
Shimura Varieties: Problem sheet 1

Modular Curves
8 October 2014

1. A fundamental domain for SL2(Z)
Prove that

F = {τ ∈ H | −1
2 < Re τ < 1

2 , |τ | > 1}

is a fundamental domain for the action of SL2(Z) on H.
Recall the definition of a fundamental domain: F ⊂ H is a fundamental domain
for Γ ⊂ SL2(R) if it is a connected open set, no two points of F lie in the same
Γ-orbit, and every Γ-orbit in H contains at least one point of the closure of F .
Outline of proof:

(a) If γ =
(
a b
c d

)
∈ SL2(Z), then Im(γτ) = Im(τ)/ |cτ + d|2.

(b) Deduce that every SL2(Z)-orbit contains an element τ such that Im τ is greater
than or equal to Im τ ′ for any other τ ′ in the same orbit.

(c) We can replace the above τ by τ+b for some b ∈ Z, such that−1
2 ≤ Re(τ+b) ≤

1
2 . Then show that |τ + b| ≥ 1.

(d) Show that if τ and τ ′ are both in F and they lie in the same SL2(Z)-orbit,
then τ = τ ′.

2. Riemann surface structure on the compactified modular curve X(Γ)
Let Γ ⊂ SL2(Z) be any congruence subgroup.

(a) Show that the action of Γ onH is properly discontinuous i.e. for all τ1, τ2 ∈
H, there exist neighbourhoods U1 of τ1 and U2 of τ2 such that, for all γ ∈ Γ,

γ(U1) ∩ U2 6= ∅ ⇒ γ(τ1) = τ2.

(b) Show that if S is any Hausdorff space and G is any discrete group acting
properly discontinuously on S, then the quotient topological space G\S is
Hausdorff.

(c) Let H∗ = H∪ P1(Q) = H∪Q∪ {∞}. Define a topology on H∗, generated by
the topology on H together with the following open sets:
• {τ | Im τ > R} ∪ {∞} for each R ∈ R;
• sets of the form D∪{x} for x ∈ Q, where D is a disc in H tangent to the
real line at x.
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Prove thatH∗ is Hausdorff and that the action of Γ onH extends to a properly
discontinuous action on H∗.

(d) Define X(Γ) to be the quotient topological space Γ\H∗. Define a cusp of
X(Γ) to be an element of Γ\P1(Q). Prove that X(Γ) has finitely many cusps,
and that X(Γ) is compact.

(e) We say that P ∈ Y (Γ) is an elliptic point for Γ if there is some τ ∈ H lifting
P and some γ ∈ Γ− {±1} such that γτ = τ . The order of the elliptic point
P is the order of the group

StabΓ(τ)/(Γ ∩ {±1}).

Determine the elliptic points in Y (1) and their orders. Deduce that every
modular curve Y (Γ) has finitely many elliptic points, and that their orders
can only be 2 or 3.

(f) Show that if P ∈ Y (Γ) is not an elliptic point and τ ∈ H lifts P , then there
is a neighbourhood U of τ such that π|U is a homeomorphism from U to an
open subset of Y (Γ).

(g) Let P ∈ Y (Γ) be an elliptic point of order n and τ ∈ H a point lifting P .
Choose δ ∈ SL2(C) mapping τ 7→ 0 and τ̄ 7→ ∞. Show that δ conjugates
StabΓ(τ)/(Γ ∩ {±1}) to the group of rotations generated by e2πi/n.
Show that there are open neighbourhoods U of τ in H, D,D′ of 0 in C and U ′
of P in Y (Γ such that π|U factors as follows, with φ being a homeomorphism:

U
δ //D

z 7→zn //D′
φ

//U ′

φ−1 gives us a chart on a neighbourhood of P .
(h) Let P ∈ X(Γ) be a cusp and x ∈ P1(Q) point lifting P . Choose δ ∈ SL2(Z)

such that δP =∞. Show that δ conjugates StabΓ(P )/(Γ∩{±1}) to the group
of translations generated by

( 1 h
0 1
)
for some integer h.

Show that we can define a chart on a neighbourhood of P by a method similar
to the above, using z 7→ e2πiz/h in place of z 7→ zn.

(i) Show that all the charts on X(Γ) defined above are compatible.

3. Genus of modular curves
Let p be a prime number, and let Γ ⊂ SL2(Z) be any congruence subgroup.

(a) Use the Riemann–Hurwitz formula for the natural map X(Γ) → X(1) to
prove the following formula for the genus of X(Γ):

g(X(Γ)) = 1 + n

12
− e2

4
− e3

3
− e∞

2
where n = [SL2(Z) : Γ]/[{±1} : Γ ∩ {±1}] = deg(X(Γ) → X(1)), e2 and e3
are the numbers of elliptic points of order 2 and 3 respectively on X(Γ), and
e∞ is the number of cusps on X(Γ).
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(b) Show that X0(p) has two cusps and that the degree of X0(p)→ X(1) is p+1.
(c) Deduce that X0(N) has genus 0 for N = 2, 3, 5, 7, 13 (you don’t need to do

any more calculations: remember that the genus and the ei are nonnegative
integers).

(d) Show that if the number of elliptic points of order 2 on X0(p) is
• 0 if p ≡ 3 mod 4;
• 2 if p ≡ 1 mod 4;
• 1 if p = 2.

(e) Show that the number of elliptic points of order 3 on X0(p) is
• 0 if p ≡ 2 mod 3;
• 2 if p ≡ 1 mod 3;
• 1 if p = 3.

(This is similar to counting elliptic points of order 2 but more tedious so you
might skip it.)

(f) Calculate the genus of X0(11) and X0(17).
(g) Count the cusps on X0(N) and calculate the degree of X0(N) → X(1) for

composite N , or at least for all N ≤ 10, and deduce that X0(N) has genus
zero for all N ≤ 10.

(h) (Optional extra – a lot of work) Compute the genus of X1(p) or maybe even
X(p). Note that there are no elliptic points on X1(p) for p ≥ 5 and on X(p)
for p ≥ 2.

4. The j-function as a modular function
The purpose of this exercise is to show that the elliptic curve C/(Z+Zτ) really does
have j-invariant j(τ), where j is the unique SL2(Z)-invariant holomorphic function
satisfying j(i) = 1728 and j(e2πi/3) = 0 and such that the induced function onX(1)
is meromorphic at the cusp.

(a) For any integer k ≥ 3, define the Eisenstein series

Gk(τ) =
∑

(m,n)∈Z2−{(0,0)}

1
(m+ nτ)k

.

Prove that Gk converges absolutely and uniformly on compact subsets of
H, and hence defines a holomorphic function on H. (For k = 2, the series
converges but not absolutely.) Note that when k is odd, the series sums to
zero.

(b) Prove that for k ≥ 3, Gk satisfies

Gk(γτ) = (cτ + d)kGk(τ)

for all γ =
(
a b
c d

)
∈ SL2(Z) and τ ∈ H. A meromorphic function on H

satisfying this condition is said to be weakly modular of weight k.
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(c) Prove that as Gk(τ) is bounded on {τ ∈ H | Im τ > C} for some constant
C > 0. A weakly modular function which is holomorphic on H and satisfies
this boundedness condition is called a modular form. (You may often see
the definition of modular form given with a stronger condition at ∞, but the
next point implies that the apparently stronger definition is equivalent.)

(d) Since Gk is invariant under translations by Z, it factors as

Gk(τ) = F (e2πiτ )

for some function F which is holomorphic on a disc punctured at the origin.
The condition from the (c) shows that F is bounded on a neighbourhood of
0, and hence extends to a holomorphic function at 0.
You can interpret this disc with coordinate q = e2πiτ as a coordinate chart
around the cusp on X(1). However this does not show that Gk induces
a holomorphic function on X(1) because it is not SL2(Z)-invariant (and in
any case X(1) has no non-constant holomorphic functions). It is possible to
interpret modular forms as meromorphic differential forms on X(1), but that
is beyond the scope of these exercises.

(e) One can use the Weierstrass ℘-function to define an isomorphism between
C/Λτ and the elliptic curve with Weierstrass equation

Eτ : Y 2Z = 4X3 − g2(τ)XZ2 − g3(τ)Z3.

where g2 = 60G4 and g3 = 140G6. (Note that the 4X3 is a different normali-
sation from that used in lectures.)
Show that the j-invariant of Eτ is

J(τ) = 1728 g2(τ)3

g2(τ)3 − 27g3(τ)2
.

(f) Show that G6(i) = G4(e2πi/3) = 0 using the fact that i and e2πi/3 have
non-trivial stabilisers in SL2(Z). Use the fact that the discriminant of Eτ is
non-zero to deduce that G4(i) 6= 0 and G6(e2πi/3) 6= 0. Substituting in the
above formula, deduce that

J(i) = 1728, J(e2πi/3) = 0.

(g) Since G4 and G6 extend to meromorphic functions on a neighbourhood of ∞
in H∗, J does likewise. Hence J induces a meromorphic function on X(1).
Conclude that J = j.

Because J is a holomorphic function of degree 1 on Y (1), it has a pole of order 1
at the cusp. It is possible to calculate the Laurent series of G2k at∞, and use this
to obtain the Laurent series of J . This begins

J = 1
q

+ 744 + 196884q + · · ·
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where q is the local coordinate e2πiτ . One justification for the 1728 which appears
in the definition of j is that the pole has residue 1 and the Laurent series has
integer coefficients.

5. Modular polynomials
For N ≥ 2, define jN : H → C by jN (τ) = j(Nτ).
In this exercise we will construct the modular polynomial ΦN (X,Y ), a symmetric
polynomial in C[X,Y ] such that ΦN (j, jN ) = 0. The curve defined by ΦN in A2 is
birational to X0(N).

(a) Show that jN is Γ0(N)-invariant, and so induces a meromorphic function on
X0(N).

(b) Let γ1, . . . , γr be a set of representatives for Γ0(N)\SL2(Z), and define fi =
jN ◦ γi : H→ C.
Observe that for any γ ∈ SL2(Z), the set of functions {f1 ◦ γ, . . . , fr ◦ γ} is
a permutation of {f1, . . . , fr}. Deduce that any symmetric polynomial in the
fi is SL2(Z)-invariant and so lies in C(j). Hence

PN (Y ) =
r∏
i=1

(Y − fi)

is a polynomial with coefficients in C(j), which vanishes at jN .
(c) Consider any polynomial P ∈ C(j)[T ]. Observe that P (jN ) is SL2(Z)-invariant,

and deduce that P (jN ) = P (fi) for all i. In particular, if jN is a root of P ,
then all the fi are roots of P .

(d) Show that the functions f1, . . . , fr are distinct.
(e) Deduce that PN is the minimum polynomial of jN over the field C(j). Observe

that degPN = [SL2(Z) : Γ0(N)] = deg(X0(N) → X(1)) and deduce that the
field of meromorphic functions on X0(N) is C(j, jN ).

(f) The coefficients of PN are holomorphic functions on H, so they lie not just in
C(j) but in C[j]. Hence, if we replace j by X in PN , we get a two variable
polynomial ΦN ∈ C[X,Y ] such that ΦN (j, jN ) = 0.

(g) By considering ΦN (j(−1/Nτ), j(−1/τ)), show that ΦN is symmetric in X
and Y .

Using the fact that the q-expansion of j has integer coefficients, one can show that
the coefficients of ΦN are also integers. Furthermore, using the q-expansion of j it
is in principle possible to calculate ΦN for any given N . However its coefficients
grow very fast so even with a computer, this is only feasible for very small N .
The plane curve CN = {(x, y) ∈ C2 | ΦN (x, y) = 0} has function field C(j, jN ),
the same as the function field of Y0(N), so these curves are birationally equivalent.
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However these curves are not isomorphic because Y0(N) is smooth while CN is
singular (you can prove this by noting that if CN were smooth, Plücker’s formula
would give the wrong genus for X0(N)).
Can you give an explanation in terms of moduli for why CN and Y0(N) are not
isomorphic?
Every function field of a curve has a unique smooth projective model, so we could
construct X0(N) as an algebraic curve over Q by blowing up the singularities of a
compactification of CN .
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