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Latin square

of order n

n by n grid filled with n symbols, where each

symbol appears exactly once in each row and column

Full transversal Set of n cells with different rows, columns and symbols

Euler: for which n is there a Latin square of order n which can be decomposed into n
disjoint full transversals? ♠

♠
♠♠r
r
r

r
q
q
q

q

♣
♣
♣♣

A

A

A

AK

K

K

K

Q

Q

Q

QJ

J

J

J

Euler: examples when n ̸= 2 mod 4, and conjectured no examples exist if n ≡ 2 mod 4.

Tarry: showed no examples exist for n = 6 in 1901.
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Conjecture
(Euler, 1779)

If n ≡ 2 mod 4, there is no Latin square of order n

with a decomposition into full transversals.

Bose, Parker, Shrikhande constructed examples for all n ≡ 2 mod 4 with n ≥ 10.
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Latin square

of order n

n by n grid filled with n symbols, where each

symbol appears exactly once in each row and column

Transversal Set of cells with different rows, columns and symbols

Some Latin squares have no full transversal,
e.g. the addition table for Z2k

:

0
1
2
3
4
5

1
2
3
4
5
0

2
3
4
5
0
1

3
4
5
0
1
2

4
5
0
1
2
3

5
0
1
2
3
4

0
2
4

3
1

2

Ryser-Brualdi-Stein
Conjecture

Every Latin square of order n has a transversal with

n − 1 cells, and one with n cells if n is odd.
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Ryser-Brualdi-Stein
Conjecture

Every Latin square of order n has a transversal with

n − 1 cells, and one with n cells if n is odd.

Every Latin square of order n has a transversal
with . . .

. . . at least n −
√
n cells.

Brouwer, De Vries and Wieringa (1978)

Woolbright (1978)

. . . n − O(log2 n) cells.
Shor (1982)

Hatami-Shor (2008)

. . . n − O
(

log n
log log n

)
cells.

Keevash, Pokrovskiy,
Sudakov and Yepremyan

(2020)

Theorem
(M., 23+)

There is some n0 such that every Latin square of

order n ≥ n0 has a transversal with n − 1 cells.
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Latin array

of order n

n by n grid filled with symbols, where each

symbol appears at most once in each row and column.

M., Pokrovskiy and
Sudakov (2019)

: if ≤ (1− ε)n symbols appear ≥ (1− ε)n times,
there is a full transversal.

This allows:

Theorem
(M., 23+)

There is some n0 such that every Latin array of

order n ≥ n0 has a transversal with n − 1 cells.

Conjecture
(Akbari and Alipour)

: Any Latin array of order n with ≥ n2

2

different symbols has a full transversal.

Keevash, Pokrovskiy, Sudakov
and Yepremyan (2019)

: For some C , ≥ Cn log n
log log n

different
symbols forces a full transversal.

Theorem
(M., 23+)

For some C , every Latin array of order n with

≥ Cn different symbols has a full transversal.
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Ryser-Brualdi-Stein
Conjecture

Every Latin square of order n has a transversal with

n − 1 cells, and one with n cells if n is odd.

.
Latin square
of order n

Complete bipartite graph Kn,n,
properly coloured with n colours
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1 1
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3 3
4 4
5 5
6 6

. Transversal Rainbow matching

Ryser-Brualdi-Stein
Conjecture

If Kn,n is optimally coloured, it contains a rainbow

matching with n − 1 edges, and with n edges if n is odd.
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Extremal examples from groups

Let H be an n-element abelian group. Take two copies, A and B, of H, and for each
a ∈ A and b ∈ B, put an edge ab in G with colour c(ab) = a+ b ∈ H:

A

B

If M is a perfect rainbow matching, then∑
v∈H

v =
∑
ab∈M

c(ab) =
∑
ab∈M

(a+ b) = 2
∑
v∈H

v ,

so that
∑

v∈H v = 0.

In particular, if H = Z2m then
∑

v∈H v = (2m)(2m−1)
2

= m ∈ H, giving a contradiction.

Which groups have a multiplication table (= a Latin square) with a full transversal?

This is known, due to the confirmation of the Hall-Paige conjecture by Bray, Wilcox
and Evans in 2009, with more recent alternative proofs for large groups given by
Eberhard, Manners and Mrazović, and Müyesser and Pokrovskiy.
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Any more extremal examples?

We can generate more extremal colourings, using ‘blow-up’ constructions of group
addition/multiplication tables. E.g., for H = Z2:

For n = 2m with m odd, let A0,A1,B0,B1,C0,C1 be disjoint with size m, and properly
colour edges between Ai and Bj with colours in Ci+j :

.

A0 A1

B0 B1

C0 C0C1

A similar calculation to before gives, if M is a rainbow matching,

m = m ·
∑
v∈Z2

v =
∑
e∈M

∑
v :e∈Cv

v =
∑

w∈V (G)

∑
v :w∈Av∪Bv

v = 2m ·
∑
v∈Z2

v = 2m,

a contradiction. (Or, in this case: any perfect matching has evenly many ‘cross edges’, so
cannot be rainbow.)

This does give many extremal examples, but a uniformly random Latin square does have
a full transversal with high probability (Kwan, 2020).
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Ryser-Brualdi-Stein
Conjecture

If Kn,n is optimally coloured, it contains a rainbow

matching with n − 1 edges, and with n edges if n is odd.

Overall strategy

1. Study the colouring and determine some algebraic properties.

2. Use these properties to construct a large rainbow matching.

Rest of today: • Part 1

Tomorrow: • Recap
Tomorrow: • Part 2 (under a simplifying assumption avoiding Part 1)
Tomorrow: • Open questions

Sneak peak: Part 2 uses the semi-random method and absorption, along
with a new ‘addition structure’, for the construction.
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Part 1: Algebraic properties of colourings

G : n by n complete bipartite graph,
G : properly coloured with n colours.

A

B

If the colouring of G arises from an abelian group H, then the following holds.

Property P. For all (distinct) c1, c2, c3 ∈ H and w1,w2 ∈ H:

w1 w2

x1 x2

y1 y2

z1 z2

c1c1

c2c2

c3 c3
c d =⇒ c = d

• Indeed, labelling the paths w1x1y1z1 and w2x2y2z2, we have

c = w1 + z1 = (w1 + x1)− (x1 + y1) + (y1 + z1) = c1 − c2 + c3 = d .

• (Slightly roughly) if Property P holds, then the colouring comes from some group.
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[Ignorable slide]

If we have P here:

v1 v2

u1 u2

w1 w2

x1 x2

e1 e2 cc

d ′

d
c ′

d ′

d
c ′

then we can create an edge-switcher to switch between using {u2, v2}
and {u1, v1} (where these are vertex sets of edges of the same colour):

v1 v2

u1 u2

w1 w2

x1 x2

d ′

d
c ′

v1 v2

u1 u2

w1 w2

x1 x2

d ′

d
c ′
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Property P. For all (distinct) c1, c2, c3 ∈ H and w1,w2 ∈ H:

w1 w2

x1 x2

y1 y2

z1 z2

c1c1

c2c2

c3 c3
c d =⇒ c = d

In general, Property P does not hold, and instead we look for colour classes
C1, . . . ,Cr ⊂ C(G) (for some r) for which Property P’ (approximately) holds:

Property P’. For all (distinct) c1, c2, c3 ∈ C(G) and w1,w2 ∈ V (G):

w1 w2

x1 x2

y1 y2

z1 z2

c1c1

c2c2

c3 c3
c d =⇒ ∃i with c, d ∈ Ci

Of course, this is always true if C1 = C(G), so the aim is to do this using as small sets Ci

as possible, and balance this with proving a property for colours in each class Ci .
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Property P’. For all (distinct) c1, c2, c3 ∈ C(G) and w1,w2 ∈ V (G):

w1 w2

x1 x2

y1 y2

z1 z2

c1c1

c2c2

c3 c3
c d =⇒ ∃i with c, d ∈ Ci

What properties should we have for a colour class Ci?

For any pair of colour c, d ∈ Ci we want to be able to consider them to be equivalent in
our subsequent constructions. Suppose we have the following:

x1 x2

y1 y2

z1 z2

w1 w2

c1

c3
c2 c

c1

c3
c2 d

Then, we can use this as a (c, d)-colour-switcher:

x1 x2

y1 y2

z1 z2

w1 w2

c1

c3
c2 cM1:

x1 x2

y1 y2

z1 z2

w1 w2

c1

c3
c2 dM2:
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Some examples

1. If the colouring comes from the group addition table of an abelian group G ,
1. the colour classes are {v}, v ∈ G .

• Property P’ follows from Property P. • The switching property is trivial.

2. If we take a uniformly random optimal colouring of Kn,n then (whp) there is one
2. colour class: C1 = C(G).

• Property P’ is then trivial.
• Harder: for any pair of colours c, d we expect some c, d-colour-switchers.

3. For n = 2m with m odd, let A0,A1,B0,B1,C0,C1 be disjoint with size m. Randomly,
3. properly colour edges between Ai and Bj with colours in Ci+j (adding in Z2):

.

A0 A1

B0 B1

C0 C0C1

3. We use colour classes C0 and C1.

• Property P’ follows from the construction
• The colour switching property follows (again) from the randomness.
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More generally...

• Proof considers the complete auxiliary graph K with vertex set C(G), and
• each edge weighted by the number of short c, d-colour-switchers in G .

• Partitions most of K into well-connected subgraphs with similar edge weights
• (via sublinear expansion), and takes their vertex sets in K as colour classes Ci .

Property P’. For all (distinct) c1, c2, c3 ∈ C(G) and w1,w2 ∈ V (G):

w1 w2

x1 x2

y1 y2

z1 z2

c1c1

c2c2

c3 c3
c d =⇒ ∃i with c, d ∈ Ci

• Property P’ will follow (approximately) as the subgraphs cover almost all of K .

• The colour switching property will follow as the connectedness of K [Ci ] allows
• short colour-switchers to be chained together into a longer c, d-colour-switcher,
• for any c, d ∈ Ci .

On the Ryser-Brualdi-Stein conjecture I 16 / 17



Summary

Ryser-Brualdi-Stein
Conjecture

If Kn,n is optimally coloured, it contains a rainbow

matching with n − 1 edges, and with n edges if n is odd.

• Numerous extremal colourings exist, each with some underlying algebraic properties.

Overall strategy for (n-1)-edge rainbow matchings

1. Study the colouring and determine some algebraic properties.

2. Use these properties to construct a large rainbow matching.

Property P is a graph-theoretic equivalent to having a colouring from an abelian group.

Most of the work in Part 1 goes into finding colour classes for which the adjusted
Property P’ (approximately) holds, and any pair of colours from the same class have
colour switchers, which allow the constructions for Part 2 to work in any colouring.

For simplicity tomorrow I will assume that Property P holds, and discuss Part 2 ...

Thank you!
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