Shimura Varieties: Problem sheet 2

15 October 2014

1. Computing class groups of quadratic fields

Let K be a number field.
We define the norm of an ideal $\mathfrak{a} \subset \mathfrak{o}_{K}$ to be the cardinality of the quotient ring $\mathfrak{o}_{K} / \mathfrak{a}$. If \mathfrak{p} is a prime ideal in \mathfrak{a}, then $\operatorname{Nm}(\mathfrak{p})=p^{r}$ for some rational prime p and positive integer r, and \mathfrak{p} divides the ideal (p) in \mathfrak{o}_{K}.
The discriminant d_{K} is the square of the determinant of the matrix $\left(\sigma_{i}\left(\alpha_{j}\right)\right)_{1 \leq i, j \leq n}$ where $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is the set of embeddings $K \rightarrow \mathbb{C}$ and $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is a basis for \mathfrak{o}_{K} as a \mathbb{Z}-module.

Theorem (Minkowski). The class group of \mathfrak{o}_{K} is generated by ideals of norm at most

$$
\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\left|d_{K}\right|}
$$

where s is the number of complex-conjugate pairs of embeddings $K \rightarrow \mathbb{C}$ whose images are not contained in \mathbb{R}. (Thus $s=1$ for an imaginary quadratic field and $s=0$ for a real quadratic field.)

Theorem (Dedekind). Suppose that $\mathfrak{o}_{K}=\mathbb{Z}[\alpha]$, and let $f(X)$ be the minimal polynomial of α. (Not all number fields contain an α such that $\mathfrak{o}_{K}=\mathbb{Z}[\alpha]$; there is a slightly more complicated version of the theorem without this condition.)
Let p be a rational prime. Let the factorisation of $f(X)(\bmod p)$ into irreducibles in $\mathbb{F}_{p}[X]$ be

$$
\bar{f}_{1}(X)^{e_{1}} \cdots \bar{f}_{r}(X)^{e_{r}}
$$

and choose monic polynomials $f_{1}(X), \ldots, f_{r}(X) \in \mathbb{Z}[X]$ which reduce to $\bar{f}_{1}, \ldots, \bar{f}_{r}$ $\bmod p$. Then the ideals

$$
\mathfrak{p}_{j}=\left(p, f_{j}(\alpha)\right)
$$

are distinct prime ideals in \mathfrak{o}_{K} and the prime factorisation of (p) in \mathfrak{o}_{K} is

$$
(p)=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{r}^{e_{r}}
$$

We can thus obtain a set of generators for the class group of \mathfrak{o}_{K} by looking at each rational prime up to the Minkowski bound and using Dedekind's theorem to factorise these into prime ideals of \mathfrak{o}_{K}. To fully compute the class group, we then have to determine which combinations of these generating ideals are principal.
Let D be a square-free integer not divisible by 4 and not equal to 1 (D may be positive or negative). We will look at the field $\mathbb{Q}(\sqrt{D})$.
You will need the following fact:

Lemma. If $\mathfrak{a}=(a+b \sqrt{D})$ is a principal ideal in \mathfrak{o}_{K}, where $K=\mathbb{Q}(\sqrt{D})$ and $a, b \in \mathbb{Q}$, then

$$
\operatorname{Nm}(\mathfrak{a})=\left|a^{2}-D b^{2}\right|
$$

(a) (Optional preliminary) Show that:
i. If $D \equiv 1 \bmod 4$, then the ring of integers of $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Z}\left[\frac{1}{2}(1+\sqrt{D})\right]$, the minimum polynomial of $\frac{1}{2}(1+\sqrt{D})$ is $X^{2}-X+\frac{1}{4}(1-D)$ and the discriminant of $\mathbb{Q}(\sqrt{D})$ is D.
ii. If $D \equiv 2$ or $3 \bmod 4$, then the ring of integers of $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Z}[\sqrt{D}]$, the minimum polynomial of \sqrt{D} is $X^{2}-D$ and the discriminant of $\mathbb{Q}(\sqrt{D})$ is $4 D$.
(b) Read off from Minkowski's theorem that $\mathbb{Q}(\sqrt{D})$ has class number 1 if $D=$ $2,3,5,13,-1,-2,-3$ or -7 .
(c) Use Minkowski's and Dedekind's theorems to show that $\mathbb{Q}(\sqrt{D})$ has class number 1 if $D=17,21,29,33,-11$ or -19 .
(d) Show that the class group of $\mathbb{Q}(\sqrt{6})$ is generated by the ideal $\mathfrak{a}=(2,1+\sqrt{6})$, which has norm 2.
Find an integer solution to the equation $a^{2}-6 b^{2}=-2$, and deduce that \mathfrak{a} is principal. Hence $\mathbb{Q}(\sqrt{6})$ has class number 1 .
(e) Show that the class group of $\mathbb{Q}(\sqrt{-5})$ is generated by the ideal $\mathfrak{a}=(2,1+$ $\sqrt{-5})$, and that $\mathfrak{a}^{2}=(2)$ is principal.
Show that there are no integer solutions to $a^{2}+5 b^{2}= \pm 2$ and deduce that $\mathbb{Q}(\sqrt{-5})$ has class number 2.
(f) Show that the class group of $\mathbb{Q}(\sqrt{-6})$ is generated by the ideals $\mathfrak{a}=(2, \sqrt{6})$ and $\mathfrak{b}=(3, \sqrt{6})$ and that \mathfrak{a}^{2} and \mathfrak{b}^{2} are each principal.
Show that \mathfrak{a} and \mathfrak{b} are not principal, but that $\mathfrak{a b}=(\sqrt{-6})$ is principal. Conclude that $\mathbb{Q}(\sqrt{-6})$ has class number 2 .
(g) Show that the class group of $\mathbb{Q}(\sqrt{-31})$ is generated by the ideals $\mathfrak{a}=(2, \alpha)$ and $\mathfrak{b}=(2,1+\alpha)$ where $\alpha=\frac{1}{2}(1+\sqrt{-31})$, with $\mathfrak{a b}=(2)$.
Show that the only principal ideal in $\mathbb{Z}[\alpha]$ with norm ± 4 is (2). (Remember that $\mathbb{Z}[\alpha]$ is bigger than $\mathbb{Z}+\mathbb{Z} \sqrt{-31}$.)
Since $\mathfrak{a}^{2} \neq(2)$, conclude that \mathfrak{a} has order 3 in the class group and hence that the class number of $\mathbb{Q}(\sqrt{-31})$ is 3 .
(h) Determine the class numbers of $\mathbb{Q}(\sqrt{10}), \mathbb{Q}(\sqrt{14})$ and $\mathbb{Q}(\sqrt{15})$. (For $\mathbb{Q}(\sqrt{15})$, find a principal ideal of norm 6 in order to copy the method of (f).)
(i) Show that the class number of $\mathbb{Q}(\sqrt{-23})$ is 3 .
(j) Let p be a prime $\equiv 11 \bmod 12$. If $p>3^{n}$, show that the class group of $\mathbb{Q}(\sqrt{-p})$ contains an element of order greater than n.

