki Conjectures. The other half will be in the case when there are many large colours, which is performed
in Section 9. The following lemma is a restatement, in our notation, of Theorem 1.10.

Lemma 8.29. Let 1
poly

� ε
poly

� n−1. Let Kn be properly coloured with ≤ (1− ε)n colours having ≥ (1− ε)n/2 edges.
Then Kn has (1− ε)n/2 edge-disjoint rainbow Hamiltonian cycles.

Proof. Choose 1
poly

� ε, log−1 n
poly

� ε1

poly

� γ
poly

� n−1. Let G be an arbitrary (γ, 1 − ε2
1, n)-typical subgraph of Kn (it

exists e.g. by Lemmas 5.1 and 5.2 (a) or (b)). Notice that since ε
poly

� ε1, G has ≤ (1 − 180ε1)n colours having
≥ (1 − 180ε1)n/2 edges. By Lemma 8.28, G has (1 − 6ε1)n/2 ≥ (1 − ε)n/2 edge-disjoint rainbow Hamiltonian
cycles.

We now restate, in our notation, Corollary 1.11, and deduce it from Lemma 8.29.

Corollary 8.30. Let 1
poly

� ε
poly

� n−1. Given a properly coloured Kn let U be a random subset of (1 − ε)n vertices.
Then, with high probability, the subgraph induced by U has (1− 2ε)n/2 edge-disjoint rainbow Hamiltonian cycles.

Proof. Take η with ε
poly

� η
poly

� 1/n. By Lemma 5.2 (c), G[U ] is with high probability globally (1 + η)(1 − ε)2n/2-
bounded, and hence (1 − ε/2)|U |/2-bounded. Thus, by Lemma 8.29, G[U ] has (1 − ε/2)|U |/2 ≥ (1 − 2ε)n/2
edge-disjoint rainbow Hamiltonian cycles.

9 Rainbow Trees

In this section we show that the Brualdi-Hollingsworth and Kaneko-Kano-Suzuki Conjectures hold asymptotically.
Part of this result was already proved in Lemma 8.29, which shows that the asymptotic versions of the Brualdi-
Hollingsworth and Kaneko-Kano-Suzuki Conjectures hold in colourings of Kn which have few large colours. In this
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section we focus on colourings of Kn which have many large colours. Such colourings should be thought of as being
close to 1-factorizations.

The basic idea of the proof is to notice that for any properly coloured Kn, we know how to find a large set of
vertices S so that the induced subgraph Kn[S] has a near-decomposition into Hamiltonian paths. Indeed, a random
set S will have this property (by combining Lemmas 5.2 (c) and 8.27). To find a near-decomposition into spanning
trees we modify the paths in Kn[S] by extending them one vertex at a time to cover all of V (Kn).

9.1 Small rainbow trees

Here we prove a result about near-decompositions of globally bounded graphs into rainbow forests which are suf-
ficiently small. We remark that this lemma is only needed to deal with properly coloured complete graphs which
are not 1-factorizations—if one only wants to prove an asymptotic version of the Brualdi-Hollingsworth Conjecture,
then this section can be omitted.

The result we prove in this section is essentially the following: for m
poly

� k every properly coloured globally
m-bounded graph with ≥ (1 + o(1))mk edges has a near-decomposition into m rainbow k-edge forests F1, . . . , Fm.
This is relatively straightforward (see Lemma 9.1), however, we need to find such a near-decomposition that interacts
well with a large vertex cover. Here, a vertex cover S is a set of vertices which contains at least one vertex in each
edge. We develop Lemma 9.1 through Lemma 9.3 to arrive at the result we need, Lemma 9.5.

Lemma 9.1. Let 1
poly

� β
poly

� k/n, m ≥ βn and 0 ≤ ` < m. Let G be a properly coloured, globally m-bounded,
n-vertex graph, with e(G) ≥ (1 + β)(km+ `). Then, G has m edge-disjoint rainbow forests F1, . . . , Fm, so that each
Fi has k + 1{i≤`} edges.

Proof. Note that if k = 0 then selecting ` edges gives the required forests. Assume then that k ≥ 1. By deleting
edges if necessary, assume that e(G) = (1 + β)(km+ `).

Choose integers dc, c ∈ C(G), such that b |EG(c)|
1+β c ≤ dc ≤ d |EG(c)|

1+β e and
∑
c∈C(G) dc = km + `, where we have

used that ∑
c∈C(G)

⌊
|EG(c)|
1 + β

⌋
≤

∑
c∈C(G)

|EG(c)|
1 + β

=
e(G)

1 + β
= km+ ` ≤

∑
c∈C(G)

⌈
|EG(c)|
1 + β

⌉
.

Let C1, . . . , Cm be sets in C(G), so that each Ci has size k+1{i≤`}, and each colour c appears in dc sets Ci. Note that
this is possible as dc ≤ m for each c ∈ C(G) and

∑m
i=1(k+1{i≤`}) = km+`. Let F ′1, . . . , F

′
m be edge-disjoint rainbow

forests in G with C(F ′i ) ⊂ Ci for each i and so that |∪mi=1E(F ′i )| is maximised. Suppose that |∪mi=1E(F ′i )| < km+ `,
for otherwise F ′1, . . . , F

′
m satisfy the lemma.

Claim 9.2. For each colour c, |EG(c) \ (∪mi=1E(F ′i ))| ≤
βm
1+β + 2k.

Proof. Fixing a colour c, let M be the edges with colour c not in ∪mi=1E(F ′i ), and suppose that |M | ≥ |EG(c)|− dc +
k + 1. As

∑m
i=1 |E(F ′i ) ∩ EG(c)| < dc, there is some j for which c ∈ Cj but F ′j contains no colour c edge, so that,

furthermore, |V (F ′j)| ≤ 2k. But then, as |M | ≥ k + 1, there is some colour c edge in M which is not contained in
V (F ′j), contradicting the maximality of | ∪mi=1 E(F ′i )|.

Thus, we must have |M | < |EG(c)| − dc + k+ 1 ≤ |EG(c)| − b |Ec(G)|
1+β c+ 2k ≤ m− b m

1+β c+ 2k = d βm1+β e+ 2k.

Next, let F1, . . . , Fm be a set of edge-disjoint rainbow forests in G with F ′i ⊂ Fi and |E(Fi)| ≤ k + 1{i≤`} for
each i, so that | ∪mi=1 E(Fi)| is maximised. Suppose there is some 1 ≤ j ≤ m for which |E(Fj)| < k + 1{j≤`}. Any
edge outside of ∪mi=1E(Fj) must be contained in V (Fj) or share a colour with Fj . Thus, by Claim 9.2, we have

e(G) ≤ | ∪mi=1 E(Fi)|+
(

2k

2

)
+ k

(
βm

1 + β
+ 2k

)
≤ km+ `+ 4k2 + k

βm

1 + β

≤ km+ `+ 4k2 + kβm(1− β/2)

≤ (1 + β)(km+ `) + k(4k − β2m/2)

≤ (1 + β)(km+ `) + k(4k − β3n/2)

< (1 + β)(km+ `),

where we have used that m ≥ βn and 1
poly

� β
poly

� k/n. This contradicts e(G) = (1 + β)(km+ `), and thus there is no
such j with |E(Fj)| < k + 1{i≤`}.
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Given a large vertex cover S in a graph G, we wish to find edge-disjoint k-edge rainbow forests so that large
degree vertices outside S are in every forest while small degree vertices outside S have degree at most 1 in every
forest. Lemma 9.1 can almost cover the edges within S with forests. We now expand this to prove a lemma almost
covering these edges as well as the edges next to vertices with small degree in A := V (G) \ S.

Lemma 9.3. Let 1
poly

� β
poly

� ε
poly

� k/n and m ≥ βn. Let G be a properly coloured, globally m-bounded, n-vertex graph,
with e(G) ≥ (1 + β)km and let A be a set of vertices with |A| ≤ εn which contains no edges in G. Furthermore,
suppose d(v) ≤ m+ 2k for each v ∈ A.

Then, G has edge-disjoint k-edge rainbow forests F1, . . . , Fm, where, additionally, for any v ∈ A and 1 ≤ i ≤ m,
dFi(v) ≤ 1.

Proof. Note that the lemma is trivial if k = 0, and follows immediately from Lemma 9.1 when A = ∅. Suppose
then that k, |A| ≥ 1. Let G1 be the subgraph of edges of G with no vertices in A. Let k′ and ` be integers with
0 ≤ ` < m maximising k′m+ ` subject to e(G1) ≥ (1 +β2)(k′m+ `) and k′m+ ` ≤ km. By Lemma 9.1, G1 contains
edge-disjoint rainbow forests F ′1, . . . , F

′
m so that F ′i has k′+ 1{i≤`} edges. If k′m+ ` = km, then these forests satisfy

the lemma, so suppose that k′m+ ` < km, and therefore e(G1) ≤ (1 + β2)(k′m+ `) + 2.
Let G2 = G−G1 and pick an integer λ so that βkm/4 ≥ λ|A| ≥ βkm/8 (which is possible as |A| ≤ εn, m ≥ βn

and β
poly

� ε). Note that

e(G2) ≥ (1 + β)km− (1 + β2)(k′m+ `)− 2 ≥ (1 + β2)(km− k′m+ `) + βkm/2− 2

≥ (1 + β2)(km− k′m+ `) + βkm/4 ≥ (1 + β2)(km− k′m− `) + λ|A|.

By deleting edges if necessary, assume that e(G2) = (1 + β2)(km− k′m− `) + λ|A|. Choose integers dv, v ∈ A, such

that bdG2
(v)−λ

1+β2 c ≤ dv ≤ d
dG2

(v)−λ
1+β2 e and

∑
v∈A(dv − λ) = km− k′m− `. Let A1, . . . , Am be sets in A, so that each

Ai has size k−k′−1{i≤`} and each vertex v appears in dv sets Ai, noting that this is possible as for each v we have,

as β
poly

� k/n and m
poly

� βn,

dv ≤ 1 +
d(v)− λ
1 + β2

≤ 1 + d(v)(1− β2/2) ≤ 1 + (m+ 2k)(1− β2/2) ≤ m,

and
∑m
i=1(k − k′ − 1{i≤`}) = km− k′m− `.

Let F ′′1 , . . . , F
′′
m be a set of edge-disjoint rainbow forests in G with, for each i, F ′i ⊂ F ′′i ⊂ F ′i ∪G2 and dF ′i (v) ≤ 1

for each v ∈ Ai and dF ′i (v) = 0 for each v ∈ A \ Ai. Furthermore, suppose | ∪mi=1 E(F ′′i )| is maximised subject to
these conditions.

Claim 9.4. For each v ∈ A, |EG(v) \ (∪mi=1E(F ′′i ))| ≤ β2m+λ
1+β2 + 2k.

Proof. Fixing a vertex v ∈ A, let E be the edges through v not in ∪mi=1E(F ′′i ), and suppose that |E| ≥ dG2
(v)−dv+k.

As
∑m
i=1 |V (F ′′i )∩{v}| = dG2

(v)−|E| < dv, there is some j for which v ∈ Aj but F ′′j contains no edge adjacent to v.
But then, as |E| ≥ k and G is properly coloured, there is some edge in E with colour outside of C(F ′′j ), contradicting
the maximality of | ∪mi=1 E(F ′′i )|.

Thus, we must have |E| ≤ dG2
(v)− dc + k ≤ dG2

(v)−bdG2
(v)−λ

1+β2 c+ k ≤ m+ k−bm−λ1+β2 c+ k ≤ dβ
2m−λ
1+β2 e+ 2k.

Let F1, . . . , Fm be a set of edge-disjoint rainbow forests in G with F ′′i ⊂ Fi ⊂ F ′′i ∪G2 = F ′i ∪G2 and |E(Fi)| ≤ k
for each 1 ≤ i ≤ m, and dFi(v) ≤ 1 for each 1 ≤ i ≤ m and v ∈ A, so that | ∪mi=1E(Fi)| is maximised. Suppose there
is some 1 ≤ j ≤ m for which |E(Fj)| < k. Any edge in G2 outside of ∪mi=1E(Fi) must contain a vertex in V (Fj)∩A
or share a colour with Fj . Recall that there are no edges in G within A, and note that every edge in E(Fj) \E(F ′j)
is in G2. Thus, as F ′j ⊂ E(Fj) is a forest with k′ + 1{i≤`} edges and no vertices in A, we have

|V (Fj) ∩A| = |E(Fj) \ E(F ′j)| < k − k′ − 1{i≤`} ≤ k − k′,

and, hence, |V (Fj) ∩ A| ≤ min{|A|, k − k′}. Thus, by Claim 9.4, and noticing that G2 is globally |A|-, and hence
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εn−, bounded, we have

e(G2) ≤ | ∪mi=1 E(Fi) \ E(F ′i )|+ min{|A|, k − k′} ·
(
β2m+ λ

1 + β2
+ 2k

)
+ kεn

≤ km− (k′m+ `) + (k − k′) β2m

1 + β2
+ |A| λ

1 + β2
+ 2k2 + kεn

≤ km− k′m− `+ β2m(k − k′) + λ(1− β2/2)|A|+ 2k2 + kεn

≤ (1 + β2)(km− k′m− `) + λ|A|+ (2k2 + kεn− λβ2|A|/2)

≤ (1 + β2)(km− k′m− `) + λ|A|+ (2k2 + kεn− β4kn/16)

< (1 + β2)(km− k′m− `) + λ|A|,

where we have used that 1
poly

� β
poly

� ε, k/n and λ|A| ≥ βkm/8 ≥ β2kn/8. This contradicts e(G2) = (1 + β2)(km −
k′m− `) + λ|A|, so F1, . . . , Fm must satisfy the lemma.

We can now prove the main result of this section.

Lemma 9.5 (Near-decomposition into small rainbow trees). Let 1
poly

� β
poly

� ε
poly

� k/n and m ≥ βn. Let G be
a properly coloured, globally m-bounded, n-vertex graph, with e(G) ≥ (1 + β)km and S a vertex cover of G with
|S| ≥ (1−ε)n ≥ 2m. Then G has edge-disjoint k-edge rainbow forests F1, . . . , Fm, where, additionally, for any v 6∈ S
either v ∈ V (Fi) for all i, or dFi(v) ≤ 1 for all i.

Proof. Let k′ = 0 and let G1 be the empty graph with vertex set V (G). Iteratively, for each i ≥ 1, if k′ < k and

there is a vertex vi /∈ S with degree in G at least m + 2(k − k′), do the following. Let di = ddG(vi)−2(k−k′)
m e, let

d′i = min{di, k − k′} and pick a set Ei of d′im+ 2(k − k′) edges next to vi in G, remove them from G and add them
to G1, and increase k′ by d′i. Let G2 be the remains of G at the end of this process.

Pick ` so that this produces a series of vertices v1, . . . , v`, integers d′1, . . . , d
′
` and disjoint edge sets E1, . . . , E`.

Note that ` ≤ n− |S| ≤ εn and, for each i < `, we have |Ei| = d′im+ 2(k −
∑i−1
j=1 d

′
i). Note further that, if k′ < k,

then dG2
(v) ≤ m+ 2(k − k′) for each v /∈ S. Furthermore, if k′ < k, then

e(G2) ≥ e(G)− k′m− 2k · ` ≥ (k − k′)m+ βkm− 2kεn ≥ (1 + β/2)(k − k′)m,

where we have used that m ≥ βn and β
poly

� ε. Therefore, by Lemma 9.3, if k′ < k, then G2 contains m edge-disjoint
rainbow (k − k′)-edge forests F ′1, . . . , F

′
m, in which dF ′i (v) ≤ 1 for each v /∈ S. Note that we can also assume this

when k′ = k.
For each i = `, ` − 1, . . . , 1 in turn, greedily, for each j ∈ [m], add d′i edges from Ei to F ′j , so that the resulting

subgraphs, F1, . . . , Fm say, are still edge-disjoint rainbow forests. This is possible as, firstly, when we come to add
edges from Ei to each forest F ′j , vi is in the d′mi + 2(k−

∑
j<i d

′
j) edges in Ei, which are disjoint from E(∪mi=1F

′
i ) ⊂

E(G1) and Ej , j ≥ i. Each forest to which we add d′i edges from Ei will have (k−k′)+
∑
j>i d

′
j = k−

∑
j≤i d

′
j edges.

We add in total, from Ei, d
′
i edges to each of m forests, so at each addition there are at least d′i + 2(k −

∑
j<i d

′
j)

unused edges left in Ei, and therefore we can add d′i edges from Ei without any vertices or colours in the forest we
are adding edges to. Note that, in this process, if an edge is added to a forest F ′j adjacent to v /∈ S, then an edge is
added adjacent to v in all other forests Fi as well.

Thus, noting that the resulting forests each have k edges, F1, . . . , Fm are edge-disjoint rainbow k-edge forests,
with {v /∈ S : d′v ≥ 1} ⊂ Fi for each 1 ≤ i ≤ m and dFi(v) ≤ 1 for each 1 ≤ i ≤ m and v ∈ S with d′v = 0.

9.2 Completion

In this section we show how to modify nearly-spanning rainbow trees into spanning ones. The starting point of this
section is Lemma 8.27. That lemma implies that in any properly coloured Kn, there is a set S of size (1 − o(1))n
such that Kn[S] has a near-decomposition into rainbow Hamiltonian paths P1, . . . , P(1−o(1))n/2. Indeed a random
set S will have this property since it satisfies the assumptions of Lemma 8.27 by Lemma 5.2. Our goal in this section
is to take such a family of rainbow paths, and modify them into a near-decomposition of Kn into rainbow spanning
trees.

The paths P1, . . . , P(1−o(1))n/2 are modified into spanning trees gradually, i.e. we switch edges on them one at a
time to get bigger and bigger rainbow trees. During this modification procedure we always have a family of rainbow
trees T1, . . . , T(1−o(1))n/2 which satisfy several properties that guarantee that it is possible to keep extending them.
We will now informally go through these properties and explain why each is natural. The first property is the
following:
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(a) S ⊆ V (Ti) for all i.

This property simply comes from the fact that the trees Ti are formed by enlarging the paths Pi, and the paths Pi
had V (Pi) = S. Property (a) is useful to have because we will have more control over vertices outside S due to the
fact that they were untouched by the starting paths P1, . . . , P(1−o(1))n/2.

(b) For every v 6∈ S, the tree Ti has at most one edge through v.

Since we aim to produce trees which are spanning in Kn, every vertex v 6∈ S will eventually need to be added to
every tree. Condition (b) will ensure that every vertex v 6∈ S always has enough free edges to be added to every
tree. Without it, it is possible that all the edges in Kn through v lie in some small subfamily of trees T1, . . . , Tm,
preventing the addition of v to the other trees.

(c) For a tree Ti, there are n− |Ti| colours c outside Ti with |EKn(c)| ≥ (1− o(1))n/2.

For a vertex v 6∈ V (Ti) it will not always be possible to add an edge from v to Ti in order to produce a rainbow
tree. While properties (a) and (b) ensure that there are free edges from v to Ti, it is conceivable that the colours
of all these edges are already present on Ti, so v cannot simply be added while maintaining a rainbow tree. We get
around this by finding some colour c outside of Ti and two edges e ∈ E(c), f ∈ e(Ti) so that Ti − f + e is a rainbow
tree, i.e. we switch an edge on Ti for an edge of some previously unused colour. This operation frees up the colour
c(f), which we might be able to use to attach v. Property (c) ensures that there are many colours c(f) which can
be freed using this operation.

(d) There is a graph H disjoint from T1, . . . , T(1−o(1))n/2 in which any set of k colours covers at least (1− o(1))n
vertices (where k is a large constant).

Property (d) plays a similar role to property (c), i.e. it allows us to free up more colours, with the hope that eventually
we free a colour which is present at some vertex v 6∈ V (Ti) (and then add that vertex to the tree Ti). The reason we
need both properties (c) and (d) is a bit technical. In general, property (d) is more powerful, except that to invoke
it we need k colours outside the tree Ti. This will not happen towards the end of our process when there might be
only one colour outside the tree. On the other hand (c) can always be invoked to free up a small number of colours.
The strategy is to combine the applications of (c) and (d), i.e. first we apply (c) to free up k colours, and then we
use (d) to free up enough colours to add v.

The following lemma is what we use to exchange edges on a tree with edges outside it.

Lemma 9.6. Let T be a tree and G a graph with no isolated vertices with V (G) ⊆ V (T ). Then for every v ∈ V (G),
there are edges xv ∈ E(T ) and yv ∈ E(G) with T − xv + yv a tree. In particular, there are ≥ |G|/2 edges e ∈ T for
which there is an edge f ∈ E(G) with T − e+ f a tree.

Proof. Let yv be an arbitrary edge of G containing v. If yv ∈ E(T ), then T − yv+ yv is the required tree, so assume
that yv /∈ E(T ). Since T is a tree and {y, v} ⊆ V (T ), T + yv has a cycle C containing the edge yv. Let xv 6= yv be
the other edge of C containing v. Now T + yv − xv is the required tree.

Thus to every v ∈ V (G) we can assign a pair of edges ev ∈ T , fv ∈ G containing v with T − ev + fv a
tree. Since v ∈ ev, for an edge e ∈ E(T ) there can be at most two vertices v ∈ V (G) with e = ev. This gives
|{ev : v ∈ V (G)}| ≥ |G|/2 as required.

The following is the basic extension lemma which drives our proof. Under conditions to be compared to (b) –
(d), it shows how to extend a tree by one vertex. The idea of the proof of the lemma is to show that by performing
two switches as in Lemma 9.6, we can free up nearly half of the colours on T . At least one of these colours will have
an edge going to T , which can be added to extend the tree.

Lemma 9.7. In a properly coloured n-vertex graph G, suppose that we have:

• T a rainbow tree with |T | = n− 1.

• v 6∈ V (T ) with d(v) ≥ 1
2n+ b.

• c 6∈ C(T ) with e(c) ≥ b.

• H a graph on V (T ) in which any set of b colours of C(T ) covers ≥ n− 2b vertices.

Then, there is a rainbow tree T ′ in T ∪H ∪ E(c) ∪ E(v) with V (T ′) = V (T ) ∪ {v}, e(T ′ \ T ) ≤ 3, and dT ′(v) = 1.
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Proof. If there is a colour c edge next to v, then clearly we can add such an edge to T to get the required tree.
Assume, then, that every colour in C(v) is on T , and thus, in particular, V (c) ⊂ V (G) \ {v} = V (T ).

Let J be the set of edges j ∈ E(T ) for which there is a colour c edge ej so that Tj := T − j + ej is a (rainbow)
tree. By Lemma 9.6 and e(c) ≥ b, we have e(J) ≥ b (for the application of this lemma, we take G to be the set of
colour c edges).

For each j ∈ J , let Hj be the graph of colour c(j) edges in H with no isolated vertices. By Lemma 9.6, we have

V (Hj) ⊂ V ({e ∈ E(Tj) : ∃e′ ∈ E(Hj) s.t. Tj − e+ e′ is a tree}). (32)

Notice that the trees Tj − e + e′ above are always rainbow (since Tj is a rainbow tree on V (T ) missing colour c(j)
and V (Hj) ⊆ V (T )). Let

J ′ = {e ∈ E(c) ∪ E(T ) : ∃ a rainbow tree T ′e in T ∪H ∪ E(c) with V (T ′) = V (T ), e(T ′ \ T ) ≤ 2, c(e) /∈ C(T ′e)}.

Then, for each j ∈ J , by (32), we have V (Hj) ⊂ V (J ′). Therefore, V (
⋃
j∈J Hj) ⊂ V (J ′).

As |J | ≥ b, we have |V (
⋃
j∈J Hj)| ≥ n − 2b. Thus, |V (J ′)| ≥ n − 2b, so that |J ′| ≥ 1

2n − b. As C(v) ⊂ C(T ),

C(J ′) ⊂ {c} ∪C(T ), |T | = n− 1 and d(v) ≥ 1
2n+ b, there is some edge e adjacent to v and f ∈ J ′ with c(e) = c(f).

Then, using the tree T ′f from the definition of J ′, the tree T ′f + e satisfies the conditions in the lemma.

Iterating the above lemma, we can turn nearly-spanning trees into spanning trees. The conditions we need are
to be compared with (a) – (d).

Lemma 9.8 (Completing rainbow trees). Let 1
poly

� β, k−1
poly

� ε
poly

� n−1. In a properly coloured Kn suppose that we
have the following:

(i) S ⊆ V (Kn) with |S| ≥ n− εn.

(ii) T1, . . . , Tn(1−8β)/2 rainbow trees with V (Ti) ⊇ S.

(iii) For each Ti, there is a set CiL of n− |Ti| colours outside of C(Ti), where each colour in CiL has ≥ n(1− β)/2
edges.

(iv) For each v 6∈ S, dTi(v) ≤ 1 for all i.

(v) H a subgraph on S disjoint from T1, . . . , Tn(1−8β)/2 in which any set of k colours covers at least n(1 − β)
vertices.

Then, there are n(1− 8β)/2 spanning rainbow trees in Kn.

Proof. Set r = n− |S| ≤ εn.

Claim 9.9. Let H ′ be a subgraph of H with e(H ′) ≥ e(H) − 4rn. Any set of βn/2 colours in H ′ covers at least
n(1− 2β) vertices.

Proof. Consider a set Y of βn/2 colours in H ′. Since β, k−1
poly

� ε and r ≤ εn, we have 8β−1r · k ≤ βn/2 and thus
Y can be partitioned into disjoint subsets Y1, . . . , Y8β−1r of order ≥ k. Since e(H \H ′) ≤ 4rn, one of these subsets
Yi has ≤ 4rn/(8β−1r) = βn/2 edges in E(H) \ E(H ′). Since |Yi| ≥ k, by the assumptions of the lemma, Yi covers
at least n(1− β) vertices in H. At most βn of these might be uncovered in H ′ (any uncovered vertex like this must
have a colour Yi edge of H \ H ′ passing through it. There are ≤ βn/2 such edges). This shows that Yi covers at
least n(1− 2β) vertices in H ′.

Let T ′1, . . . , T
′
n(1−8β)/2 be a set of edge-disjoint rainbow trees in Kn satisfying (ii)–(iv) and also

(vi) e(T ′i \ Ti) ≤ 3(|T ′i | − |Ti|).

Additionally, choose this family of trees so that
∑n(1−8β)/2
i=1 e(T ′i ) is as large as possible. We claim that all the

rainbow trees T ′i are spanning. Suppose for the sake of contradiction there is a vertex v 6∈ V (T ′j) for some j. By

(iii), and as |T ′j | < n, there is a colour c ∈ CjL outside C(T ′j) with ≥ n(1−β)/2 edges. Since T ′j satisfies (ii), we have
v 6∈ S. Let G− be the subgraph of Kn on V (Tj) ∪ {v} with the edges of T ′i deleted for all i, the edges not touching

S deleted, and edges with colour in CjL \ {c} deleted. Let G = G− ∪ T ′j .
Since the trees T ′i satisfy (iv), the number of trees is n(1− 8β)/2, and |S| ≥ n− εn, we have dG(v) ≥ 1

2 |G|+ βn.
Since the trees T ′i are rainbow, |S| ≥ n− εn, and |EKn(c)| ≥ n(1− β)/2 we have |EG(c)| ≥ βn. Let H ′ = H ∩G to
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get a graph with e(H ′) ≥ e(H)−
∑
c′∈CjL

|E(c′)| −
∑n(1−8β)/2
i=1 e(T ′i \ Tj) ≥ e(H)− rn/2− 3rn (using |CjL| ≤ r, (vi),

|Tj | ≥ |S|, and |T ′j | ≤ n). By Claim 9.9, any set of βn/2 colours in H ′ covers at least n(1− 2β) vertices.
Apply Lemma 9.7 to G, with the tree T ′j , vertex v, colour c, graph H ′, n′ = |T ′j | + 1, and b = βn. This gives a

rainbow spanning tree T ′′j in G containing at most 3 edges outside T ′j and having dT ′′j (v) = 1. Notice that the family

of trees {T ′i : i 6= j} ∪ {T ′′j } satisfies (ii) – (iv) and (vi). Indeed S ⊆ V (T ′j) ⊆ V (T ′′j ) implies that (ii) holds. For (iii)

we have that CiL \ {c} is a set of n− |T ′j | − 1 = n− |T ′′j | colours outside C(G) ∪ C(T ′j) ⊇ C(T ′′j ) with ≥ n(1− β)/2
edges. For (iv) we have dT ′′i (v) ≤ 1 by the property from Lemma 9.7 and dT ′′i (u) ≤ dT ′i (u) ≤ 1 for u 6∈ S \ {v}
since there are no edges in G \ T ′j through such u. Finally, (vi) comes from the properties from Lemma 9.7 since
e(T ′′j \ T ′j) ≤ 3. Thus we have a larger family of trees satisfying (ii) – (iv) and (vi), contradicting the maximality of
the original family.

9.3 Near-decompositions into spanning rainbow trees

Now we combine everything from this section to prove the asymptotic version of the Brualdi-Hollingsworth and
Kaneko-Kano-Suzuki Conjectures. We will need the following standard lemma.

Lemma 9.10. Every graph G with e(G) ≥ (1− (ε/2)2)n2/2 has an induced subgraph H with δ(H) ≥ (1− ε)n.

Proof. Let S be the set of vertices v in G with d(v) ≤ (1 − ε/2)n. We have 2e(G) ≤ (n − |S|)n + |S|(1 − ε/2)n
which combined with e(G) ≥ (1 − (ε/2)2)n2/2 gives |S| ≤ εn/2. Let H = G \ S to get a graph with δ(H) ≥
(1− ε/2)n− |S| ≥ (1− ε)n.

We will also need the following lemma about switching edges between a tree and a forest.

Lemma 9.11. Let T be a tree and F a forest all of whose edges touch V (T ). Then, there is a tree T ′ which contains
F and is contained in T ∪ F .

Proof. Notice that T ∪F is connected since T is a tree and all edges of F touch T . Let T ′ be a connected subgraph
of T ∪ F which contains F and has e(T ′) as small as possible. If T ′ is acyclic then we are done. Otherwise, T ′

contains a cycle C. Since F is a forest C must contain at least one edge of T . Deleting this edge gives a smaller
connected graph contradicting the minimality of e(T ′).

By combining everything in this section with our earlier Hamiltonian decompositions we can show that the
Brualdi-Hollingsworth and Kaneko-Kano-Suzuki Conjectures hold asymptotically when the colouring on Kn is close
to a 1-factorization.

Lemma 9.12. Let 1
poly

� ε, log−1 n
poly

� γ
poly

� n−1. Let Kn be properly coloured with ≥ (1 − γ)n colours having
≥ (1− γ)n/2 edges. Then, Kn has (1− 8ε)n/2 edge-disjoint spanning rainbow trees.

Proof. Choose 1
poly

� ε, log−1 n
poly

� η
poly

� β, k̂−1
poly

� ν
poly

� γ1

poly

� γ
poly

� n−1.

Set aside small colours: Let C be the set of colours with ≥ (1 − γ)n/2 edges in Kn. By the assumption of

the lemma and γ1

poly

� γ we have eKn(C) ≥ (1− γ)2n2/2 ≥ (1− (γ1/2)2)n2/2.
By Lemma 9.10 applied to Kn[C] with ε = γ1 there is a subgraph G of Kn with δ(G) ≥ (1− γ1)n, having only

colours of C. Set n1 = |G| ≥ (1− γ1)n and notice that G is (3γ1, 1, n1)-typical.

Choose set S: Fix n2 = d(1 − ν)ne. Apply Lemma 5.2 (c) with p = n2/n1, n′ = n1, µ = 1/2, and γ′ = 3γ1

in order to find a set of vertices S ⊆ V (G) of order n2 with G[S] globally (1 + 3γ1)(n2/2n1)n2-bounded, and G[S]
(6γ1, 1, n2)-typical. Notice that G[S] is globally (1− 0.9ν)n2/2-bounded (using n1 ≥ (1− γ1)n, n2 = d(1− ν)ne and

1
poly

� ν
poly

� γ1). Notice that in G[S] any colour of C covers at least ≥ (1− γ)n− (n− n2) ≥ (1− 2ν)n2 vertices.

Set aside a pseudorandom graph H: Partition G[S] into subgraphs G1 and H with every edge placed in H
independently with probability η. By Lemma 5.2 (b), G1 is (12γ1, 1−η, n2)-typical and globally (1+6γ1)(1−η)(1−
0.9ν)n2/2-bounded (for the application take p = 1− η, µ = (1− 0.9ν)/2, n′ = n2, δ = 1, γ′ = 6γ1). Since ν

poly

� γ1,

G1 is globally (1− 0.5ν)(1− η)n2/2-bounded. By Lemma 5.4 applied with p = η, ε′ = ε, k′ = k̂, ν′ = 2ν, H has the

property that any set of k̂ colours of C cover ≥ (1− ε)n vertices.

Find near-decomposition of Kn[S] into rainbow paths: Apply Lemma 8.27 to G1 with n′ = n2, γ′ = 12γ1,
p = 0.5ν, δ = 1 − η in order to find (1 − 0.5ν)(1 − η)n2 edge-disjoint rainbow Hamiltonian paths in G1. Using
(1 − 0.5ν)(1 − η)n2 ≥ (1 − ε)n/2 choose a subcollection P1, . . . , Pb(1−ε)n/2c of these paths. Since G1 is a subgraph
of G, these paths only use edges with colour in C.
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Add small colours into trees: Let CL be the set of colours with ≥ (1 − ε)n/2 edges in Kn. Choose k =
max(n− 1−|CL|, 0). By assumption we have k ≤ γn. Let G2 be the subgraph of Kn consisting of edges with colour
outside CL which touch S. We claim that e(G2) ≥ (1 + η)kb(1 − ε)n/2c. When k = 0, this is obvious. Otherwise
since δ(Kn) = n− 1 and Kn is properly coloured, we have e(G2) ≥ 1

2

∑
v∈S dC(Kn)\CL(v) ≥ |S|(δ(Kn)− |CL|)/2 =

kd(1 − ν)ne/2 ≥ (1 + η)k(1 − ε)n/2. By definition of CL, the graph G2 is globally b(1 − ε)n/2c-bounded. Apply
Lemma 9.5 to G2 with m = b(1 − ε)n/2c, ε′ = 1.01ν, β′ = η, S = S. This gives us edge-disjoint rainbow forests
F1, . . . , Fb(1−ε)n/2c of size k in G2.

Apply Lemma 9.11 for i = 1, . . . , b(1− ε)n/2c to Pi and Fi in order to find a rainbow tree Ti containing Fi and
contained in Pi ∪ Fi (Ti is rainbow since Pi and Fi are colour-disjoint which happens because C(Pi) ⊆ C ⊆ CL and
C(Fi) ∩ CL = ∅). In particular, each Ti contains k edges outside CL (the edges of Fi). Since k ≥ n− 1− |CL|, this
implies that each Ti avoids k + |CL| − e(Ti) ≥ n− 1− e(Ti) colours of CL, each of which has ≥ (1− ε)n/2 edges in
Kn. Additionally, from Lemma 9.5, we have that for every vertex v 6∈ S either v ∈ Ti for all i or dTi(v) ≤ 1 for all
i. Let S′ = S ∪ {v 6∈ S : v ∈ Ti for each i} and notice that |S′| ≥ |S| = d(1 − ν)ne. Now for each i and v 6∈ S′, we
have dTi(v) ≤ 1 and also S′ ⊆ V (Ti).

Make trees spanning: Observe that H is disjoint from G1 and G2. (The former holds by construction of G1.
The latter by C(H) ⊆ C ⊆ CL and C(G2) ∩ CL = ∅), and hence H is disjoint from the trees T1, . . . , Tb(1−ε)n/2c.

Apply Lemma 9.8 with S = S′, trees T1, . . . , T(1−8ε)n/2, H = H, β′ = ε, k′ = k̂ and ε′ = ν in order to find (1−8ε)n/2

edge-disjoint spanning rainbow trees in Kn, where we have used that ε, 1/k̂
poly

� ν.

Combining the above with our earlier result about Hamiltonian decompositions, we prove that the Brualdi-
Hollingsworth and Kaneko-Kano-Suzuki Conjectures hold asymptotically.

Theorem 9.13. Let 1
poly

� ε
poly

� n−1. Every properly coloured Kn has (1−ε)n/2 edge-disjoint spanning rainbow trees.

Proof. Fix 1
poly

� ε, log−1 n
poly

� γ
poly

� n−1. If Kn has ≥ (1− γ)n colours having ≥ (1− γ)n/2 edges, then the theorem
follows from Lemma 9.12. Otherwise, Kn has ≤ (1−γ)n colours having ≥ (1−γ)n/2 edges, and the theorem follows
from Lemma 8.29.

10 Concluding remarks

There are various other areas in which our results have implications. We mention some of them here.

• Constantine made the following generalization of the Brualdi-Hollingsworth Conjecture.

Conjecture 10.1 (Constantine [21]). Every properly (2n − 1)-coloured K2n can be decomposed into edge-
disjoint rainbow spanning trees which are all isomorphic to each other.

The best known result about this is due to the second and third author [43] who showed that it is possible
to find 10−12n edge-disjoint rainbow copies of some particular tree. While we did not do this, our results still
have implications for Constantine’s Conjecture. In particular Corollary 1.11 is relevant — it shows that under
the assumptions of Constantine’s Conjecture we can nearly-decompose the graph into nearly-spanning rainbow
paths.

Additionally we expect that the methods in this paper can be generalized to prove the true asymptotic version
of Constantine’s Conjecture, i.e. to find (1− o(1))n edge-disjoint isomorphic spanning rainbow trees under the
assumption of the theorem. We think this is plausible as the trees we find in the proof of Theorem 1.14 are all
quite similar to each other — they are all built from a length (1− o(1))n path by making o(n) modifications.
It seems likely that, with some additional ideas, the modifications can be controlled in order to give a copy of
the same tree.

• Notice a parallel between Theorem 1.14 and Lemma 9.5 — both of these results give a near-decomposition of
a graph into forests of the same size. We wonder if there is a common generalization of these results.

Conjecture 10.2. For ε > 0, there exists an m ∈ N so that the following holds for all k. Every properly
coloured, globally m-bounded graph G with km edges has ≥ (1− ε)m edge-disjoint rainbow forests of order k.

Currently there are two extremes of this conjecture which are known to be true. Theorem 1.14 shows that it
holds when |G| = 2m and k = |G|−1. Lemma 9.5 shows that it holds when k = o(|G|). It would be interesting
to prove or disprove it in general.
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• Recall that the randomized rainbow matching M in Lemma 4.6 behaves like a uniformly random perfect
matching in a sense that any edge of G ends up in M with (approximately) at least the expected probability
d(G)−1. One can ask whether more can be proven, i.e. whether M shares more features with a uniformly
random perfect matching. This is indeed the case — Lemma 4.6 can easily be strengthened to say more about
the matching M . For example, with some work the following can be added to that lemma.

P(e ∈ E(M)) = (1± p) 1

δn
for each e ∈ E(G).

P(e, f ∈ E(M)) = (1± p) 1

δ2n2
for each e 6= f ∈ E(G).

P(v 6∈ V (H)) = (1± p)p for each v ∈ V (G).

The randomness of the matching produced in Lemma 4.6 may have applications in future work.

• Notice that some of our results (particularly Lemma 8.2) are about graphs which may not be properly coloured,
but are only locally nε-bounded. It is natural to ask whether our other theorems can be proved with “proper
colouring” replaced by “local boundedness”, or perhaps even with the proper colouring assumption removed
entirely. Some results in this direction were recently obtained by Kim, Kühn, Kupavskii, and Osthus in [39]
(see note below) .

It would be extremely interesting to prove new results about spanning rainbow structures in graphs with no
local boundedness assumptions at all. For example in [42], the second and third authors asked whether every
globally (1− o(1))n bounded Kn,n has a perfect rainbow matching. If true, this would be a natural weakening
of the recently disproved Stein’s Equi-n-Square Conjecture (see [42]).

Note added in proof

The results of Theorem 1.2 and its corollaries were presented at the “Workshop on Probabilistic and Extremal
Combinatorics” in Harvard 07/02/2018 (see [41]). After the presentation we learned from Keevash and Yepremyan
that they also found a proof of the Akbari-Alipour Conjecture (Conjecture 1.3) for large n (see [38]).

Also after hearing our Theorem 1.2 at the workshop, Kim, Kühn, Kupavskii, and Osthus published the preprint
[39] on 22.5.2018. In this paper they proved (amongst others) that every coloured Kn,n which is globally (1−o(1))n-
bounded and locally o(n/ log2 n)-bounded has (1 − o(1))n edge-disjoint rainbow perfect matchings. This is on one
hand stronger than Theorem 1.2 since it also works for locally bounded colorings, but it is also weaker since it
requires all (rather than just few) colors to have size less than (1 − o(1))n. In particular it does not imply the
Akbari-Alipour Conjecture or our results on multiplication tables of groups. Independently from our work, Kim,
Kühn, Kupavskii, and Osthus also proved results similar to our Theorem 1.10 about decompositions into rainbow
Hamiltonian cycles (that are both stronger and weaker as we explain above). The main focus of their work is quite
different from ours and they deduce their result from a general theorem about rainbow F -factors for arbitrary graphs
F .
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[20] D. Christofides, D. Kühn, and D. Osthus. Edge-disjoint Hamilton cycles in graphs. Journal of Combinatorial
Theory, Series B, 102(5):1035–1060, 2012.

[21] G. M. Constantine. Multicolored parallelisms of isomorphic spanning trees. Discrete Mathematics and Theo-
retical Computer Science, 5:121–126, 2002.
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