Algebraic Number Theory 2019-20 Example Sheet 2

Hand in the answers to questions 3 and 5 (marked with \dagger).
Deadline 12 noon Monday, Week 6 (4 November)
For questions about the example sheet, it is best to ask them on Moodle. Questions must be asked before 5 pm on Friday to get an answer before the deadline.

1. Let $f(X)=X^{3}-3 X-3$. Let α be a root of f and let $K=\mathbb{Q}(\alpha)$.
(i) Show that f is irreducible.
(ii) Let $\beta=1+\alpha+\alpha^{2}$. Work out the matrix of $m_{K, \beta}$ in the basis $\left\{1, \alpha, \alpha^{2}\right\}$.
(iii) Calculate the characteristic polynomial $\chi_{K, \beta}(X)$ and deduce that the minimal polynomial $\mu_{\mathbb{Q}, \alpha}(X)$ is $X^{3}-9 X^{2}+12 X-7$.
2. Let $L=\mathbb{Q}(\sqrt[3]{d})$. Show that the basis $\left\{1, \sqrt[3]{d}, \sqrt[3]{d^{2}}\right\}$ for L has discriminant $-27 d^{2}$. (Try doing this using both formulae for the discriminant.)
\dagger 3. Let $f(X)=X^{3}-X^{2}-3$. Let α be a root of f and let $K=\mathbb{Q}(\alpha)$.
(i) Show that f has no roots in \mathbb{Z}. Deduce that f is irreducible over \mathbb{Q}.
(ii) Compute the matrix $m_{K, \alpha^{2}}$ with respect to the basis $\left\{1, \alpha, \alpha^{2}\right\}$.
(iii) Write down the traces $\operatorname{Tr}_{K / \mathbb{Q}}$ of $1, \alpha, \alpha^{2}$.
(iv) By using the equation $\alpha^{3}=\alpha^{2}+3$ and the fact that $\operatorname{Tr}_{K / \mathbb{Q}}$ is \mathbb{Q}-linear, or otherwise, calculate $\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha^{3}\right)$. Show that $\operatorname{Tr}_{K / \mathbb{Q}}\left(\alpha^{4}\right)=13$.
(v) Calculate $\Delta\left(1, \alpha, \alpha^{2}\right)$ and deduce that $\left\{1, \alpha, \alpha^{2}\right\}$ is an integral basis for K.
(vi) Explain in two or three sentences why $K \neq \mathbb{Q}(\sqrt[3]{d})$ for any $d \in \mathbb{Q}$. (You may use the result of Q2, as well as any results from lectures.)
3. Suppose $f(X)=X^{3}+b X+c \in \mathbb{Q}[X]$ is irreducible and let α be a root. Let $K=\mathbb{Q}(\alpha)$. Show that

$$
\Delta\left(1, \alpha, \alpha^{2}\right)=-4 b^{3}-27 c^{2} .
$$

$\dagger 5$. Let p be an odd prime and let $\zeta=\zeta_{p}=\exp (2 \pi i / p)$. Let $f(X)=X^{p-1}+X^{p-2}+$ $\cdots+X+1$ be the minimal polynomial of ζ. Let $K=\mathbb{Q}(\zeta)$ and let $\omega=\zeta-1$.
(i) Use the minimal polynomial of ω to prove that $\mathrm{Nm}_{K / \mathbb{Q}}(\omega)=p$.
(ii) Explain why the conjugates of ζ are

$$
\zeta, \zeta^{2}, \zeta^{3}, \ldots, \zeta^{p-1}
$$

(iii) Using the determinant of a Vandermonde matrix, show that

$$
\Delta\left(1, \zeta, \ldots, \zeta^{p-2}\right)=\prod_{1 \leq i<j \leq p-1}\left(\zeta^{i}-\zeta^{j}\right)^{2}=(-1)^{(p-1) / 2} \cdot \prod_{\substack{1 \leq i, j \leq p-1, i \neq j}}\left(\zeta^{i}-\zeta^{j}\right)
$$

(iv) Prove that
$\Delta\left(1, \zeta, \ldots, \zeta^{p-2}\right)=(-1)^{(p-1) / 2}\left(\prod_{i=1}^{p-1} \zeta^{i}\right)^{p-2} \cdot\left(\prod_{k=1}^{p-1}\left(\zeta^{k}-1\right)\right)^{p-2}$.
Express this in terms of $\mathrm{Nm}_{K / \mathbb{Q}}(\zeta)$ and $\mathrm{Nm}_{K / \mathbb{Q}}(\omega)$ and deduce that

$$
\Delta\left(1, \zeta, \ldots, \zeta^{p-2}\right)=(-1)^{(p-1) / 2} p^{p-2}
$$

(v) Using the fact that the minimal polynomial of ω is Eisenstein at p, show that $\frac{\omega^{p-1}}{p}$ is an algebraic integer.
(vi) By calculating the norm or otherwise, prove that if $t \in \mathbb{Z}$ and $0<t<p$ then $\frac{t \omega^{p-2}}{p}$ is not an algebraic integer.
6. Let $f(X) \in \mathbb{Q}[X]$ be a monic irreducible polynomial of degree n. Let the roots of f in \mathbb{C} be $\alpha_{1}, \ldots, \alpha_{n}$. Write $\alpha=\alpha_{1}$ and $K=\mathbb{Q}(\alpha)$.
(i) Differentiate $f(X)=\prod_{i=1}^{n}\left(X-\alpha_{n}\right)$ using the product formula and deduce that

$$
f^{\prime}\left(\alpha_{i}\right)=\prod_{\substack{1 \leq j \leq n, i \neq j}}\left(\alpha_{i}-\alpha_{j}\right)
$$

(ii) Using the determinant of a Vandermonde matrix, show that

$$
\begin{aligned}
\Delta\left(1, \alpha, \ldots, \alpha^{n-1}\right) & =\prod_{i=1}^{n} f^{\prime}\left(\alpha_{i}\right) \\
& =(-1)^{n(n-1) / 2} \operatorname{Nm}_{K / \mathbb{Q}}\left(f^{\prime}(\alpha)\right) .
\end{aligned}
$$

(iii) Now consider the case $f(X)=X^{p-1}+X^{p-2}+\cdots+X+1$ where p is an odd prime, and write ζ for a root of f. By writing $f(X)=\frac{X^{p}-1}{X-1}$ and differentiating using the quotient rule, prove that

$$
f^{\prime}(\zeta)=p \zeta^{p-1} /(\zeta-1)
$$

(iv) Deduce the formula for $\Delta\left(1, \zeta, \ldots, \zeta^{p-2}\right)$ which appears in Q5(iv).
7. Let K be a number field. We say that K is totally real if all its embeddings are real. Show that if K is totally real then the discriminant Δ_{K} is positive.
8. Let ω be an algebraic integer.
(i) Show that some conjugate of ω has absolute value ≥ 1.
(ii) Suppose further that $\operatorname{Nm}(\omega)=1$. Show that that some conjugate has absolute value ≤ 1.
(iii) (Hard!) With the help of (ii), show that $X^{n}+X+3$ is irreducible over \mathbb{Q} for all $n \geq 2$.
9. Let, for $n \geq 1$,

$$
M_{n}=(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n} .
$$

Show (without expanding brackets) that $M_{n} \in \mathbb{Z}$, and that moreover it is the nearest integer to $(1+\sqrt{2})^{n}$.

