Shimura Varieties: Problem sheet 2

15 October 2014

1. Computing class groups of quadratic fields

Let K be a number field.

We define the **norm** of an ideal $\mathfrak{a} \subset \mathfrak{o}_K$ to be the cardinality of the quotient ring $\mathfrak{o}_K/\mathfrak{a}$. If \mathfrak{p} is a prime ideal in \mathfrak{a} , then $\operatorname{Nm}(\mathfrak{p}) = p^r$ for some rational prime p and positive integer r, and \mathfrak{p} divides the ideal (p) in \mathfrak{o}_K .

The **discriminant** d_K is the square of the determinant of the matrix $(\sigma_i(\alpha_j))_{1 \leq i,j \leq n}$ where $\{\sigma_1,\ldots,\sigma_n\}$ is the set of embeddings $K \to \mathbb{C}$ and $\{\alpha_1,\ldots,\alpha_n\}$ is a basis for \mathfrak{o}_K as a \mathbb{Z} -module.

Theorem (Minkowski). The class group of \mathfrak{o}_K is generated by ideals of norm at most

$$\frac{n!}{n^n} \left(\frac{4}{\pi}\right)^s \sqrt{|d_K|},$$

where s is the number of complex-conjugate pairs of embeddings $K \to \mathbb{C}$ whose images are not contained in \mathbb{R} . (Thus s = 1 for an imaginary quadratic field and s = 0 for a real quadratic field.)

Theorem (Dedekind). Suppose that $\mathfrak{o}_K = \mathbb{Z}[\alpha]$, and let f(X) be the minimal polynomial of α . (Not all number fields contain an α such that $\mathfrak{o}_K = \mathbb{Z}[\alpha]$; there is a slightly more complicated version of the theorem without this condition.)

Let p be a rational prime. Let the factorisation of $f(X) \pmod{p}$ into irreducibles in $\mathbb{F}_p[X]$ be

$$\bar{f}_1(X)^{e_1}\cdots\bar{f}_r(X)^{e_r},$$

and choose monic polynomials $f_1(X), \ldots, f_r(X) \in \mathbb{Z}[X]$ which reduce to $\bar{f}_1, \ldots, \bar{f}_r$ mod p. Then the ideals

$$\mathfrak{p}_i = (p, f_i(\alpha))$$

are distinct prime ideals in \mathfrak{o}_K and the prime factorisation of (p) in \mathfrak{o}_K is

$$(p) = \mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_r^{e_r}.$$

We can thus obtain a set of generators for the class group of \mathfrak{o}_K by looking at each rational prime up to the Minkowski bound and using Dedekind's theorem to factorise these into prime ideals of \mathfrak{o}_K . To fully compute the class group, we then have to determine which combinations of these generating ideals are principal.

Let D be a square-free integer not divisible by 4 and not equal to 1 (D may be positive or negative). We will look at the field $\mathbb{Q}(\sqrt{D})$.

You will need the following fact:

Lemma. If $\mathfrak{a} = (a + b\sqrt{D})$ is a principal ideal in \mathfrak{o}_K , where $K = \mathbb{Q}(\sqrt{D})$ and $a, b \in \mathbb{Q}$, then

$$Nm(\mathfrak{a}) = \left| a^2 - Db^2 \right|.$$

- (a) (Optional preliminary) Show that:
 - i. If $D \equiv 1 \mod 4$, then the ring of integers of $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Z}[\frac{1}{2}(1+\sqrt{D})]$, the minimum polynomial of $\frac{1}{2}(1+\sqrt{D})$ is $X^2-X+\frac{1}{4}(1-D)$ and the discriminant of $\mathbb{Q}(\sqrt{D})$ is D.
 - ii. If $D \equiv 2$ or $3 \mod 4$, then the ring of integers of $\mathbb{Q}(\sqrt{D})$ is $\mathbb{Z}[\sqrt{D}]$, the minimum polynomial of \sqrt{D} is $X^2 D$ and the discriminant of $\mathbb{Q}(\sqrt{D})$ is 4D.
- (b) Read off from Minkowski's theorem that $\mathbb{Q}(\sqrt{D})$ has class number 1 if D = 2, 3, 5, 13, -1, -2, -3 or -7.
- (c) Use Minkowski's and Dedekind's theorems to show that $\mathbb{Q}(\sqrt{D})$ has class number 1 if D = 17, 21, 29, 33, -11 or -19.
- (d) Show that the class group of $\mathbb{Q}(\sqrt{6})$ is generated by the ideal $\mathfrak{a} = (2, 1 + \sqrt{6})$, which has norm 2.
 - Find an integer solution to the equation $a^2 6b^2 = -2$, and deduce that \mathfrak{a} is principal. Hence $\mathbb{Q}(\sqrt{6})$ has class number 1.
- (e) Show that the class group of $\mathbb{Q}(\sqrt{-5})$ is generated by the ideal $\mathfrak{a} = (2, 1 + \sqrt{-5})$, and that $\mathfrak{a}^2 = (2)$ is principal.
 - Show that there are no integer solutions to $a^2 + 5b^2 = \pm 2$ and deduce that $\mathbb{Q}(\sqrt{-5})$ has class number 2.
- (f) Show that the class group of $\mathbb{Q}(\sqrt{-6})$ is generated by the ideals $\mathfrak{a}=(2,\sqrt{6})$ and $\mathfrak{b}=(3,\sqrt{6})$ and that \mathfrak{a}^2 and \mathfrak{b}^2 are each principal.
 - Show that \mathfrak{a} and \mathfrak{b} are not principal, but that $\mathfrak{ab} = (\sqrt{-6})$ is principal. Conclude that $\mathbb{Q}(\sqrt{-6})$ has class number 2.
- (g) Show that the class group of $\mathbb{Q}(\sqrt{-31})$ is generated by the ideals $\mathfrak{a}=(2,\alpha)$ and $\mathfrak{b}=(2,1+\alpha)$ where $\alpha=\frac{1}{2}(1+\sqrt{-31})$, with $\mathfrak{ab}=(2)$.
 - Show that the only principal ideal in $\mathbb{Z}[\alpha]$ with norm ± 4 is (2). (Remember that $\mathbb{Z}[\alpha]$ is bigger than $\mathbb{Z} + \mathbb{Z}\sqrt{-31}$.)
 - Since $\mathfrak{a}^2 \neq (2)$, conclude that \mathfrak{a} has order 3 in the class group and hence that the class number of $\mathbb{Q}(\sqrt{-31})$ is 3.
- (h) Determine the class numbers of $\mathbb{Q}(\sqrt{10})$, $\mathbb{Q}(\sqrt{14})$ and $\mathbb{Q}(\sqrt{15})$. (For $\mathbb{Q}(\sqrt{15})$, find a principal ideal of norm 6 in order to copy the method of (f).)
- (i) Show that the class number of $\mathbb{Q}(\sqrt{-23})$ is 3.
- (j) Let p be a prime $\equiv 11 \mod 12$. If $p > 3^n$, show that the class group of $\mathbb{Q}(\sqrt{-p})$ contains an element of order greater than n.