
Shimura Varieties: Problem sheet 3

Local fields
22 October 2014

Notation: if K is a field complete with respect to a valuation v, we write

OK = {x ∈ K | v(x) ≥ 0},
mK = {x ∈ K | v(x) > 0},
kK = OK/mK .

1. Hensel’s lemma and squares

(a) Prove Hensel’s lemma: Let K be a complete discretely valued field and f(X)
a polynomial with coefficients in OK . If ā ∈ kK is a simple root of f modulo
mK , then there is a unique a ∈ oK such that f(a) = 0 and ā ≡ a mod mK .

(b) Prove the strong form of Hensel’s lemma: Let K be a complete discretely
valued field and f(X) a monic polynomial with coefficients in OK . Suppose
that f factors as ḡh̄modulo mK , where ḡ and h̄ are monic and relatively prime
in kK [X]. Then there are unique monic polynomials g, h ∈ OK [X] such that
f = gh, ḡ = g mod mK and h̄ = h mod mK .

(c) Prove that if p is an odd prime, then x ∈ Q×p has a square root in Q×p if
and only if x = p2ma for some m ∈ Z and a ∈ Z×p such that a reduces to a
quadratic residue modulo p.

(d) Prove that if p is odd, then Qp has exactly three quadratic extensions: Qp(
√
u),

Qp(
√
p) and Qp(

√
pu), where u is any non-square in Z×p .

(e) Let K be a local field and let q be the cardinality of the residue field. Prove
that the set µq−1(K) of (q − 1)-th roots of unity in K has cardinality q − 1,
and that there is exactly one (q−1)−th root of unity in each non-zero residue
class modulo mK .
Deduce that the multiplicative group K× splits as a direct product (1+mK)×
µq−1(K)× πZ where π is a uniformiser.

2. p-adic exponential and logarithm
Consider the power series

exp(X) = 1 +X + X2

2!
+ X3

3!
+ · · · ,

log(1 +X) = X − X2

2
+ X3

3
− · · · .
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(a) Show that in a field with an ultrametric absolute value, the series
∑∞
n=0 an

converges if and only if an → 0.
(An absolute value is ultrametric if it satisfies |x+ y| ≤ max(|x| , |y|).)

(b) Show that log(1 + x) converges p-adically for all x ∈ pZp.
We can thus define a function log : 1 + pZp → Zp.

(c) Show that exp(x) converges p-adically for all x ∈ pZp if p is odd, and for all
x ∈ 4Z2 if p = 2.

(d) Observe that log is a group homomorphism (1 + pZp,×)→ (pZp,+) and exp
is a group homomorphism (prZp,+) → (1 + prZp,×) where r = 2 if p = 2
and r = 1 otherwise. Furthermore log ◦ exp = id and exp ◦ log = id wherever
these are defined. These all hold because the relevant identities hold in the
ring Q[[X]] of formal power series with rational coefficients.
Deduce that log and exp form a mutually inverse pair of group isomorphisms
between (1 + prZp,×) and (prZp,+).

3. Weak and strong approximation theorems
Let K be any field.

(a) Show that if |·|1 and |·|2 are inequivalent absolute values on K, then there
exists x ∈ K such that |x|1 > 1 and |x|2 < 1.

(b) Show by induction on n that if |·|1 , . . . , |·|n are inequivalent absolute values
on K, then there exists x ∈ K such that |x|1 > 1 and |x|i < 1 for 2 ≤ i ≤ n.

(c) Prove the weak approximation theorem: if |·|1 , . . . , |·|n are inequivalent ab-
solute values on K, ε is a positive real number and x1, . . . , xn are elements
of the associated completions K1, . . . ,Kn, then there exists x ∈ K such that
|x− xi|i < ε for all i (1 ≤ i ≤ n).

(d) Now suppose that K is a number field. Prove the strong approximation
theorem: if |·|0 , |·|1 , . . . , |·|n are inequivalent values on K, ε is a positive real
number and x1, . . . , xn are elements of the associated completionsK1, . . . ,Kn,
then there exists x ∈ K such that

|x− xi|i < ε for 1 ≤ i ≤ n

and

|x| ≤ 1 for every absolute value on K not equivalent to any |·|i , 0 ≤ i ≤ n.

(We have imposed a condition on x for every equivalence class of absolute
values except |·|0.)
When K = Q and |·|0 is the archimedean absolute value, this reduces to the
Chinese remainder theorem.
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4. Unramified extensions of local fields
Let K be a complete field with valuation v : K× → Z, and L/K a finite extension
of degree n. Then there is a unique valuation w : L× → 1

nZ extending v. L is
complete with respect to w and

OL = {x ∈ L | x is an algebraic integer relative to OK}.

We say that L/K is unramified if the extension of residue fields kL/kK is separable
and mL = mKOL.
The terminology makes sense geometrically: if f : X → Y is a non-constant mor-
phism of algebraic curves, then it induces a finite extension of the function fields
f∗ : C(Y ) ↪→ C(X). For each point x in X, we get a finite extension of the com-
pletions

Ĉ(Y )f(x) ↪→ Ĉ(X)x.

This extension of completions is unramified if and only if f is unramified at x in
the sense of complex analysis.
An example of a ramified extension is K = Qp, L = Qp(

√
p) because √p ∈ mL but√

p 6∈ mKOL = pOL.

(a) Show that L/K is unramified if and only if kL/kK is separable and the images
of the valuations v and w are the same.

(b) Show that for any finite extension L/K of complete valued fields, [kL : kK ] ≤
[L : K]. Show that L/K is unramified if and only if kL/kK is separable and
[kL : kK ] = [L : K].

(c) Suppose that K is a local field, and let q = #kK . Use 1(d) to show that
if L/K is unramified, then L contains a complete set of (qn − 1)-th roots of
unity.

(d) Let ζqn−1 be a primitive (qn − 1)-th root of unity, and consider the field
K(ζqn−1). This is the splitting field of Xqn−1 − 1 over K. Observe that
Xq

n−1 − 1 has no repeated roots in the residue field of K(ζqn−1), and use
Hensel’s lemma to deduce that the (qn− 1)-th roots of unity in K(ζqn−1) are
in distinct residue classes.
Deduce that the residue field of K(ζqn−1) is the finite field of order qn, and
that [K(ζqn−1) : K] ≥ n.

(e) Let f be the minimal polynomial of ζqn−1 over K. Use the strong form of
Hensel’s lemma to show that the reduction of f modulo mK is irreducible in
kK [X].
Deduce that [K(ζqn−1) : K] = n.

(f) Conclude that for each n, there is a unique (up to isomorphism) unramified
extension of K of degree n, namely K(ζqn−1).
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