Shimura Varieties: Problem sheet 1
 Modular Curves

8 October 2014

1. A fundamental domain for $\mathrm{SL}_{2}(\mathbb{Z})$

Prove that

$$
\mathcal{F}=\left\{\tau \in \mathcal{H}\left|-\frac{1}{2}<\operatorname{Re} \tau<\frac{1}{2},|\tau|>1\right\}\right.
$$

is a fundamental domain for the action of $\mathrm{SL}_{2}(\mathbb{Z})$ on \mathcal{H}.
Recall the definition of a fundamental domain: $\mathcal{F} \subset \mathcal{H}$ is a fundamental domain for $\Gamma \subset \mathrm{SL}_{2}(\mathbb{R})$ if it is a connected open set, no two points of \mathcal{F} lie in the same Γ-orbit, and every Γ-orbit in \mathcal{H} contains at least one point of the closure of \mathcal{F}.

Outline of proof:
(a) If $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$, then $\operatorname{Im}(\gamma \tau)=\operatorname{Im}(\tau) /|c \tau+d|^{2}$.
(b) Deduce that every $\mathrm{SL}_{2}(\mathbb{Z})$-orbit contains an element τ such that $\operatorname{Im} \tau$ is greater than or equal to $\operatorname{Im} \tau^{\prime}$ for any other τ^{\prime} in the same orbit.
(c) We can replace the above τ by $\tau+b$ for some $b \in \mathbb{Z}$, such that $-\frac{1}{2} \leq \operatorname{Re}(\tau+b) \leq$ $\frac{1}{2}$. Then show that $|\tau+b| \geq 1$.
(d) Show that if τ and τ^{\prime} are both in \mathcal{F} and they lie in the same $\mathrm{SL}_{2}(\mathbb{Z})$-orbit, then $\tau=\tau^{\prime}$.
2. Riemann surface structure on the compactified modular curve $X(\Gamma)$

Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be any congruence subgroup.
(a) Show that the action of Γ on \mathcal{H} is properly discontinuous i.e. for all $\tau_{1}, \tau_{2} \in$ \mathcal{H}, there exist neighbourhoods U_{1} of τ_{1} and U_{2} of τ_{2} such that, for all $\gamma \in \Gamma$,

$$
\gamma\left(U_{1}\right) \cap U_{2} \neq \emptyset \Rightarrow \gamma\left(\tau_{1}\right)=\tau_{2}
$$

(b) Show that if S is any Hausdorff space and G is any discrete group acting properly discontinuously on S, then the quotient topological space $G \backslash S$ is Hausdorff.
(c) Let $\mathcal{H}^{*}=\mathcal{H} \cup \mathbb{P}^{1}(\mathbb{Q})=\mathcal{H} \cup \mathbb{Q} \cup\{\infty\}$. Define a topology on \mathcal{H}^{*}, generated by the topology on \mathcal{H} together with the following open sets:

- $\{\tau \mid \operatorname{Im} \tau>R\} \cup\{\infty\}$ for each $R \in \mathbb{R}$;
- sets of the form $D \cup\{x\}$ for $x \in \mathbb{Q}$, where D is a disc in \mathcal{H} tangent to the real line at x.

Prove that \mathcal{H}^{*} is Hausdorff and that the action of Γ on \mathcal{H} extends to a properly discontinuous action on \mathcal{H}^{*}.
(d) Define $X(\Gamma)$ to be the quotient topological space $\Gamma \backslash \mathcal{H}^{*}$. Define a cusp of $X(\Gamma)$ to be an element of $\Gamma \backslash \mathbb{P}^{1}(\mathbb{Q})$. Prove that $X(\Gamma)$ has finitely many cusps, and that $X(\Gamma)$ is compact.
(e) We say that $P \in Y(\Gamma)$ is an elliptic point for Γ if there is some $\tau \in \mathcal{H}$ lifting P and some $\gamma \in \Gamma-\{ \pm 1\}$ such that $\gamma \tau=\tau$. The order of the elliptic point P is the order of the group

$$
\operatorname{Stab}_{\Gamma}(\tau) /(\Gamma \cap\{ \pm 1\})
$$

Determine the elliptic points in $Y(1)$ and their orders. Deduce that every modular curve $Y(\Gamma)$ has finitely many elliptic points, and that their orders can only be 2 or 3 .
(f) Show that if $P \in Y(\Gamma)$ is not an elliptic point and $\tau \in \mathcal{H}$ lifts P, then there is a neighbourhood U of τ such that $\pi_{\mid U}$ is a homeomorphism from U to an open subset of $Y(\Gamma)$.
(g) Let $P \in Y(\Gamma)$ be an elliptic point of order n and $\tau \in \mathcal{H}$ a point lifting P. Choose $\delta \in \mathrm{SL}_{2}(\mathbb{C})$ mapping $\tau \mapsto 0$ and $\bar{\tau} \mapsto \infty$. Show that δ conjugates $\operatorname{Stab}_{\Gamma}(\tau) /(\Gamma \cap\{ \pm 1\})$ to the group of rotations generated by $e^{2 \pi i / n}$.
Show that there are open neighbourhoods U of τ in $\mathcal{H}, D, D^{\prime}$ of 0 in \mathbb{C} and U^{\prime} of P in $Y\left(\Gamma\right.$ such that $\pi_{\mid U}$ factors as follows, with ϕ being a homeomorphism:

$$
U \xrightarrow{\delta} D \xrightarrow{z \mapsto z^{n}} D^{\prime} \xrightarrow{\phi} U^{\prime}
$$

ϕ^{-1} gives us a chart on a neighbourhood of P.
(h) Let $P \in X(\Gamma)$ be a cusp and $x \in \mathbb{P}^{1}(\mathbb{Q})$ point lifting P. Choose $\delta \in \mathrm{SL}_{2}(\mathbb{Z})$ such that $\delta P=\infty$. Show that δ conjugates $\operatorname{Stab}_{\Gamma}(P) /(\Gamma \cap\{ \pm 1\})$ to the group of translations generated by $\left(\begin{array}{cc}1 & h \\ 0 & 1\end{array}\right)$ for some integer h.
Show that we can define a chart on a neighbourhood of P by a method similar to the above, using $z \mapsto e^{2 \pi i z / h}$ in place of $z \mapsto z^{n}$.
(i) Show that all the charts on $X(\Gamma)$ defined above are compatible.

3. Genus of modular curves

Let p be a prime number, and let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be any congruence subgroup.
(a) Use the Riemann-Hurwitz formula for the natural map $X(\Gamma) \rightarrow X(1)$ to prove the following formula for the genus of $X(\Gamma)$:

$$
g(X(\Gamma))=1+\frac{n}{12}-\frac{e_{2}}{4}-\frac{e_{3}}{3}-\frac{e_{\infty}}{2}
$$

where $n=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right] /[\{ \pm 1\}: \Gamma \cap\{ \pm 1\}]=\operatorname{deg}(X(\Gamma) \rightarrow X(1)), e_{2}$ and e_{3} are the numbers of elliptic points of order 2 and 3 respectively on $X(\Gamma)$, and e_{∞} is the number of cusps on $X(\Gamma)$.
(b) Show that $X_{0}(p)$ has two cusps and that the degree of $X_{0}(p) \rightarrow X(1)$ is $p+1$.
(c) Deduce that $X_{0}(N)$ has genus 0 for $N=2,3,5,7,13$ (you don't need to do any more calculations: remember that the genus and the e_{i} are nonnegative integers).
(d) Show that if the number of elliptic points of order 2 on $X_{0}(p)$ is

- 0 if $p \equiv 3 \bmod 4$;
- 2 if $p \equiv 1 \bmod 4$;
- 1 if $p=2$.
(e) Show that the number of elliptic points of order 3 on $X_{0}(p)$ is
- 0 if $p \equiv 2 \bmod 3$;
- 2 if $p \equiv 1 \bmod 3$;
- 1 if $p=3$.
(This is similar to counting elliptic points of order 2 but more tedious so you might skip it.)
(f) Calculate the genus of $X_{0}(11)$ and $X_{0}(17)$.
(g) Count the cusps on $X_{0}(N)$ and calculate the degree of $X_{0}(N) \rightarrow X(1)$ for composite N, or at least for all $N \leq 10$, and deduce that $X_{0}(N)$ has genus zero for all $N \leq 10$.
(h) (Optional extra - a lot of work) Compute the genus of $X_{1}(p)$ or maybe even $X(p)$. Note that there are no elliptic points on $X_{1}(p)$ for $p \geq 5$ and on $X(p)$ for $p \geq 2$.

4. The j-function as a modular function

The purpose of this exercise is to show that the elliptic curve $\mathbb{C} /(\mathbb{Z}+\mathbb{Z} \tau)$ really does have j-invariant $j(\tau)$, where j is the unique $\mathrm{SL}_{2}(\mathbb{Z})$-invariant holomorphic function satisfying $j(i)=1728$ and $j\left(e^{2 \pi i / 3}\right)=0$ and such that the induced function on $X(1)$ is meromorphic at the cusp.
(a) For any integer $k \geq 3$, define the Eisenstein series

$$
G_{k}(\tau)=\sum_{(m, n) \in \mathbb{Z}^{2}-\{(0,0)\}} \frac{1}{(m+n \tau)^{k}}
$$

Prove that G_{k} converges absolutely and uniformly on compact subsets of \mathcal{H}, and hence defines a holomorphic function on \mathcal{H}. (For $k=2$, the series converges but not absolutely.) Note that when k is odd, the series sums to zero.
(b) Prove that for $k \geq 3, G_{k}$ satisfies

$$
G_{k}(\gamma \tau)=(c \tau+d)^{k} G_{k}(\tau)
$$

for all $\gamma=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$ and $\tau \in \mathcal{H}$. A meromorphic function on \mathcal{H} satisfying this condition is said to be weakly modular of weight k.
(c) Prove that as $G_{k}(\tau)$ is bounded on $\{\tau \in \mathcal{H} \mid \operatorname{Im} \tau>C\}$ for some constant $C>0$. A weakly modular function which is holomorphic on \mathcal{H} and satisfies this boundedness condition is called a modular form. (You may often see the definition of modular form given with a stronger condition at ∞, but the next point implies that the apparently stronger definition is equivalent.)
(d) Since G_{k} is invariant under translations by \mathbb{Z}, it factors as

$$
G_{k}(\tau)=F\left(e^{2 \pi i \tau}\right)
$$

for some function F which is holomorphic on a disc punctured at the origin. The condition from the (c) shows that F is bounded on a neighbourhood of 0 , and hence extends to a holomorphic function at 0 .
You can interpret this disc with coordinate $q=e^{2 \pi i \tau}$ as a coordinate chart around the cusp on $X(1)$. However this does not show that G_{k} induces a holomorphic function on $X(1)$ because it is not $\mathrm{SL}_{2}(\mathbb{Z})$-invariant (and in any case $X(1)$ has no non-constant holomorphic functions). It is possible to interpret modular forms as meromorphic differential forms on $X(1)$, but that is beyond the scope of these exercises.
(e) One can use the Weierstrass \wp-function to define an isomorphism between $\mathbb{C} / \Lambda_{\tau}$ and the elliptic curve with Weierstrass equation

$$
E_{\tau}: Y^{2} Z=4 X^{3}-g_{2}(\tau) X Z^{2}-g_{3}(\tau) Z^{3}
$$

where $g_{2}=60 G_{4}$ and $g_{3}=140 G_{6}$. (Note that the $4 X^{3}$ is a different normalisation from that used in lectures.)
Show that the j-invariant of E_{τ} is

$$
J(\tau)=1728 \frac{g_{2}(\tau)^{3}}{g_{2}(\tau)^{3}-27 g_{3}(\tau)^{2}} .
$$

(f) Show that $G_{6}(i)=G_{4}\left(e^{2 \pi i / 3}\right)=0$ using the fact that i and $e^{2 \pi i / 3}$ have non-trivial stabilisers in $\mathrm{SL}_{2}(\mathbb{Z})$. Use the fact that the discriminant of E_{τ} is non-zero to deduce that $G_{4}(i) \neq 0$ and $G_{6}\left(e^{2 \pi i / 3}\right) \neq 0$. Substituting in the above formula, deduce that

$$
J(i)=1728, \quad J\left(e^{2 \pi i / 3}\right)=0 .
$$

(g) Since G_{4} and G_{6} extend to meromorphic functions on a neighbourhood of ∞ in \mathcal{H}^{*}, J does likewise. Hence J induces a meromorphic function on $X(1)$. Conclude that $J=j$.

Because J is a holomorphic function of degree 1 on $Y(1)$, it has a pole of order 1 at the cusp. It is possible to calculate the Laurent series of $G_{2 k}$ at ∞, and use this to obtain the Laurent series of J. This begins

$$
J=\frac{1}{q}+744+196884 q+\cdots
$$

where q is the local coordinate $e^{2 \pi i \tau}$. One justification for the 1728 which appears in the definition of j is that the pole has residue 1 and the Laurent series has integer coefficients.

5. Modular polynomials

For $N \geq 2$, define $j_{N}: \mathcal{H} \rightarrow \mathbb{C}$ by $j_{N}(\tau)=j(N \tau)$.
In this exercise we will construct the modular polynomial $\Phi_{N}(X, Y)$, a symmetric polynomial in $\mathbb{C}[X, Y]$ such that $\Phi_{N}\left(j, j_{N}\right)=0$. The curve defined by Φ_{N} in \mathbb{A}^{2} is birational to $X_{0}(N)$.
(a) Show that j_{N} is $\Gamma_{0}(N)$-invariant, and so induces a meromorphic function on $X_{0}(N)$.
(b) Let $\gamma_{1}, \ldots, \gamma_{r}$ be a set of representatives for $\Gamma_{0}(N) \backslash \mathrm{SL}_{2}(\mathbb{Z})$, and define $f_{i}=$ $j_{N} \circ \gamma_{i}: \mathbb{H} \rightarrow \mathbb{C}$.
Observe that for any $\gamma \in \mathrm{SL}_{2}(\mathbb{Z})$, the set of functions $\left\{f_{1} \circ \gamma, \ldots, f_{r} \circ \gamma\right\}$ is a permutation of $\left\{f_{1}, \ldots, f_{r}\right\}$. Deduce that any symmetric polynomial in the f_{i} is $\mathrm{SL}_{2}(\mathbb{Z})$-invariant and so lies in $\mathbb{C}(j)$. Hence

$$
P_{N}(Y)=\prod_{i=1}^{r}\left(Y-f_{i}\right)
$$

is a polynomial with coefficients in $\mathbb{C}(j)$, which vanishes at j_{N}.
(c) Consider any polynomial $P \in \mathbb{C}(j)[T]$. Observe that $P\left(j_{N}\right)$ is $\mathrm{SL}_{2}(\mathbb{Z})$-invariant, and deduce that $P\left(j_{N}\right)=P\left(f_{i}\right)$ for all i. In particular, if j_{N} is a root of P, then all the f_{i} are roots of P.
(d) Show that the functions f_{1}, \ldots, f_{r} are distinct.
(e) Deduce that P_{N} is the minimum polynomial of j_{N} over the field $\mathbb{C}(j)$. Observe that $\operatorname{deg} P_{N}=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]=\operatorname{deg}\left(X_{0}(N) \rightarrow X(1)\right)$ and deduce that the field of meromorphic functions on $X_{0}(N)$ is $\mathbb{C}\left(j, j_{N}\right)$.
(f) The coefficients of P_{N} are holomorphic functions on \mathcal{H}, so they lie not just in $\mathbb{C}(j)$ but in $\mathbb{C}[j]$. Hence, if we replace j by X in P_{N}, we get a two variable polynomial $\Phi_{N} \in \mathbb{C}[X, Y]$ such that $\Phi_{N}\left(j, j_{N}\right)=0$.
(g) By considering $\Phi_{N}(j(-1 / N \tau), j(-1 / \tau))$, show that Φ_{N} is symmetric in X and Y.

Using the fact that the q-expansion of j has integer coefficients, one can show that the coefficients of Φ_{N} are also integers. Furthermore, using the q-expansion of j it is in principle possible to calculate Φ_{N} for any given N. However its coefficients grow very fast so even with a computer, this is only feasible for very small N.
The plane curve $C_{N}=\left\{(x, y) \in \mathbb{C}^{2} \mid \Phi_{N}(x, y)=0\right\}$ has function field $\mathbb{C}\left(j, j_{N}\right)$, the same as the function field of $Y_{0}(N)$, so these curves are birationally equivalent.

However these curves are not isomorphic because $Y_{0}(N)$ is smooth while C_{N} is singular (you can prove this by noting that if C_{N} were smooth, Plücker's formula would give the wrong genus for $X_{0}(N)$).
Can you give an explanation in terms of moduli for why C_{N} and $Y_{0}(N)$ are not isomorphic?
Every function field of a curve has a unique smooth projective model, so we could construct $X_{0}(N)$ as an algebraic curve over \mathbb{Q} by blowing up the singularities of a compactification of C_{N}.

