Algebraic Number Theory 2019-20
 Example Sheet 4

Hand in the answers to questions 4 and 6 (marked with \dagger).
Deadline 12 noon Monday, Week 10 (2 December)
For questions about the example sheet, it is best to ask them on Moodle. Questions must be asked before 5 pm on Friday to get an answer before the deadline.

1. Let $K=\mathbb{Q}(\sqrt{-2})$. Show that \mathcal{O}_{K} is a principal ideal domain. Deduce that every prime $p \equiv 1,3(\bmod 8)$ can be written as $p=x^{2}+2 y^{2}$ with $x, y \in \mathbb{Z}$. (You will need to use quadratic reciprocity from Introduction to Number Theory.)
2. Compute the class groups of the following quadratic fields.

$$
\mathbb{Q}(\sqrt{5}), \quad \mathbb{Q}(\sqrt{-6}), \quad \mathbb{Q}(\sqrt{7})
$$

3. Prove that the class group of $\mathbb{Q}(\sqrt{-30})$ is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
\dagger. Let $K=\mathbb{Q}(\sqrt{26})$. You may use without proof the following factorisations of ideals in $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{26}]$:

- $\langle 2\rangle=\mathfrak{p}_{2}^{2}$ where $\mathfrak{p}_{2}=\langle 2, \sqrt{26}\rangle$ is a prime ideal of norm 2 .
- $\langle 3\rangle$ is a prime ideal in \mathcal{O}_{K}.
- $\langle 5\rangle=\mathfrak{p}_{5} \mathfrak{q}_{5}$ where $\mathfrak{p}_{5}=\langle 5,1+\sqrt{26}\rangle$ and $\mathfrak{q}_{5}=\langle 5,-1+\sqrt{26}\rangle$ are prime ideals of norm 5 .
(i) Write a list of the quadratic residues (i.e. squares) mod 13. Use this to show that \mathfrak{p}_{2} is not principal.
(ii) Find the prime factorisation of $\langle 6+\sqrt{26}\rangle$ in \mathcal{O}_{K}.
(iii) Use the Minkowski bound to prove that $\mathrm{Cl}(K) \cong \mathbb{Z} / 2 \mathbb{Z}$.

5. Show that the cyclotomic field $\mathbb{Q}\left(\zeta_{5}\right)$ has class number 1 .
$\dagger 6$. Let d be a square-free composite positive integer such that $-d \equiv 2$ or $3 \bmod 4$. Let p be a prime factor of d and let $K=\mathbb{Q}(\sqrt{-d})$.
(i) Prove that \mathcal{O}_{K} contains no element of norm $\pm p$.
(ii) By considering the prime factorisation of the ideal $\langle p\rangle$, prove that the class number of K is even.
6. Let $\mathfrak{a}, \mathfrak{b}$ be ideals of \mathcal{O}_{K} such that there is no prime ideal which divides both \mathfrak{a} and \mathfrak{b}. Suppose that

$$
\mathfrak{a b}=\mathfrak{c}^{n}
$$

for some ideal $\mathfrak{c} \subseteq \mathcal{O}_{K}$ and some positive integer n. Prove that there are ideals $\mathfrak{a}^{\prime}, \mathfrak{b}^{\prime} \subseteq \mathcal{O}_{K}$ such that

$$
\mathfrak{a}=\left(\mathfrak{a}^{\prime}\right)^{n}, \quad \mathfrak{b}=\left(\mathfrak{b}^{\prime}\right)^{n}
$$

8. (i) Prove that the ring of integers of $\mathbb{Q}(\sqrt{-11})$ is a PID.
(ii) Prove that if $x, y \in \mathbb{Z}$ satisfy $x^{3}=y^{2}+11$, then there exist $u, v \in \mathbb{Z}$ such that

$$
\left(\frac{u+v \sqrt{-11}}{2}\right)^{3}=y+\sqrt{-11}
$$

(iii) Show that the equation $x^{3}=y^{2}+11$ has exactly four solutions in rational integers. Verify that two of these solutions are $(15, \pm 58)$; find the other two.
9. Prove that the only integer solutions to the equation $x^{3}=y^{2}+2$ are $(3, \pm 5)$.
10. (i) Using Minkowski's theorem on ideal classes, prove that if K is a number field of degree greater than 1 , then $\left|\Delta_{K}\right|>1$.
(ii) Show that there are constants $A>1$ and $c>0$ such that, for every number field $K,\left|\Delta_{K}\right|>c A^{n}$.
11. (i) Let C be a positive real number and $s \in \mathbb{N}$. Verify that the symmetric convex set

$$
S(s, C)=\left\{\left(y_{1}, z_{1}, \ldots, y_{s}, z_{s}\right) \in \mathbb{R}^{2 s}:\left|y_{1}\right|<1,\left|z_{1}\right|<C, y_{i}^{2}+z_{i}^{2}<1 \text { for } i=2, \ldots, s\right\}
$$ has volume $4 \pi^{s-1} C$.

(ii) Let Δ be a positive integer. Let K be a number field such that $i=\sqrt{-1} \in$ K and $\left|\Delta_{K}\right| \leq \Delta$.
(a) Prove that K has signature $(0, s)$ for some s.
(b) Let $\iota_{K}: K \rightarrow \mathbb{R}^{2 s}$ be the canonical embedding of K. Use Minkowski's theorem on lattices to prove that, for a suitable constant C depending only on s and Δ (but not on K), there is a non-zero element $\alpha \in \mathcal{O}_{K}$ such that $\iota_{K}(\alpha) \in S(s, C)$.
(c) Label the embeddings of K as $\sigma_{1}, \overline{\sigma_{1}}, \ldots, \sigma_{s}, \overline{\sigma_{s}}$. Observe that $\left|\sigma_{1}(\alpha)\right|<$ $\sqrt{1+C^{2}}$ and $\left|\sigma_{i}(\alpha)\right|<1$ for $i=2, \ldots, s$. Obtain a bound for the coefficients of the minimal polynomial of α over \mathbb{Q}.
(d) By considering $\operatorname{Nm}_{K / \mathbb{Q}}(\alpha)$, prove that $\left|\sigma_{1}(\alpha)\right|>1$ and hence $\sigma_{1}(\alpha) \neq$ $\sigma_{i}(\alpha)$ or $\overline{\sigma_{i}}(\alpha)$ for $i=2, \ldots, s$.
(e) Deduce that $[K: \mathbb{Q}(\alpha)] \leq 2$.
(f) Show that $K=\mathbb{Q}(i, \alpha)$ (observe that if $[K: \mathbb{Q}(\alpha)]=2$, then $\sigma_{1 \mid \mathbb{Q}(\alpha)}$ is a real embedding and use this to show that $\mathbb{Q}(i, \alpha) \neq \mathbb{Q}(\alpha))$.
(iii) Combining (c) and (f) above, show that there are only finitely many number fields K of degree $2 s$ satisfying $i \in K$ and $\left|\Delta_{K}\right| \leq \Delta$.
(iv) You may assume that for every number field L of degree $n,\left|\Delta_{L(i)}\right| \leq$ $4^{n}\left|\Delta_{L}\right|^{2}$ (if you are feeling adventurous, you could prove this). Use (iii) to show that there are only finitely many number fields L of degree n satisfying $\left|\Delta_{L}\right| \leq \Delta$.
(v) Using Q10, show that for any Δ, there are only finitely many number fields whose discriminant has absolute value at most Δ.

