Shimura Varieties: Problem sheet 6

Tori and Hodge structures

12 November 2014

1. Representations of tori

Let K be a field of characteristic zero.

- (a) Let T be a torus over the algebraic closure \bar{K} . Show that torsion points are Zariski dense in $T(\bar{K})$.
- (b) Let $\rho: T \to \operatorname{GL}(V)$ be a finite-dimensional representation of T (we require that ρ is a morphism of algebraic groups). Show that we can choose a basis for V with respect to which, for all torsion points $x \in T(\bar{K})$, $\rho(x)$ is diagonal.
- (c) Deduce from (i) and (ii) that, with respect to a suitably chosen basis, the image $\rho(T)$ is contained in the diagonal matrices in GL(V).
- (d) Deduce that ρ is isomorphic to a direct sum of one-dimensional representations.

In other words, each isomorphism class of representations of ρ is isomorphic to

$$\bigoplus_{\chi \in X^*(T)} \chi^{m(\rho,\chi)}$$

for some function $m(\rho, -): X^*(T) \to \mathbb{Z}_{\geq 0}$ which is zero for all but finitely many χ .

(e) Now let T be a torus over K itself. Let $\rho: T \to GL(V)$ be a representation of T which is defined over K (as a morphism of algebraic groups. Prove that

$$m(\rho, \sigma \chi) = m(\rho, \chi)$$

for all $\chi \in X^*(T)$ and $\sigma \in \operatorname{Gal}(\bar{K}/K)$.

(f) Prove that there is a natural bijection between irreducible representations of T defined over K and $\operatorname{Gal}(\bar{K}/K)$ -orbits in $X^*(T)$.

2. Representations of the Deligne torus

(a) Let $\mathbb{S} = \operatorname{Res}_{\mathbb{C}/\mathbb{R}} \mathbb{G}_m$ be the Deligne torus. Label the standard characters of \mathbb{S} which generate its character group as χ and $\bar{\chi}$.

Describe the $Gal(\mathbb{C}/\mathbb{R})$ -orbits in $X^*(\mathbb{S})$, and the associated \mathbb{R} -irreducible representations of \mathbb{S} .

We define an \mathbb{R} -Hodge structure to be a finite-dimensional real vector space $V_{\mathbb{R}}$ together with a direct sum decomposition

$$V_{\mathbb{R}}\otimes_{\mathbb{R}}\mathbb{C}=igoplus_{(p,q)\in\mathbb{Z}^2}V^{p,q}$$

satisfying

$$V^{q,p} = \overline{V^{p,q}}$$

for all p, q (where the bar denotes complex conjugation).

- (b) Define a representation $\mathbb{S}(\mathbb{C}) \to \mathrm{GL}(V_{\mathbb{C}})$ by letting $\mathbb{S}(\mathbb{C})$ act on $V^{p,q}$ via the character $\chi^{-p}\bar{\chi}^{-q}$. Prove that this defines a real representation $\mathbb{S} \to \mathrm{GL}(V_{\mathbb{R}})$. (The minus signs in the exponents here are unimportant, but they are a standard convention.)
- (c) Show that there is an equivalence of categories between \mathbb{R} -Hodge structures and representations of \mathbb{S} defined over \mathbb{R} .

3. Tori over \mathbb{Q}

Let F be a number field. We define a \mathbb{Q} -torus T_F (also known as $\mathrm{Res}_{F/\mathbb{Q}} \mathbb{G}_{m,L}$) as follows:

Let Ψ be the set of embeddings $F \to \bar{\mathbb{Q}}$. There is a natural action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on Ψ .

Let $\mathbb{Z}[\Sigma]$ be the free \mathbb{Z} -module of formal linear combinations of elements of Σ :

$$\mathbb{Z}[\Sigma] = \{a_1 \sigma_1 + \dots + a_n \sigma_n \mid (a_i) \in \mathbb{Z}^n\}$$

where $\Sigma = {\sigma_1, \ldots, \sigma_n}$. Define an action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ on $\mathbb{Z}[\Sigma]$ by linearly extending its action on Σ .

Then T_F is the \mathbb{Q} -torus whose character group is $\mathbb{Z}[\Sigma]$ with the given Galois action.

- (a) Prove that the group of \mathbb{Q} -points of T_F is naturally isomorphic to F^{\times} ., and more generally, $T_F(A) = (F \otimes_{\mathbb{Q}} A)^{\times}$ for any \mathbb{Q} -algebra A.
- (b) Let $n = [F : \mathbb{Q}]$ and choose a basis $\{e_1, \ldots, e_n\}$ for F as a \mathbb{Q} -vector space. Consider the homomorphism $F^{\times} \to \mathrm{GL}_n(\mathbb{Q})$ which sends $x \in F^{\times}$ to the linear map "multiply by x in F", with respect to the chosen basis. Prove that this is the map on \mathbb{Q} -points induced by a morphism of \mathbb{Q} -algebraic groups $T_F \to \mathrm{GL}_{n,\mathbb{Q}}$.

This realises T_F as a \mathbb{Q} -algebraic subgroup of GL_n . For example, choosing the basis $\{1, \sqrt{d}\}$ for the quadratic field $\mathbb{Q}(\sqrt{d})$, we get

$$T_F \cong \left\{ \begin{pmatrix} x & dy \\ y & x \end{pmatrix} \in \operatorname{GL}_2 \right\}.$$

- (c) Prove that the splitting field of T_F is the Galois closure of F.
- (d) Consider the character $\sigma_1 + \cdots + \sigma_n$ (where $\Sigma = {\sigma_1, \ldots, \sigma}$). Observe that this character is invariant under the action of $\operatorname{Gal}(\bar{\mathbb{Q}}/\mathbb{Q})$ and deduce that it defines a morphism of \mathbb{Q} -algebraic groups

$$N: T_F \to \mathbb{G}_{m,\mathbb{Q}}.$$

Show that its value on \mathbb{Q} -points is the same as the norm $\mathrm{Nm}_{F/\mathbb{Q}}$.