Shimura Varieties: Problem sheet 5

Reductive groups

November 3, 2014

Throughout, we let K denote an arbitrary field of characteristic 0 . Algebraic groups are considered over K unless specified otherwise.

Exercise I: Tori.

An algebraic group T over K is a torus if there exists an integer n and a Galois extension L / K such that $T \times{ }_{K} L \cong \mathbb{G}_{\mathrm{m}, L}^{n}$.
Recall the character group $X^{*}(T)=\operatorname{Hom}\left(T, \mathbb{G}_{\mathrm{m}}\right)$ and cocharacter group $X_{*}(T)=$ $\operatorname{Hom}\left(\mathbb{G}_{\mathrm{m}}, T\right)$. There is a pairing $\langle-,-\rangle: X^{*}(T) \times X_{*}(T) \rightarrow \mathbb{Z}$ given by composition: $\alpha \circ \mu=\left(x \mapsto x^{\langle\alpha, \mu\rangle}\right) \in \operatorname{Hom}\left(\mathbb{G}_{\mathrm{m}}, \mathbb{G}_{\mathrm{m}}\right)$ for $\alpha \in X^{*}(T), \mu \in X_{*}(T)$.
(a) Let T be a torus, with an isomorphism i: $T_{0}=\mathbb{G}_{\mathrm{m}, L}^{n} \rightarrow T \times_{K} L$ for some finite Galois extension L / K.
Prove that for every $\sigma \in \operatorname{Gal}(L / K)$, conjugation by σ gives rise to an automorphism a_{σ} of T_{0} through the formula $\sigma(i)=i \circ a_{\sigma}$.
(b) Show that the assignment $\sigma \mapsto a_{\sigma}$ is a 1-cocyle: $a_{\sigma \tau}=a_{\sigma} \sigma\left(a_{\tau}\right)$.
(c) Use this to construct a homomorphism $\rho_{T}: \operatorname{Gal}(L / K) \rightarrow \mathrm{GL}_{n}(\mathbb{Z})$. (Hint: exercise 8 from the previous sheet tells us we can identify automorphisms of T_{0} with automorphisms of $X^{*}\left(T_{0}\right)$, both over L and over K.)
(d) Show that choosing a different isomorphism $j=i \circ b$ instead of i, giving a 1cocycle a^{\prime}, changes a by the following formula: $a_{\sigma}^{\prime}=b^{-1} a_{\sigma} \sigma(b)$. Deduce that ρ_{T} is uniquely determined up to conjugacy.
(e) Conversely, given a Galois representation $\rho: \operatorname{Gal}(L / K) \rightarrow \mathrm{GL}(M)$, show that $T(K)=\left(L^{\times} \otimes_{\mathbb{Z}} M^{\vee}\right)^{\operatorname{Gal}(L / K)}$ defines a torus T over K with $T \times_{K} L \cong \mathbb{G}_{\mathrm{m}}^{n}$ and $\rho_{T}=\rho$ (up to conjugacy). (Here M^{\vee} is the dual representation to ρ, and $\operatorname{Gal}(L / K)$ acts diagonally on the tensor product $L^{\times} \otimes_{\mathbb{Z}} M^{\vee}$.)
(f) Apply this result to classify all tori over the field $K=\mathbb{R}$. (Hint: $\mathbb{Z} / 2 \mathbb{Z}$ admits exactly three isomorphism classes of indecomposable integral representations. Which are they?)

Exercise II: Rank zero semisimple groups.

An algebraic group is called semisimple if it has no nontrivial solvable normal subgroups. The rank of a semisimple group G is the maximal dimension of a torus inside G.
Show that a connected semisimple group of rank 0 is trivial.

Exercise III: Roots and coroots.

Let D be the subgroup of diagonal matrices of SL_{2}.
(a) Show that $X^{*}(D)$ is generated by λ : $\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right) \mapsto x$, and $X_{*}(D)$ is generated by $\mu: x \mapsto\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right)$.
(b) Let D act on the Lie algebra $\mathfrak{s l}_{2}$ of SL_{2} (consisting of traceless 2×2 matrices), by conjugation. Which characters of $X^{*}(D)$ appear in the decomposition of this representation of D into irreducible representations? Such characters which are nonzero are called roots.
(c) Now consider $G=\mathrm{PGL}_{2}$ and take T to consist of the diagonal subgroup. Write down $X^{*}(T), X_{*}(T)$ and the subset of roots $\Phi \subset X^{*}(T)$, obtained by decomposing the conjugation action of T on $\mathfrak{p g l}_{2}=\mathfrak{g l}_{2} / K$.
(d) For each root α, write down a nonzero homomorphism $u_{\alpha}: \mathbb{G}_{\mathrm{a}} \rightarrow G$ such that $t u_{\alpha}(a) t^{-1}=u_{\alpha}(\alpha(t) a)$ for all $t \in T, a \in \mathbb{G}_{a}$. Prove that the image of such a homomorphism is necessarily uniquely determined by this condition: this is the root group U_{α}.
(e) Prove that for each root $\alpha \in \Phi$, there exists a homomorphism $\varphi_{\alpha}: \mathrm{SL}_{2} \rightarrow G$ that sends D into T, and maps $U^{+} \subset \mathrm{SL}_{2}$ (respectively U^{-}) isomorphically onto U_{α} (respectively, $U_{-\alpha}$). Here $U^{+}=\left\{\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)\right\} \subset \mathrm{SL}_{2}$, and similarly $U^{-}=\left\{\left(\begin{array}{ll}1 & 0 \\ a & 1\end{array}\right)\right\}$.
(f) Define the coroot α^{\vee} attached to the root α as the cocharacter given by $\alpha^{\vee}(x)=\varphi_{\alpha}\left(\left(\begin{array}{cc}x & 0 \\ 0 & 1 / x\end{array}\right)\right)$, i.e. $\alpha^{\vee}=\varphi_{\alpha} \circ \mu$. Show that this is well defined (i.e. independent of any choice of φ_{α}), and compute $\left\langle\alpha, \beta^{\vee}\right\rangle$ for $\alpha, \beta \in \Phi$.
(g) Bonus exercise! Carry out these calculations for the following algebraic groups: $\mathrm{SL}_{3}, \mathrm{Sp}_{4}, \mathrm{SL}_{2} \times \mathrm{SL}_{2}$ and SO_{5}. Compare results with your answer to the last part of exercise IV.

Exercise IV: Root systems.

We can construct roots and coroots for more general groups than we did in the previous exercise. The algebraic structure of the resulting object is that of a root
datum. This consists of:

- Free abelian groups of finite rank M and M^{\vee}, with finite subsets of nonzero elements $\Phi \subset M$ (the roots) and $\Phi^{\vee} \subset M^{\vee}$ (the coroots).
- A perfect pairing $\langle-,-\rangle: M \times M^{\vee} \rightarrow \mathbb{Z}$.
- A bijection $\alpha \leftrightarrow \alpha^{\vee}$ between Φ and Φ^{\vee}.

This data is subject to the following conditions:
$-\left\langle\alpha, \alpha^{\vee}\right\rangle=2$ for all $\alpha \in \Phi$,
$-s_{\alpha}(\Phi)=\Phi$, where $s_{\alpha}(x)=x-\left\langle x, \alpha^{\vee}\right\rangle \alpha$ is the "reflection in the hyperplane perpendicular to α^{\vee} ", and dually for $s_{\alpha}{ }^{\vee}$.
Moreover, a root datum is said to be reduced if, for every $\alpha \in \Phi, n \alpha \in \Phi \Longleftrightarrow$ $n \in\{ \pm 1\}$. Given a (reduced) root datum, one can form the associated (reduced) root system by considering the real vector space $V=M \otimes \mathbb{R}$ with $\Phi \subset V$.
Assume from now on that the roots span V (this is the semisimple case).
(a) Define a pairing $(-,-)$ on V by the formula $(\alpha, \beta)=\sum_{\lambda \in \Phi}\left\langle\alpha, \lambda^{\vee}\right\rangle\left\langle\beta, \lambda^{\vee}\right\rangle$. Prove that this pairing makes V into an Euclidean vector space, i.e. that the pairing is symmetric and positive definite.
(b) Prove that $\left\langle\alpha, \beta^{\vee}\right\rangle=2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}$. Deduce that the orthogonal projection of any root α onto another root β is always a half-integral multiple of β, and also that the reflections s_{α} are orthogonal with respect to $(-,-)$.
(c) Let θ be the angle between any two roots, as defined using $(-,-)$.

Show that $\theta \in\left\{0, \pm \frac{\pi}{6}, \pm \frac{\pi}{4}, \pm \frac{\pi}{3}\right\}+\pi \mathbb{Z}$.
(d) Let $\Delta \subset \Phi$ be a simple subsystem: a linearly independent subset such that every element α of Φ can be (uniquely) written as a linear combination $\alpha=$ $\sum_{i} a_{i} \delta_{i}$ with $\delta_{i} \in \Delta$, with the condition that either $a_{i} \geqslant 0$ for all i, or that $a_{i} \leqslant 0$ for all i.
Show that the angles between any two vectors in a simple subsystem are obtuse.
(e) Let Φ^{+}be any subset of Φ with $\Phi=\Phi^{+} \coprod-\Phi^{+}$. This is a choice of positive roots. Prove that there exists a unique simple subsystem $\Delta \subseteq \Phi^{+}$.
(f) Classify all rank 2 (reduced) root systems. (Hint: It suffices to consider a simple subsystem. Which pairs of vectors in the plane can form a root system?)

