Algebraic Number Theory 2019-20
 Example Sheet 3

Hand in the answers to questions 2,4 and 8 (marked with \dagger).
Deadline 12 noon Monday, Week 8 (18 November)
For questions about the example sheet, it is best to ask them on Moodle. Questions must be asked before 5 pm on Friday to get an answer before the deadline.

1. Let $K=\mathbb{Q}(\sqrt{-5})$. In $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-5}]$ let

$$
\mathfrak{a}=\langle 2,1+\sqrt{-5}\rangle, \quad \mathfrak{b}=\langle 3,1+\sqrt{-5}\rangle, \quad \mathfrak{b}^{\prime}=\langle 3,1-\sqrt{-5}\rangle .
$$

(i) Show that

$$
\mathfrak{a}^{2}=\langle 2\rangle, \quad \mathfrak{b} \mathfrak{b}^{\prime}=\langle 3\rangle, \quad \mathfrak{a b}=\langle 1+\sqrt{-5}\rangle, \quad \mathfrak{a} \mathfrak{b}^{\prime}=\langle 1-\sqrt{-5}\rangle
$$

This shows that the Algebra II example of non-unique factorisation $6=$ $2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ comes from grouping the ideal factorization of 6 in two different ways: $\left(\mathfrak{a}^{2}\right) \cdot\left(\mathfrak{b b} \mathfrak{b}^{\prime}\right)$ and $(\mathfrak{a b}) \cdot\left(\mathfrak{a b} \mathfrak{b}^{\prime}\right)$.
(ii) Show that $\mathfrak{a}, \mathfrak{b}$ and \mathfrak{b}^{\prime} are non-principal.
(iii) Compute the norms of the ideals $\mathfrak{a}, \mathfrak{b}, \mathfrak{b}^{\prime}$.
\dagger 2. Let K be a number field and let $\theta \in \mathcal{O}_{K}$ satisfy $\operatorname{Nm}_{K / \mathbb{Q}}(\theta)=a b$, where a and b are coprime rational integers. Prove that

$$
\langle a, \theta\rangle\langle b, \theta\rangle=\langle\theta\rangle .
$$

(You may want to prove the inclusion in each direction separately.)
Correction: This originally said $\theta \in K$, but it should say $\theta \in \mathcal{O}_{K}$.
3. You're given that $\mathcal{O}_{\mathbb{Q}(\sqrt{d})}$ is a principal ideal domain for $d=6,7,21$. Exhibit a generator for the following ideals.
(i) $\langle 3, \sqrt{6}\rangle,\langle 5,4+\sqrt{6}\rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{6})}$.
(ii) $\langle 2,1+\sqrt{7}\rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{7})}$.
(iii) $\langle 3, \sqrt{21}\rangle$ in $\mathcal{O}_{\mathbb{Q}(\sqrt{21})}$.
\dagger 4. Let $K=\mathbb{Q}(\sqrt{3})$. Use the Dedekind-Kummer theorem to factorise the ideal $\langle 11\rangle$ into prime ideals of \mathcal{O}_{K}. For each prime ideal \mathfrak{p} which appears as in the factorisation, show that it is principal by writing down an element $\pi \in \mathcal{O}_{K}$ such that $\mathfrak{p}=\langle\pi\rangle$.
5. Let $K=\mathbb{Q}(\sqrt{-5})$. You may want to make use of Q1 while answering this question.
(a) Find all ideals in \mathcal{O}_{K} of the following norms:

$$
4, \quad 6, \quad 9 .
$$

(b) Find an integer N such that there are exactly 10 ideals of \mathcal{O}_{K} of norm N.
6. Let $K=\mathbb{Q}(i)$. Recall from Introduction to Number Theory that for any rational prime $p,-1$ is a quadratic residue $\bmod p$ if and only if $p \equiv 1 \bmod 4$. Use the Dedekind-Kummer theorem to prove the following factorisations of ideals of \mathcal{O}_{K} :
(i) $\langle 2\rangle=\langle 1+i\rangle^{2}$;
(ii) $\langle p\rangle$ is a product of two distinct prime ideals if $p \equiv 1 \bmod 4$;
(iii) $\langle p\rangle$ is a prime ideal if $p \equiv 3 \bmod 4$.
7. Let p be a rational prime and let K be a number field. We say that p is ramified in K if, in the factorisation into prime ideals of \mathcal{O}_{K} :

$$
\langle p\rangle=\mathfrak{p}_{1}^{e_{1}} \mathfrak{p}_{2}^{e_{2}} \cdots \mathfrak{p}_{r}^{e_{r}},
$$

there is some i such that $e_{i} \geq 2$.
Let $K=\mathbb{Q}(\sqrt{d})$ be a quadratic field. Use the Dedekind-Kummer theorem to prove that p is ramified in K if and only if p divides the discriminant of K. (You will need to consider the cases $d \equiv 1,2,3 \bmod 4$ separately.)
$\dagger 8$. Let α be a root of the polynomial $f(X)=X^{3}-X^{2}-2 X-8$ and let $K=\mathbb{Q}(\alpha)$. You may use the following facts without proof:

- f is irreducible over \mathbb{Q}.
- $\Delta\left(1, \alpha, \alpha^{2}\right)=-2012$.
- $\beta=\left(\alpha^{2}+\alpha\right) / 2$ is an algebraic integer.
(i) Explain briefly how to show that $\{1, \alpha, \beta\}$ is an integral basis for K.
(ii) Why can we use the Dedekind-Kummer theorem (with the element α) to factorise $\langle 3\rangle$ and $\langle 5\rangle$ in \mathcal{O}_{K}, but not $\langle 2\rangle$?
(iii) Factorise the ideals $\langle 3\rangle$ and $\langle 5\rangle$ in \mathcal{O}_{K}, and determine the norm of each prime ideal in their factorisations.
(iv) Verify that $\alpha \beta=4+2 \beta$.
(v) Let $\mathfrak{a}=\mathbb{Z} .2+\mathbb{Z} . \alpha+\mathbb{Z} .2 \beta$. You may use without proof the facts that \mathfrak{a} is an ideal in \mathcal{O}_{K}, and that $\beta^{2}=6+2 \alpha+3 \beta$.
By considering $(1+\alpha+\beta) \beta$, or otherwise, show that \mathfrak{a} is not a prime ideal.

9. This question is a continuation of Q8.
(i) Verify that $\mathfrak{p}=\mathbb{Z} .2+\mathbb{Z} . \alpha+\mathbb{Z} \cdot \beta, \mathfrak{q}=\mathbb{Z} .2+\mathbb{Z} . \alpha+\mathbb{Z} .(\beta+1)$ and $\mathfrak{r}=$ $\mathbb{Z} .2+\mathbb{Z} .(1+\alpha)+\mathbb{Z} . \beta$ are ideals in \mathcal{O}_{K}.
(ii) Use change-of-basis matrices to show that $\operatorname{Nm}(\mathfrak{p})=\operatorname{Nm}(\mathfrak{q})=\operatorname{Nm}(\mathfrak{r})=2$.
(iii) Deduce that $\mathfrak{p}, \mathfrak{q}, \mathfrak{r}$ are prime ideals and $\langle 2\rangle=\mathfrak{p q r}$.
(iv) By comparing this factorisation with the Dedekind-Kummer theorem, prove that $\mathcal{O}_{K} \neq \mathbb{Z}[\gamma]$ for any γ. (How many monic irreducible polynomials of degree 1 are there modulo 2?)
10. Let R be the ring $\mathbb{Z}[\sqrt{-3}]$ (recall that this is not equal to \mathcal{O}_{K}, where $K=$ $\mathbb{Q}(\sqrt{-3})$). Let \mathfrak{p} be the ideal $\langle 2,1+\sqrt{-3}\rangle$ of R.
(a) Show that $\mathfrak{p}^{2}=\langle 2\rangle \mathfrak{p}$.
(b) Compute the fractional ideal \mathfrak{p}^{-1} of R, and show that it is equal to \mathcal{O}_{K}.
(c) Show that $\mathfrak{p p}^{-1}=\mathfrak{p}$.

Note: in this question, \mathfrak{p}^{-1} means $\{x \in K: x \mathfrak{p} \subseteq R\}$ (i.e. replace \mathcal{O}_{K} in the definition from lectures by R). Similarly $\langle 2\rangle$ means $2 R$ not $2 \mathcal{O}_{K}$.
11. Let K be a number field. Let α, β be non-zero elements of \mathcal{O}_{K}.
(i) Show that $\langle\alpha\rangle^{-1}=\left\langle\alpha^{-1}\right\rangle$.
(ii) Give an counterexample to the following claim: $\langle\alpha, \beta\rangle^{-1}=\left\langle\alpha^{-1}, \beta^{-1}\right\rangle$.

