Shimura Varieties: Problem sheet 3

Local fields

22 October 2014

Notation: if K is a field complete with respect to a valuation v, we write

$$
\begin{aligned}
\mathcal{O}_{K} & =\{x \in K \mid v(x) \geq 0\}, \\
\mathfrak{m}_{K} & =\{x \in K \mid v(x)>0\}, \\
k_{K} & =\mathcal{O}_{K} / \mathfrak{m}_{K} .
\end{aligned}
$$

1. Hensel's lemma and squares

(a) Prove Hensel's lemma: Let K be a complete discretely valued field and $f(X)$ a polynomial with coefficients in \mathcal{O}_{K}. If $\bar{a} \in k_{K}$ is a simple root of f modulo \mathfrak{m}_{K}, then there is a unique $a \in \mathfrak{o}_{K}$ such that $f(a)=0$ and $\bar{a} \equiv a \bmod \mathfrak{m}_{K}$.
(b) Prove the strong form of Hensel's lemma: Let K be a complete discretely valued field and $f(X)$ a monic polynomial with coefficients in \mathcal{O}_{K}. Suppose that f factors as $\bar{g} \bar{h}$ modulo \mathfrak{m}_{K}, where \bar{g} and \bar{h} are monic and relatively prime in $k_{K}[X]$. Then there are unique monic polynomials $g, h \in \mathcal{O}_{K}[X]$ such that $f=g h, \bar{g}=g \bmod \mathfrak{m}_{K}$ and $\bar{h}=h \bmod \mathfrak{m}_{K}$.
(c) Prove that if p is an odd prime, then $x \in \mathbb{Q}_{p}^{\times}$has a square root in \mathbb{Q}_{p}^{\times}if and only if $x=p^{2 m} a$ for some $m \in \mathbb{Z}$ and $a \in \mathbb{Z}_{p}^{\times}$such that a reduces to a quadratic residue modulo p.
(d) Prove that if p is odd, then \mathbb{Q}_{p} has exactly three quadratic extensions: $\mathbb{Q}_{p}(\sqrt{u})$, $\mathbb{Q}_{p}(\sqrt{p})$ and $\mathbb{Q}_{p}(\sqrt{p u})$, where u is any non-square in \mathbb{Z}_{p}^{\times}.
(e) Let K be a local field and let q be the cardinality of the residue field. Prove that the set $\mu_{q-1}(K)$ of ($q-1$)-th roots of unity in K has cardinality $q-1$, and that there is exactly one $(q-1)$-th root of unity in each non-zero residue class modulo \mathfrak{m}_{K}.
Deduce that the multiplicative group K^{\times}splits as a direct product $\left(1+\mathfrak{m}_{K}\right) \times$ $\mu_{q-1}(K) \times \pi^{\mathbb{Z}}$ where π is a uniformiser.

2. p-adic exponential and logarithm

Consider the power series

$$
\begin{aligned}
& \exp (X)=1+X+\frac{X^{2}}{2!}+\frac{X^{3}}{3!}+\cdots \\
& \log (1+X)=X-\frac{X^{2}}{2}+\frac{X^{3}}{3}-\cdots
\end{aligned}
$$

(a) Show that in a field with an ultrametric absolute value, the series $\sum_{n=0}^{\infty} a_{n}$ converges if and only if $a_{n} \rightarrow 0$.
(An absolute value is ultrametric if it satisfies $|x+y| \leq \max (|x|,|y|)$.)
(b) Show that $\log (1+x)$ converges p-adically for all $x \in p \mathbb{Z}_{p}$.

We can thus define a function $\log : 1+p \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}$.
(c) Show that $\exp (x)$ converges p-adically for all $x \in p \mathbb{Z}_{p}$ if p is odd, and for all $x \in 4 \mathbb{Z}_{2}$ if $p=2$.
(d) Observe that log is a group homomorphism $\left(1+p \mathbb{Z}_{p}, \times\right) \rightarrow\left(p \mathbb{Z}_{p},+\right)$ and \exp is a group homomorphism $\left(p^{r} \mathbb{Z}_{p},+\right) \rightarrow\left(1+p^{r} \mathbb{Z}_{p}, \times\right)$ where $r=2$ if $p=2$ and $r=1$ otherwise. Furthermore $\log \circ \exp =\mathrm{id}$ and $\exp \circ \log =\mathrm{id}$ wherever these are defined. These all hold because the relevant identities hold in the ring $\mathbb{Q}[[X]]$ of formal power series with rational coefficients.
Deduce that log and exp form a mutually inverse pair of group isomorphisms between $\left(1+p^{r} \mathbb{Z}_{p}, \times\right)$ and $\left(p^{r} \mathbb{Z}_{p},+\right)$.

3. Weak and strong approximation theorems

Let K be any field.
(a) Show that if $|\cdot|_{1}$ and $|\cdot|_{2}$ are inequivalent absolute values on K, then there exists $x \in K$ such that $|x|_{1}>1$ and $|x|_{2}<1$.
(b) Show by induction on n that if $|\cdot|_{1}, \ldots,|\cdot|_{n}$ are inequivalent absolute values on K, then there exists $x \in K$ such that $|x|_{1}>1$ and $|x|_{i}<1$ for $2 \leq i \leq n$.
(c) Prove the weak approximation theorem: if $|\cdot|_{1}, \ldots,|\cdot|_{n}$ are inequivalent absolute values on K, ϵ is a positive real number and x_{1}, \ldots, x_{n} are elements of the associated completions K_{1}, \ldots, K_{n}, then there exists $x \in K$ such that $\left|x-x_{i}\right|_{i}<\epsilon$ for all $i(1 \leq i \leq n)$.
(d) Now suppose that K is a number field. Prove the strong approximation theorem: if $|\cdot|_{0},|\cdot|_{1}, \ldots,|\cdot|_{n}$ are inequivalent values on K, ϵ is a positive real number and x_{1}, \ldots, x_{n} are elements of the associated completions K_{1}, \ldots, K_{n}, then there exists $x \in K$ such that

$$
\left|x-x_{i}\right|_{i}<\epsilon \text { for } 1 \leq i \leq n
$$

and
$|x| \leq 1$ for every absolute value on K not equivalent to any $|\cdot|_{i}, 0 \leq i \leq n$.
(We have imposed a condition on x for every equivalence class of absolute values except $|\cdot|_{0}$.)
When $K=\mathbb{Q}$ and $|\cdot|_{0}$ is the archimedean absolute value, this reduces to the Chinese remainder theorem.

4. Unramified extensions of local fields

Let K be a complete field with valuation $v: K^{\times} \rightarrow \mathbb{Z}$, and L / K a finite extension of degree n. Then there is a unique valuation $w: L^{\times} \rightarrow \frac{1}{n} \mathbb{Z}$ extending $v . L$ is complete with respect to w and

$$
\mathcal{O}_{L}=\left\{x \in L \mid x \text { is an algebraic integer relative to } \mathcal{O}_{K}\right\} .
$$

We say that L / K is unramified if the extension of residue fields k_{L} / k_{K} is separable and $\mathfrak{m}_{L}=\mathfrak{m}_{K} \mathcal{O}_{L}$.

The terminology makes sense geometrically: if $f: X \rightarrow Y$ is a non-constant morphism of algebraic curves, then it induces a finite extension of the function fields $f^{*}: \mathbb{C}(Y) \hookrightarrow \mathbb{C}(X)$. For each point x in X, we get a finite extension of the completions

$$
\widehat{\mathbb{C}(Y)}_{f(x)} \hookrightarrow \widehat{\mathbb{C}(X)}_{x}
$$

This extension of completions is unramified if and only if f is unramified at x in the sense of complex analysis.

An example of a ramified extension is $K=\mathbb{Q}_{p}, L=\mathbb{Q}_{p}(\sqrt{p})$ because $\sqrt{p} \in \mathfrak{m}_{L}$ but $\sqrt{p} \notin \mathfrak{m}_{K} \mathcal{O}_{L}=p \mathcal{O}_{L}$.
(a) Show that L / K is unramified if and only if k_{L} / k_{K} is separable and the images of the valuations v and w are the same.
(b) Show that for any finite extension L / K of complete valued fields, $\left[k_{L}: k_{K}\right] \leq$ [$L: K$]. Show that L / K is unramified if and only if k_{L} / k_{K} is separable and $\left[k_{L}: k_{K}\right]=[L: K]$.
(c) Suppose that K is a local field, and let $q=\# k_{K}$. Use $1(\mathrm{~d})$ to show that if L / K is unramified, then L contains a complete set of $\left(q^{n}-1\right)$-th roots of unity.
(d) Let $\zeta_{q^{n}-1}$ be a primitive $\left(q^{n}-1\right)$-th root of unity, and consider the field $K\left(\zeta_{q^{n}-1}\right)$. This is the splitting field of $X^{q^{n}-1}-1$ over K. Observe that $X^{q^{n}-1}-1$ has no repeated roots in the residue field of $K\left(\zeta_{q^{n}-1}\right)$, and use Hensel's lemma to deduce that the $\left(q^{n}-1\right)$-th roots of unity in $K\left(\zeta_{q^{n}-1}\right)$ are in distinct residue classes.
Deduce that the residue field of $K\left(\zeta_{q^{n}-1}\right)$ is the finite field of order q^{n}, and that $\left[K\left(\zeta_{q^{n}-1}\right): K\right] \geq n$.
(e) Let f be the minimal polynomial of $\zeta_{q^{n}-1}$ over K. Use the strong form of Hensel's lemma to show that the reduction of f modulo \mathfrak{m}_{K} is irreducible in $k_{K}[X]$.
Deduce that $\left[K\left(\zeta_{q^{n}-1}\right): K\right]=n$.
(f) Conclude that for each n, there is a unique (up to isomorphism) unramified extension of K of degree n, namely $K\left(\zeta_{q^{n}-1}\right)$.

