Algebraic Number Theory 2019-20
 Example Sheet 1

Hand in the answers to questions $6,8,11$ (marked with \dagger).
Deadline 12 noon Monday, week 4 (21 October)
For questions about the example sheet, it is best to ask them on Moodle. Questions must be asked before 5 pm on Friday to get an answer before the deadline.

1. Find the minimal polynomials over \mathbb{Q} of the following algebraic numbers:
$\sqrt{-5}, \quad \sqrt{2}+\sqrt{7}, \quad \exp (2 \pi i / 5), \quad \cos (2 \pi / 7), \quad \frac{\sqrt[3]{3}}{2}, \quad \exp (2 \pi i / 3)+2, \quad \frac{\sqrt{3}+\sqrt{5}}{2}$.
2. Find the minimal polynomial of $\frac{1+i}{\sqrt{2}}$ over the following fields:

$$
\mathbb{Q}, \quad \mathbb{Q}(i), \quad \mathbb{Q}(\sqrt{2}), \quad \mathbb{Q}(\sqrt{-2}) .
$$

3. What is the degree of the following extensions?

$$
\mathbb{Q}(\sqrt{5}, \sqrt{7}, \sqrt{35}) / \mathbb{Q}, \quad \mathbb{Q}(\sqrt[3]{2}, \sqrt{2}) / \mathbb{Q}
$$

4. You probably know that e and π are transcendental. Show that e and π are algebraic over the field $\mathbb{Q}(e+\pi, e \pi)$.
5. (i) Let K be a number field of degree 2. Prove that $K=\mathbb{Q}(\sqrt{d})$ for some square-free integer $d \neq 1$.
(ii) Let d_{1}, d_{2} be square-free integers $\neq 1$, with $d_{1} \neq d_{2}$. Prove that
(a) $\mathbb{Q}\left(\sqrt{d_{1}}\right) \neq \mathbb{Q}\left(\sqrt{d_{2}}\right)$,
(b) $\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)=\mathbb{Q}\left(\sqrt{d_{1}}+\sqrt{d_{2}}\right)$.
\dagger 6. Let K be a number field and let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}$ be a \mathbb{Q}-basis for K. Prove that $K=\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{r}\right)$.
6. Let p be a prime number and let $\zeta_{p}=\exp (2 \pi i / p)$. Prove that the minimal polynomial of ζ_{p} is $X^{p-1}+X^{p-2}+\cdots+X+1$ and deduce that $\left[\mathbb{Q}\left(\zeta_{p}\right): \mathbb{Q}\right]=$ $p-1$. Write down a \mathbb{Q}-basis for $\mathbb{Q}\left(\zeta_{p}\right)$.
\dagger 8. (i) Show that $f(X)=X^{3}-4 X+2$ is irreducible over \mathbb{Q}.
(ii) By considering $f(0)$ and $f(1)$, or otherwise, show that f has 3 real roots.
(iii) Let α be a root of $f(X)$. What are the degree and signature of $\mathbb{Q}(\alpha)$?
7. Let d be a non-cube rational number. Describe the embeddings of $\mathbb{Q}(\sqrt[3]{d})$. What is the signature of $\mathbb{Q}(\sqrt[3]{d})$? Conclude that the field $\mathbb{Q}(\alpha)$ from question 8 is not equal to $\mathbb{Q}(\sqrt[3]{d})$ for any $d \in \mathbb{Q}$.
8. Let $\sigma: \mathbb{Q}(\sqrt{5}) \hookrightarrow \mathbb{C}$ be given by $\sigma(a+b \sqrt{5})=a-b \sqrt{5}$. Explicitly write down the embeddings $\tau: \mathbb{Q}(\sqrt{5}, \sqrt{6}) \hookrightarrow \mathbb{C}$ that extend σ.
\dagger 11. (i) Let $K=\mathbb{Q}(\sqrt{2})$ and let $\alpha=1+\sqrt{2}$. Prove that the embeddings of K can be labelled as σ_{1}, σ_{2} in such a way that $\sigma_{1}(\alpha)>0$ and $\sigma_{2}(\alpha)<0$.
(ii) Let $\beta=\sqrt{\alpha}$ and $L=\mathbb{Q}(\beta)$. Prove that $\beta \notin K$. (Hint: suppose for contradiction that $\beta \in K$ and consider $\sigma_{2}(\beta)$.)
(iii) Describe the embeddings of L extending σ_{1}, and the embeddings of L extending σ_{2}. Which are real and which are complex? What is the signature of L ?
(iv) Write down a number field of signature $(4,0)$. Explain in around three or four sentences why your field has this signature. (Do not write out a full proof - marks will be awarded for explaining the important steps briefly.)
Correction: (ii) originally said $L=\mathbb{Q}(\sqrt{\beta})$ but it should be $L=\mathbb{Q}(\beta)$. (iii) originally said "embeddings of L describing σ_{2} " instead of "extending σ_{2}."
9. A field K is algebraically closed if every β that is algebraic over K belongs to K.
(i) Explain why \mathbb{C} is algebraically closed.
(ii) Show that $\overline{\mathbb{Q}}$ is algebraically closed.
10. (i) Let $L=K(\sqrt{d})$ where d is a non-square in K. Prove that, if $x \in L$ and $x^{2} \in K$, then either $x \in K$ or $x \sqrt{d} \in K$.
(ii) Let $K_{r}=\mathbb{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \ldots, \sqrt{d_{r}}\right)$ where d_{1}, \ldots, d_{r} are square-free integers. Prove by induction that, if $x \in K_{r}$ and $x^{2} \in \mathbb{Q}$, then

$$
x=q \sqrt{d_{1}^{a_{1}} d_{2}^{a_{2}} \cdots d_{r}^{a_{r}}}
$$

where $q \in \mathbb{Q}$ and $a_{1}, \ldots, a_{r}=0$ or 1 .
(iii) Suppose that d_{1}, \ldots, d_{r} are distinct prime numbers. Determine the degree $\left[\mathbb{Q}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{r}}\right): \mathbb{Q}\right]$.

