Shimura Varieties: Problem sheet 5

Reductive groups

November 3, 2014

Throughout, we let K denote an arbitrary field of characteristic 0. Algebraic groups are considered over K unless specified otherwise.

Exercise I: Tori.

An algebraic group T over K is a **torus** if there exists an integer n and a Galois extension L/K such that $T \times_K L \cong \mathbb{G}^n_{\mathrm{m},L}$.

Recall the character group $X^*(T) = \operatorname{Hom}(T, \mathbb{G}_{\mathrm{m}})$ and cocharacter group $X_*(T) = \operatorname{Hom}(\mathbb{G}_{\mathrm{m}}, T)$. There is a pairing $\langle -, - \rangle \colon X^*(T) \times X_*(T) \to \mathbb{Z}$ given by composition: $\alpha \circ \mu = (x \mapsto x^{\langle \alpha, \mu \rangle}) \in \operatorname{Hom}(\mathbb{G}_{\mathrm{m}}, \mathbb{G}_{\mathrm{m}})$ for $\alpha \in X^*(T)$, $\mu \in X_*(T)$.

- (a) Let T be a torus, with an isomorphism $i: T_0 = \mathbb{G}^n_{m,L} \to T \times_K L$ for some finite Galois extension L/K.
 - Prove that for every $\sigma \in \operatorname{Gal}(L/K)$, conjugation by σ gives rise to an automorphism a_{σ} of T_0 through the formula $\sigma(i) = i \circ a_{\sigma}$.
- (b) Show that the assignment $\sigma \mapsto a_{\sigma}$ is a **1-cocyle**: $a_{\sigma\tau} = a_{\sigma}\sigma(a_{\tau})$.
- (c) Use this to construct a homomorphism $\rho_T \colon \operatorname{Gal}(L/K) \to \operatorname{GL}_n(\mathbb{Z})$. (Hint: exercise 8 from the previous sheet tells us we can identify automorphisms of T_0 with automorphisms of $X^*(T_0)$, both over L and over K.)
- (d) Show that choosing a different isomorphism $j = i \circ b$ instead of i, giving a 1-cocycle a', changes a by the following formula: $a'_{\sigma} = b^{-1}a_{\sigma}\sigma(b)$. Deduce that ρ_T is uniquely determined up to conjugacy.
- (e) Conversely, given a Galois representation $\rho \colon \operatorname{Gal}(L/K) \to \operatorname{GL}(M)$, show that $T(K) = (L^{\times} \otimes_{\mathbb{Z}} M^{\vee})^{\operatorname{Gal}(L/K)}$ defines a torus T over K with $T \times_K L \cong \mathbb{G}^n_{\mathrm{m}}$ and $\rho_T = \rho$ (up to conjugacy). (Here M^{\vee} is the dual representation to ρ , and $\operatorname{Gal}(L/K)$ acts diagonally on the tensor product $L^{\times} \otimes_{\mathbb{Z}} M^{\vee}$.)
- (f) Apply this result to classify all tori over the field $K = \mathbb{R}$. (Hint: $\mathbb{Z}/2\mathbb{Z}$ admits exactly three isomorphism classes of indecomposable integral representations. Which are they?)

Exercise II: Rank zero semisimple groups.

An algebraic group is called **semisimple** if it has no nontrivial solvable normal subgroups. The **rank** of a semisimple group G is the maximal dimension of a torus inside G.

Show that a connected semisimple group of rank 0 is trivial.

Exercise III: Roots and coroots.

Let D be the subgroup of diagonal matrices of SL_2 .

- (a) Show that $X^*(D)$ is generated by $\lambda \colon \begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix} \mapsto x$, and $X_*(D)$ is generated by $\mu \colon x \mapsto \begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix}$.
- (b) Let D act on the Lie algebra \mathfrak{sl}_2 of SL_2 (consisting of traceless 2×2 matrices), by conjugation. Which characters of $X^*(D)$ appear in the decomposition of this representation of D into irreducible representations? Such characters which are nonzero are called **roots**.
- (c) Now consider $G = \operatorname{PGL}_2$ and take T to consist of the diagonal subgroup. Write down $X^*(T)$, $X_*(T)$ and the subset of roots $\Phi \subset X^*(T)$, obtained by decomposing the conjugation action of T on $\mathfrak{pgl}_2 = \mathfrak{gl}_2/K$.
- (d) For each root α , write down a nonzero homomorphism $u_{\alpha} \colon \mathbb{G}_{\mathbf{a}} \to G$ such that $tu_{\alpha}(a)t^{-1} = u_{\alpha}(\alpha(t)a)$ for all $t \in T$, $a \in \mathbb{G}_a$. Prove that the image of such a homomorphism is necessarily uniquely determined by this condition: this is the **root group** U_{α} .
- (e) Prove that for each root $\alpha \in \Phi$, there exists a homomorphism $\varphi_{\alpha} \colon \operatorname{SL}_{2} \to G$ that sends D into T, and maps $U^{+} \subset \operatorname{SL}_{2}$ (respectively U^{-}) isomorphically onto U_{α} (respectively, $U_{-\alpha}$). Here $U^{+} = \left\{ \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \right\} \subset \operatorname{SL}_{2}$, and similarly $U^{-} = \left\{ \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \right\}$.
- (f) Define the **coroot** α^{\vee} attached to the root α as the cocharacter given by $\alpha^{\vee}(x) = \varphi_{\alpha}\left(\begin{pmatrix} x & 0 \\ 0 & 1/x \end{pmatrix}\right)$, i.e. $\alpha^{\vee} = \varphi_{\alpha} \circ \mu$. Show that this is well defined (i.e. independent of any choice of φ_{α}), and compute $\langle \alpha, \beta^{\vee} \rangle$ for $\alpha, \beta \in \Phi$.
- (g) Bonus exercise! Carry out these calculations for the following algebraic groups: SL_3 , Sp_4 , $SL_2 \times SL_2$ and SO_5 . Compare results with your answer to the last part of exercise IV.

Exercise IV: Root systems.

We can construct roots and coroots for more general groups than we did in the previous exercise. The algebraic structure of the resulting object is that of a **root datum**. This consists of:

- Free abelian groups of finite rank M and M^{\vee} , with finite subsets of nonzero elements $\Phi \subset M$ (the roots) and $\Phi^{\vee} \subset M^{\vee}$ (the coroots).
- A perfect pairing $(-,-): M \times M^{\vee} \to \mathbb{Z}$.
- A bijection $\alpha \leftrightarrow \alpha^{\vee}$ between Φ and Φ^{\vee} .

This data is subject to the following conditions:

- $-\langle \alpha, \alpha^{\vee} \rangle = 2 \text{ for all } \alpha \in \Phi,$
- $-s_{\alpha}(\Phi) = \Phi$, where $s_{\alpha}(x) = x \langle x, \alpha^{\vee} \rangle \alpha$ is the "reflection in the hyperplane perpendicular to α^{\vee} ", and dually for $s_{\alpha^{\vee}}$.

Moreover, a root datum is said to be **reduced** if, for every $\alpha \in \Phi$, $n\alpha \in \Phi \iff n \in \{\pm 1\}$. Given a (reduced) root datum, one can form the associated (reduced) **root system** by considering the real vector space $V = M \otimes \mathbb{R}$ with $\Phi \subset V$.

Assume from now on that the roots span V (this is the semisimple case).

- (a) Define a pairing (-,-) on V by the formula $(\alpha,\beta) = \sum_{\lambda \in \Phi} \langle \alpha, \lambda^{\vee} \rangle \langle \beta, \lambda^{\vee} \rangle$. Prove that this pairing makes V into an Euclidean vector space, i.e. that the pairing is symmetric and positive definite.
- (b) Prove that $\langle \alpha, \beta^{\vee} \rangle = 2 \frac{(\alpha, \beta)}{(\alpha, \alpha)}$. Deduce that the orthogonal projection of any root α onto another root β is always a half-integral multiple of β , and also that the reflections s_{α} are orthogonal with respect to (-, -).
- (c) Let θ be the angle between any two roots, as defined using (-,-). Show that $\theta \in \{0, \pm \frac{\pi}{6}, \pm \frac{\pi}{4}, \pm \frac{\pi}{3}\} + \pi \mathbb{Z}$.
- (d) Let $\Delta \subset \Phi$ be a **simple subsystem**: a linearly independent subset such that every element α of Φ can be (uniquely) written as a linear combination $\alpha = \sum_{i} a_{i} \delta_{i}$ with $\delta_{i} \in \Delta$, with the condition that either $a_{i} \geq 0$ for all i, or that $a_{i} \leq 0$ for all i.

Show that the angles between any two vectors in a simple subsystem are obtuse.

- (e) Let Φ^+ be any subset of Φ with $\Phi = \Phi^+ \coprod -\Phi^+$. This is a choice of **positive** roots. Prove that there exists a unique simple subsystem $\Delta \subseteq \Phi^+$.
- (f) Classify all rank 2 (reduced) root systems. (Hint: It suffices to consider a simple subsystem. Which pairs of vectors in the plane can form a root system?)