Shimura Varieties: Problem sheet 3

Local fields

22 October 2014

Notation: if K is a field complete with respect to a valuation v, we write

$$\mathcal{O}_K = \{ x \in K \mid v(x) \ge 0 \},$$

$$\mathfrak{m}_K = \{ x \in K \mid v(x) > 0 \},$$

$$k_K = \mathcal{O}_K/\mathfrak{m}_K.$$

1. Hensel's lemma and squares

- (a) Prove Hensel's lemma: Let K be a complete discretely valued field and f(X) a polynomial with coefficients in \mathcal{O}_K . If $\bar{a} \in k_K$ is a simple root of f modulo \mathfrak{m}_K , then there is a unique $a \in \mathfrak{o}_K$ such that f(a) = 0 and $\bar{a} \equiv a \mod \mathfrak{m}_K$.
- (b) Prove the strong form of Hensel's lemma: Let K be a complete discretely valued field and f(X) a monic polynomial with coefficients in \mathcal{O}_K . Suppose that f factors as $\bar{g}\bar{h}$ modulo \mathfrak{m}_K , where \bar{g} and \bar{h} are monic and relatively prime in $k_K[X]$. Then there are unique monic polynomials $g, h \in \mathcal{O}_K[X]$ such that f = gh, $\bar{g} = g \mod \mathfrak{m}_K$ and $\bar{h} = h \mod \mathfrak{m}_K$.
- (c) Prove that if p is an odd prime, then $x \in \mathbb{Q}_p^{\times}$ has a square root in \mathbb{Q}_p^{\times} if and only if $x = p^{2m}a$ for some $m \in \mathbb{Z}$ and $a \in \mathbb{Z}_p^{\times}$ such that a reduces to a quadratic residue modulo p.
- (d) Prove that if p is odd, then \mathbb{Q}_p has exactly three quadratic extensions: $\mathbb{Q}_p(\sqrt{u})$, $\mathbb{Q}_p(\sqrt{p})$ and $\mathbb{Q}_p(\sqrt{pu})$, where u is any non-square in \mathbb{Z}_p^{\times} .
- (e) Let K be a local field and let q be the cardinality of the residue field. Prove that the set $\mu_{q-1}(K)$ of (q-1)-th roots of unity in K has cardinality q-1, and that there is exactly one (q-1)-th root of unity in each non-zero residue class modulo \mathfrak{m}_K .

Deduce that the multiplicative group K^{\times} splits as a direct product $(1+\mathfrak{m}_K) \times \mu_{q-1}(K) \times \pi^{\mathbb{Z}}$ where π is a uniformiser.

2. p-adic exponential and logarithm

Consider the power series

$$\exp(X) = 1 + X + \frac{X^2}{2!} + \frac{X^3}{3!} + \cdots,$$

$$\log(1+X) = X - \frac{X^2}{2} + \frac{X^3}{3} - \cdots$$

(a) Show that in a field with an ultrametric absolute value, the series $\sum_{n=0}^{\infty} a_n$ converges if and only if $a_n \to 0$.

(An absolute value is **ultrametric** if it satisfies $|x + y| \le \max(|x|, |y|)$.)

- (b) Show that $\log(1+x)$ converges p-adically for all $x \in p\mathbb{Z}_p$. We can thus define a function $\log : 1 + p\mathbb{Z}_p \to \mathbb{Z}_p$.
- (c) Show that $\exp(x)$ converges p-adically for all $x \in p\mathbb{Z}_p$ if p is odd, and for all $x \in 4\mathbb{Z}_2$ if p = 2.
- (d) Observe that log is a group homomorphism $(1+p\mathbb{Z}_p,\times)\to (p\mathbb{Z}_p,+)$ and exp is a group homomorphism $(p^r\mathbb{Z}_p,+)\to (1+p^r\mathbb{Z}_p,\times)$ where r=2 if p=2 and r=1 otherwise. Furthermore $\log\circ\exp=\mathrm{id}$ and $\exp\circ\log=\mathrm{id}$ wherever these are defined. These all hold because the relevant identities hold in the ring $\mathbb{Q}[[X]]$ of formal power series with rational coefficients.

Deduce that log and exp form a mutually inverse pair of group isomorphisms between $(1 + p^r \mathbb{Z}_p, \times)$ and $(p^r \mathbb{Z}_p, +)$.

3. Weak and strong approximation theorems

Let K be any field.

- (a) Show that if $|\cdot|_1$ and $|\cdot|_2$ are inequivalent absolute values on K, then there exists $x \in K$ such that $|x|_1 > 1$ and $|x|_2 < 1$.
- (b) Show by induction on n that if $|\cdot|_1, \ldots, |\cdot|_n$ are inequivalent absolute values on K, then there exists $x \in K$ such that $|x|_1 > 1$ and $|x|_i < 1$ for $1 \le i \le n$.
- (c) Prove the weak approximation theorem: if $|\cdot|_1, \ldots, |\cdot|_n$ are inequivalent absolute values on K, ϵ is a positive real number and x_1, \ldots, x_n are elements of the associated completions K_1, \ldots, K_n , then there exists $x \in K$ such that $|x x_i|_i < \epsilon$ for all i $(1 \le i \le n)$.
- (d) Now suppose that K is a number field. Prove the strong approximation theorem: if $|\cdot|_0, |\cdot|_1, \ldots, |\cdot|_n$ are inequivalent values on K, ϵ is a positive real number and x_1, \ldots, x_n are elements of the associated completions K_1, \ldots, K_n , then there exists $x \in K$ such that

$$|x - x_i|_i < \epsilon \text{ for } 1 \le i \le n$$

and

 $|x| \leq 1$ for every absolute value on K not equivalent to any $|\cdot|_i$, $0 \leq i \leq n$.

(We have imposed a condition on x for every equivalence class of absolute values except $|\cdot|_{0}$.)

When $K = \mathbb{Q}$ and $|\cdot|_0$ is the archimedean absolute value, this reduces to the Chinese remainder theorem.

4. Unramified extensions of local fields

Let K be a complete field with valuation $v: K^{\times} \to \mathbb{Z}$, and L/K a finite extension of degree n. Then there is a unique valuation $w: L^{\times} \to \frac{1}{n}\mathbb{Z}$ extending v. L is complete with respect to w and

$$\mathcal{O}_L = \{x \in L \mid x \text{ is an algebraic integer relative to } \mathcal{O}_K \}.$$

We say that L/K is **unramified** if the extension of residue fields k_L/k_K is separable and $\mathfrak{m}_L = \mathfrak{m}_K \mathcal{O}_L$.

The terminology makes sense geometrically: if $f: X \to Y$ is a non-constant morphism of algebraic curves, then it induces a finite extension of the function fields $f^*: \mathbb{C}(Y) \hookrightarrow \mathbb{C}(X)$. For each point x in X, we get a finite extension of the completions

$$\widehat{\mathbb{C}(Y)}_{f(x)} \hookrightarrow \widehat{\mathbb{C}(X)}_x.$$

This extension of completions is unramified if and only if f is unramified at x in the sense of complex analysis.

An example of a ramified extension is $K = \mathbb{Q}_p$, $L = \mathbb{Q}_p(\sqrt{p})$ because $\sqrt{p} \in \mathfrak{m}_L$ but $\sqrt{p} \notin \mathfrak{m}_K \mathcal{O}_L = p\mathcal{O}_L$.

- (a) Show that L/K is unramified if and only if k_L/k_K is separable and the images of the valuations v and w are the same.
- (b) Show that for any finite extension L/K of complete valued fields, $[k_L : k_K] \le [L : K]$. Show that L/K is unramified if and only if k_L/k_K is separable and $[k_L : k_K] = [L : K]$.
- (c) Suppose that K is a local field, and let $q = \#k_K$. Use 1(d) to show that if L/K is unramified, then L contains a complete set of $(q^n 1)$ -th roots of unity.
- (d) Let ζ_{q^n-1} be a primitive (q^n-1) -th root of unity, and consider the field $K(\zeta_{q^n-1})$. This is the splitting field of $X^{q^n-1}-1$ over K. Observe that $X^{q^n-1}-1$ has no repeated roots in the residue field of $K(\zeta_{q^n-1})$, and use Hensel's lemma to deduce that the (q^n-1) -th roots of unity in $K(\zeta_{q^n-1})$ are in distinct residue classes.

Deduce that the residue field of $K(\zeta_{q^n-1})$ is the finite field of order q^n , and that $[K(\zeta_{q^n-1}):K] \geq n$.

(e) Let f be the minimal polynomial of ζ_{q^n-1} over K. Use the strong form of Hensel's lemma to show that the reduction of f modulo \mathfrak{m}_K is irreducible in $k_K[X]$.

Deduce that $[K(\zeta_{q^n-1}):K]=n$.

(f) Conclude that for each n, there is a unique (up to isomorphism) unramified extension of K of degree n, namely $K(\zeta_{q^n-1})$.