
Shimura Varieties: Problem sheet 5

Reductive groups

November 3, 2014

Throughout, we let K denote an arbitrary field of characteristic 0. Algebraic groups
are considered over K unless specified otherwise.

Exercise I: Tori.
An algebraic group T over K is a torus if there exists an integer n and a Galois
extension L/K such that T ×K L ∼= Gn

m,L.
Recall the character group X∗(T ) = Hom(T,Gm) and cocharacter group X∗(T ) =
Hom(Gm, T ). There is a pairing 〈−,−〉 : X∗(T )×X∗(T )→ Z given by composition:
α ◦ µ =

(
x 7→ x〈α,µ〉

)
∈ Hom(Gm,Gm) for α ∈ X∗(T ), µ ∈ X∗(T ).

(a) Let T be a torus, with an isomorphism i : T0 = Gn
m,L → T ×K L for some finite

Galois extension L/K.
Prove that for every σ ∈ Gal(L/K), conjugation by σ gives rise to an automor-
phism aσ of T0 through the formula σ(i) = i ◦ aσ.

(b) Show that the assignment σ 7→ aσ is a 1-cocyle: aστ = aσσ(aτ ).

(c) Use this to construct a homomorphism ρT : Gal(L/K)→ GLn(Z). (Hint: exer-
cise 8 from the previous sheet tells us we can identify automorphisms of T0 with
automorphisms of X∗(T0), both over L and over K.)

(d) Show that choosing a different isomorphism j = i ◦ b instead of i, giving a 1-
cocycle a′, changes a by the following formula: a′σ = b−1aσσ(b). Deduce that ρT
is uniquely determined up to conjugacy.

(e) Conversely, given a Galois representation ρ : Gal(L/K) → GL(M), show that
T (K) = (L× ⊗Z M

∨)Gal(L/K) defines a torus T over K with T ×K L ∼= Gn
m

and ρT = ρ (up to conjugacy). (Here M∨ is the dual representation to ρ, and
Gal(L/K) acts diagonally on the tensor product L× ⊗Z M

∨.)

(f) Apply this result to classify all tori over the field K = R. (Hint: Z/2Z admits
exactly three isomorphism classes of indecomposable integral representations.
Which are they?)

Exercise II: Rank zero semisimple groups.
An algebraic group is called semisimple if it has no nontrivial solvable normal
subgroups. The rank of a semisimple group G is the maximal dimension of a torus
inside G.
Show that a connected semisimple group of rank 0 is trivial.
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Exercise III: Roots and coroots.
Let D be the subgroup of diagonal matrices of SL2.

(a) Show that X∗(D) is generated by λ :

(
x 0
0 1/x

)
7→ x, and X∗(D) is generated

by µ : x 7→
(
x 0
0 1/x

)
.

(b) Let D act on the Lie algebra sl2 of SL2 (consisting of traceless 2× 2 matrices),
by conjugation. Which characters of X∗(D) appear in the decomposition of this
representation of D into irreducible representations? Such characters which are
nonzero are called roots.

(c) Now consider G = PGL2 and take T to consist of the diagonal subgroup. Write
down X∗(T ), X∗(T ) and the subset of roots Φ ⊂ X∗(T ), obtained by decom-
posing the conjugation action of T on pgl2 = gl2/K.

(d) For each root α, write down a nonzero homomorphism uα : Ga → G such that
tuα(a)t−1 = uα(α(t)a) for all t ∈ T , a ∈ Ga. Prove that the image of such a
homomorphism is necessarily uniquely determined by this condition: this is the
root group Uα.

(e) Prove that for each root α ∈ Φ, there exists a homomorphism ϕα : SL2 → G
that sends D into T , and maps U+ ⊂ SL2 (respectively U−) isomorphically

onto Uα (respectively, U−α). Here U+ =

{(
1 a
0 1

)}
⊂ SL2, and similarly

U− =

{(
1 0
a 1

)}
.

(f) Define the coroot α∨ attached to the root α as the cocharacter given by

α∨(x) = ϕα

((
x 0
0 1/x

))
, i.e. α∨ = ϕα ◦ µ. Show that this is well defined

(i.e. independent of any choice of ϕα), and compute 〈α, β∨〉 for α, β ∈ Φ.

(g) Bonus exercise! Carry out these calculations for the following algebraic groups:
SL3, Sp4, SL2 × SL2 and SO5. Compare results with your answer to the last
part of exercise IV.
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Exercise IV: Root systems.
We can construct roots and coroots for more general groups than we did in the
previous exercise. The algebraic structure of the resulting object is that of a root
datum. This consists of:

– Free abelian groups of finite rank M and M∨, with finite subsets of nonzero
elements Φ ⊂M (the roots) and Φ∨ ⊂M∨ (the coroots).

– A perfect pairing 〈−,−〉 : M ×M∨ → Z.
– A bijection α↔ α∨ between Φ and Φ∨.

This data is subject to the following conditions:
– 〈α, α∨〉 = 2 for all α ∈ Φ,
– sα(Φ) = Φ, where sα(x) = x − 〈x, α∨〉α is the “reflection in the hyperplane

perpendicular to α∨”, and dually for sα∨ .
Moreover, a root datum is said to be reduced if, for every α ∈ Φ, nα ∈ Φ ⇐⇒
n ∈ {±1}. Given a (reduced) root datum, one can form the associated (reduced)
root system by considering the real vector space V = M ⊗ R with Φ ⊂ V .
Assume from now on that the roots span V (this is the semisimple case).

(a) Define a pairing (−,−) on V by the formula (α, β) =
∑

λ∈Φ〈α, λ∨〉〈β, λ∨〉. Prove
that this pairing makes V into an Euclidean vector space, i.e. that the pairing
is symmetric and positive definite.

(b) Prove that 〈α, β∨〉 = 2 (α,β)
(α,α)

. Deduce that the orthogonal projection of any root
α onto another root β is always a half-integral multiple of β, and also that the
reflections sα are orthogonal with respect to (−,−).

(c) Let θ be the angle between any two roots, as defined using (−,−).
Show that θ ∈ {0,±π

6
,±π

4
,±π

3
}+ πZ.

(d) Let ∆ ⊂ Φ be a simple subsystem: a linearly independent subset such that
every element α of Φ can be (uniquely) written as a linear combination α =∑

i aiδi with δi ∈ ∆, with the condition that either ai > 0 for all i, or that
ai 6 0 for all i.
Show that the angles between any two vectors in a simple subsystem are obtuse.

(e) Let Φ+ be any subset of Φ with Φ = Φ+
∐
−Φ+. This is a choice of positive

roots. Prove that there exists a unique simple subsystem ∆ ⊆ Φ+.

(f) Classify all rank 2 (reduced) root systems. (Hint: It suffices to consider a simple
subsystem. Which pairs of vectors in the plane can form a root system?)
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