Nuno Freitas


I am a Marie-Curie Research Fellow at the Mathematics Institute, University of Warwick.

Contact Information


Mathematics Institute
University of Warwick
Coventry CV4 7AL
United Kingdom

Zeeman Building
Office B1.20

Email : (firstname dot lastname)@warwick.ac.uk

Teaching


Math 312 Winter 2017 Term 1 (University of British Columbia)

Research Papers

Preprints

  1. N. Freitas, A. Kraus: On the degree of the p-torsion field of elliptic curves over Ql for l ≠ p. (pdf)
  2. N. Freitas, S. Siksek: On the Asymptotic Fermat's Last Theorem. (pdf)
  3. N. Billerey, I. Chen, L. Dembélé, L. Dieulefait, N. Freitas: Some extensions of the modular method and Fermat equations of signature (13,13,n). (pdf)
  4. L. Dembélé, N. Freitas, J. Voight: On Galois inertial types of elliptic curves over Ql. (pdf)
  5. N. Freitas, A. Kraus: On the symplectic type of isomorphisms of the p-torsion of elliptic curves. (pdf)
  6. N. Freitas, B. Naskręcki, M. Stoll: The generalized Fermat equation with exponents 2, 3, n. (pdf)

Publications

My papers are available on arxiv.
  1. M. A. Bennett, C. Bruni, N. Freitas: Sums of two cubes as twisted perfect powers, revisited, Algebra and Number Theory (to appear).
  2. N. Billerey, I. Chen, L. Dieulefait, N. Freitas: A multi-Frey approach to Fermat equations of signature (r, r, p), Transactions of AMS (to appear).
  3. N. Billerey, I. Chen, L. Dieulefait, N. Freitas: A result on the equation xp + yp = zr using Frey abelian varieties, Proceedings of AMS 145 (2017), no. 10, 4111--4117.
  4. N. Freitas: On the Fermat-type equation x3 + y3 = zp, Commentarii Mathematici Helvetici 91 (2016), 295--304.
  5. N. Freitas, A. Kraus: An application of the symplectic argument to some Fermat-type equations, C. R. Math. Acad. Sci. Paris 354 (2016), no. 8, 751--755.
  6. N. Freitas, S. Siksek: The Asymptotic Fermat's Last Theorem for Five-Sixths of Real Quadratic Fields, Compositio Mathematica 151 (2015), no. 8, 1395--1415.
  7. N. Freitas, B. Le Hung, S. Siksek: Elliptic Curves over Real Quadratic Fields are Modular, Inventiones Mathematicae 201 (2015), no. 1, 159--206.
  8. N. Freitas, S. Siksek: Criteria for irreducibility of mod p representations of Frey curves, Journal de Théorie des Nombres de Bordeaux 27 (2015), 67--76.
  9. N. Freitas, S. Siksek: Fermat's Last Theorem over some small real quadratic fields, Algebra and Number Theory 9 (2015), no. 4, 875--895.
  10. L. Dieulefait, N. Freitas: Base change for Elliptic Curves over Real Quadratic Fields, C. R. Math. Acad. Sci. Paris 353 (2015), no. 1, 1--4.
  11. N. Freitas: Recipes for Fermat-type equations of the form xr + yr = Czp, Mathematische Zeitschrift 279 (2015), no. 3-4, 605--639.
  12. N. Freitas, P. Tsaknias: Criteria for p-ordinarity of families of elliptic curves over infinitely many number fields, International Journal of Number Theory 11 (2015), no. 1, 81--87.
  13. L. Dieulefait, N. Freitas: The Fermat-type equations x5 + y5 = 2zp or 3zp solved through Q-curves, Mathematics of Computation 83 (2014), no. 286, 917--933.
  14. L. Dieulefait, N. Freitas: Fermat-type equations of signature (13, 13, p) via Hilbert cuspforms, Mathematische Annalen 357 (2013), no. 3, 987--1004.