
Shimura Varieties: Problem sheet 2

15 October 2014

1. Computing class groups of quadratic fields
Let K be a number field.
We define the norm of an ideal a ⊂ oK to be the cardinality of the quotient ring
oK/a. If p is a prime ideal in a, then Nm(p) = pr for some rational prime p and
positive integer r, and p divides the ideal (p) in oK .
The discriminant dK is the square of the determinant of the matrix (σi(αj))1≤i,j≤n
where {σ1, . . . , σn} is the set of embeddings K → C and {α1, . . . , αn} is a basis for
oK as a Z-module.

Theorem (Minkowski). The class group of oK is generated by ideals of norm at
most

n!
nn

( 4
π

)s√
|dK |,

where s is the number of complex-conjugate pairs of embeddings K → C whose
images are not contained in R. (Thus s = 1 for an imaginary quadratic field and
s = 0 for a real quadratic field.)

Theorem (Dedekind). Suppose that oK = Z[α], and let f(X) be the minimal
polynomial of α. (Not all number fields contain an α such that oK = Z[α]; there
is a slightly more complicated version of the theorem without this condition.)
Let p be a rational prime. Let the factorisation of f(X) (mod p) into irreducibles
in Fp[X] be

f̄1(X)e1 · · · f̄r(X)er ,

and choose monic polynomials f1(X), . . . , fr(X) ∈ Z[X] which reduce to f̄1, . . . , f̄r
mod p. Then the ideals

pj = (p, fj(α))

are distinct prime ideals in oK and the prime factorisation of (p) in oK is

(p) = pe11 · · · p
er
r .

We can thus obtain a set of generators for the class group of oK by looking at
each rational prime up to the Minkowski bound and using Dedekind’s theorem to
factorise these into prime ideals of oK . To fully compute the class group, we then
have to determine which combinations of these generating ideals are principal.
Let D be a square-free integer not divisible by 4 and not equal to 1 (D may be
positive or negative). We will look at the field Q(

√
D).

You will need the following fact:
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Lemma. If a = (a + b
√
D) is a principal ideal in oK , where K = Q(

√
D) and

a, b ∈ Q, then
Nm(a) =

∣∣∣a2 −Db2
∣∣∣ .

(a) (Optional preliminary) Show that:
i. If D ≡ 1 mod 4, then the ring of integers of Q(

√
D) is Z[1

2(1 +
√
D)],

the minimum polynomial of 1
2(1 +

√
D) is X2 − X + 1

4(1 − D) and the
discriminant of Q(

√
D) is D.

ii. If D ≡ 2 or 3 mod 4, then the ring of integers of Q(
√
D) is Z[

√
D], the

minimum polynomial of
√
D is X2 −D and the discriminant of Q(

√
D)

is 4D.
(b) Read off from Minkowski’s theorem that Q(

√
D) has class number 1 if D =

2, 3, 5, 13,−1,−2,−3 or −7.
(c) Use Minkowski’s and Dedekind’s theorems to show that Q(

√
D) has class

number 1 if D = 17, 21, 29, 33,−11 or −19.
(d) Show that the class group of Q(

√
6) is generated by the ideal a = (2, 1+

√
6),

which has norm 2.
Find an integer solution to the equation a2 − 6b2 = −2, and deduce that a is
principal. Hence Q(

√
6) has class number 1.

(e) Show that the class group of Q(
√
−5) is generated by the ideal a = (2, 1 +√

−5), and that a2 = (2) is principal.
Show that there are no integer solutions to a2 + 5b2 = ±2 and deduce that
Q(
√
−5) has class number 2.

(f) Show that the class group of Q(
√
−6) is generated by the ideals a = (2,

√
6)

and b = (3,
√

6) and that a2 and b2 are each principal.
Show that a and b are not principal, but that ab = (

√
−6) is principal.

Conclude that Q(
√
−6) has class number 2.

(g) Show that the class group of Q(
√
−31) is generated by the ideals a = (2, α)

and b = (2, 1 + α) where α = 1
2(1 +

√
−31), with ab = (2).

Show that the only principal ideal in Z[α] with norm ±4 is (2). (Remember
that Z[α] is bigger than Z + Z

√
−31.)

Since a2 6= (2), conclude that a has order 3 in the class group and hence that
the class number of Q(

√
−31) is 3.

(h) Determine the class numbers of Q(
√

10), Q(
√

14) and Q(
√

15). (For Q(
√

15),
find a principal ideal of norm 6 in order to copy the method of (f).)

(i) Show that the class number of Q(
√
−23) is 3.

(j) Let p be a prime ≡ 11 mod 12. If p > 3n, show that the class group of
Q(
√
−p) contains an element of order greater than n.
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